n_log.c revision 1.2 1 /* $NetBSD: n_log.c,v 1.2 1997/10/20 14:13:05 ragge Exp $ */
2 /*
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
38 #endif
39 #endif /* not lint */
40
41 #include <math.h>
42 #include <errno.h>
43
44 #include "mathimpl.h"
45
46 /* Table-driven natural logarithm.
47 *
48 * This code was derived, with minor modifications, from:
49 * Peter Tang, "Table-Driven Implementation of the
50 * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
51 * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
52 *
53 * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
54 * where F = j/128 for j an integer in [0, 128].
55 *
56 * log(2^m) = log2_hi*m + log2_tail*m
57 * since m is an integer, the dominant term is exact.
58 * m has at most 10 digits (for subnormal numbers),
59 * and log2_hi has 11 trailing zero bits.
60 *
61 * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
62 * logF_hi[] + 512 is exact.
63 *
64 * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
65 * the leading term is calculated to extra precision in two
66 * parts, the larger of which adds exactly to the dominant
67 * m and F terms.
68 * There are two cases:
69 * 1. when m, j are non-zero (m | j), use absolute
70 * precision for the leading term.
71 * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
72 * In this case, use a relative precision of 24 bits.
73 * (This is done differently in the original paper)
74 *
75 * Special cases:
76 * 0 return signalling -Inf
77 * neg return signalling NaN
78 * +Inf return +Inf
79 */
80
81 #if defined(vax) || defined(tahoe)
82 #define _IEEE 0
83 #define TRUNC(x) x = (double) (float) (x)
84 #else
85 #define _IEEE 1
86 #define endian (((*(int *) &one)) ? 1 : 0)
87 #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
88 #define infnan(x) 0.0
89 #endif
90
91 #define N 128
92
93 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
94 * Used for generation of extend precision logarithms.
95 * The constant 35184372088832 is 2^45, so the divide is exact.
96 * It ensures correct reading of logF_head, even for inaccurate
97 * decimal-to-binary conversion routines. (Everybody gets the
98 * right answer for integers less than 2^53.)
99 * Values for log(F) were generated using error < 10^-57 absolute
100 * with the bc -l package.
101 */
102 static double A1 = .08333333333333178827;
103 static double A2 = .01250000000377174923;
104 static double A3 = .002232139987919447809;
105 static double A4 = .0004348877777076145742;
106
107 static double logF_head[N+1] = {
108 0.,
109 .007782140442060381246,
110 .015504186535963526694,
111 .023167059281547608406,
112 .030771658666765233647,
113 .038318864302141264488,
114 .045809536031242714670,
115 .053244514518837604555,
116 .060624621816486978786,
117 .067950661908525944454,
118 .075223421237524235039,
119 .082443669210988446138,
120 .089612158689760690322,
121 .096729626458454731618,
122 .103796793681567578460,
123 .110814366340264314203,
124 .117783035656430001836,
125 .124703478501032805070,
126 .131576357788617315236,
127 .138402322859292326029,
128 .145182009844575077295,
129 .151916042025732167530,
130 .158605030176659056451,
131 .165249572895390883786,
132 .171850256926518341060,
133 .178407657472689606947,
134 .184922338493834104156,
135 .191394852999565046047,
136 .197825743329758552135,
137 .204215541428766300668,
138 .210564769107350002741,
139 .216873938300523150246,
140 .223143551314024080056,
141 .229374101064877322642,
142 .235566071312860003672,
143 .241719936886966024758,
144 .247836163904594286577,
145 .253915209980732470285,
146 .259957524436686071567,
147 .265963548496984003577,
148 .271933715484010463114,
149 .277868451003087102435,
150 .283768173130738432519,
151 .289633292582948342896,
152 .295464212893421063199,
153 .301261330578199704177,
154 .307025035294827830512,
155 .312755710004239517729,
156 .318453731118097493890,
157 .324119468654316733591,
158 .329753286372579168528,
159 .335355541920762334484,
160 .340926586970454081892,
161 .346466767346100823488,
162 .351976423156884266063,
163 .357455888922231679316,
164 .362905493689140712376,
165 .368325561158599157352,
166 .373716409793814818840,
167 .379078352934811846353,
168 .384411698910298582632,
169 .389716751140440464951,
170 .394993808240542421117,
171 .400243164127459749579,
172 .405465108107819105498,
173 .410659924985338875558,
174 .415827895143593195825,
175 .420969294644237379543,
176 .426084395310681429691,
177 .431173464818130014464,
178 .436236766774527495726,
179 .441274560805140936281,
180 .446287102628048160113,
181 .451274644139630254358,
182 .456237433481874177232,
183 .461175715122408291790,
184 .466089729924533457960,
185 .470979715219073113985,
186 .475845904869856894947,
187 .480688529345570714212,
188 .485507815781602403149,
189 .490303988045525329653,
190 .495077266798034543171,
191 .499827869556611403822,
192 .504556010751912253908,
193 .509261901790523552335,
194 .513945751101346104405,
195 .518607764208354637958,
196 .523248143765158602036,
197 .527867089620485785417,
198 .532464798869114019908,
199 .537041465897345915436,
200 .541597282432121573947,
201 .546132437597407260909,
202 .550647117952394182793,
203 .555141507540611200965,
204 .559615787935399566777,
205 .564070138285387656651,
206 .568504735352689749561,
207 .572919753562018740922,
208 .577315365035246941260,
209 .581691739635061821900,
210 .586049045003164792433,
211 .590387446602107957005,
212 .594707107746216934174,
213 .599008189645246602594,
214 .603290851438941899687,
215 .607555250224322662688,
216 .611801541106615331955,
217 .616029877215623855590,
218 .620240409751204424537,
219 .624433288012369303032,
220 .628608659422752680256,
221 .632766669570628437213,
222 .636907462236194987781,
223 .641031179420679109171,
224 .645137961373620782978,
225 .649227946625615004450,
226 .653301272011958644725,
227 .657358072709030238911,
228 .661398482245203922502,
229 .665422632544505177065,
230 .669430653942981734871,
231 .673422675212350441142,
232 .677398823590920073911,
233 .681359224807238206267,
234 .685304003098281100392,
235 .689233281238557538017,
236 .693147180560117703862
237 };
238
239 static double logF_tail[N+1] = {
240 0.,
241 -.00000000000000543229938420049,
242 .00000000000000172745674997061,
243 -.00000000000001323017818229233,
244 -.00000000000001154527628289872,
245 -.00000000000000466529469958300,
246 .00000000000005148849572685810,
247 -.00000000000002532168943117445,
248 -.00000000000005213620639136504,
249 -.00000000000001819506003016881,
250 .00000000000006329065958724544,
251 .00000000000008614512936087814,
252 -.00000000000007355770219435028,
253 .00000000000009638067658552277,
254 .00000000000007598636597194141,
255 .00000000000002579999128306990,
256 -.00000000000004654729747598444,
257 -.00000000000007556920687451336,
258 .00000000000010195735223708472,
259 -.00000000000017319034406422306,
260 -.00000000000007718001336828098,
261 .00000000000010980754099855238,
262 -.00000000000002047235780046195,
263 -.00000000000008372091099235912,
264 .00000000000014088127937111135,
265 .00000000000012869017157588257,
266 .00000000000017788850778198106,
267 .00000000000006440856150696891,
268 .00000000000016132822667240822,
269 -.00000000000007540916511956188,
270 -.00000000000000036507188831790,
271 .00000000000009120937249914984,
272 .00000000000018567570959796010,
273 -.00000000000003149265065191483,
274 -.00000000000009309459495196889,
275 .00000000000017914338601329117,
276 -.00000000000001302979717330866,
277 .00000000000023097385217586939,
278 .00000000000023999540484211737,
279 .00000000000015393776174455408,
280 -.00000000000036870428315837678,
281 .00000000000036920375082080089,
282 -.00000000000009383417223663699,
283 .00000000000009433398189512690,
284 .00000000000041481318704258568,
285 -.00000000000003792316480209314,
286 .00000000000008403156304792424,
287 -.00000000000034262934348285429,
288 .00000000000043712191957429145,
289 -.00000000000010475750058776541,
290 -.00000000000011118671389559323,
291 .00000000000037549577257259853,
292 .00000000000013912841212197565,
293 .00000000000010775743037572640,
294 .00000000000029391859187648000,
295 -.00000000000042790509060060774,
296 .00000000000022774076114039555,
297 .00000000000010849569622967912,
298 -.00000000000023073801945705758,
299 .00000000000015761203773969435,
300 .00000000000003345710269544082,
301 -.00000000000041525158063436123,
302 .00000000000032655698896907146,
303 -.00000000000044704265010452446,
304 .00000000000034527647952039772,
305 -.00000000000007048962392109746,
306 .00000000000011776978751369214,
307 -.00000000000010774341461609578,
308 .00000000000021863343293215910,
309 .00000000000024132639491333131,
310 .00000000000039057462209830700,
311 -.00000000000026570679203560751,
312 .00000000000037135141919592021,
313 -.00000000000017166921336082431,
314 -.00000000000028658285157914353,
315 -.00000000000023812542263446809,
316 .00000000000006576659768580062,
317 -.00000000000028210143846181267,
318 .00000000000010701931762114254,
319 .00000000000018119346366441110,
320 .00000000000009840465278232627,
321 -.00000000000033149150282752542,
322 -.00000000000018302857356041668,
323 -.00000000000016207400156744949,
324 .00000000000048303314949553201,
325 -.00000000000071560553172382115,
326 .00000000000088821239518571855,
327 -.00000000000030900580513238244,
328 -.00000000000061076551972851496,
329 .00000000000035659969663347830,
330 .00000000000035782396591276383,
331 -.00000000000046226087001544578,
332 .00000000000062279762917225156,
333 .00000000000072838947272065741,
334 .00000000000026809646615211673,
335 -.00000000000010960825046059278,
336 .00000000000002311949383800537,
337 -.00000000000058469058005299247,
338 -.00000000000002103748251144494,
339 -.00000000000023323182945587408,
340 -.00000000000042333694288141916,
341 -.00000000000043933937969737844,
342 .00000000000041341647073835565,
343 .00000000000006841763641591466,
344 .00000000000047585534004430641,
345 .00000000000083679678674757695,
346 -.00000000000085763734646658640,
347 .00000000000021913281229340092,
348 -.00000000000062242842536431148,
349 -.00000000000010983594325438430,
350 .00000000000065310431377633651,
351 -.00000000000047580199021710769,
352 -.00000000000037854251265457040,
353 .00000000000040939233218678664,
354 .00000000000087424383914858291,
355 .00000000000025218188456842882,
356 -.00000000000003608131360422557,
357 -.00000000000050518555924280902,
358 .00000000000078699403323355317,
359 -.00000000000067020876961949060,
360 .00000000000016108575753932458,
361 .00000000000058527188436251509,
362 -.00000000000035246757297904791,
363 -.00000000000018372084495629058,
364 .00000000000088606689813494916,
365 .00000000000066486268071468700,
366 .00000000000063831615170646519,
367 .00000000000025144230728376072,
368 -.00000000000017239444525614834
369 };
370
371 double
372 #ifdef _ANSI_SOURCE
373 log(double x)
374 #else
375 log(x) double x;
376 #endif
377 {
378 int m, j;
379 double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
380 volatile double u1;
381
382 /* Catch special cases */
383 if (x <= 0)
384 if (_IEEE && x == zero) /* log(0) = -Inf */
385 return (-one/zero);
386 else if (_IEEE) /* log(neg) = NaN */
387 return (zero/zero);
388 else if (x == zero) /* NOT REACHED IF _IEEE */
389 return (infnan(-ERANGE));
390 else
391 return (infnan(EDOM));
392 else if (!finite(x))
393 if (_IEEE) /* x = NaN, Inf */
394 return (x+x);
395 else
396 return (infnan(ERANGE));
397
398 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
399 /* y = F*(1 + f/F) for |f| <= 2^-8 */
400
401 m = logb(x);
402 g = ldexp(x, -m);
403 if (_IEEE && m == -1022) {
404 j = logb(g), m += j;
405 g = ldexp(g, -j);
406 }
407 j = N*(g-1) + .5;
408 F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
409 f = g - F;
410
411 /* Approximate expansion for log(1+f/F) ~= u + q */
412 g = 1/(2*F+f);
413 u = 2*f*g;
414 v = u*u;
415 q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
416
417 /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
418 * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
419 * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
420 */
421 if (m | j)
422 u1 = u + 513, u1 -= 513;
423
424 /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
425 * u1 = u to 24 bits.
426 */
427 else
428 u1 = u, TRUNC(u1);
429 u2 = (2.0*(f - F*u1) - u1*f) * g;
430 /* u1 + u2 = 2f/(2F+f) to extra precision. */
431
432 /* log(x) = log(2^m*F*(1+f/F)) = */
433 /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
434 /* (exact) + (tiny) */
435
436 u1 += m*logF_head[N] + logF_head[j]; /* exact */
437 u2 = (u2 + logF_tail[j]) + q; /* tiny */
438 u2 += logF_tail[N]*m;
439 return (u1 + u2);
440 }
441
442 /*
443 * Extra precision variant, returning struct {double a, b;};
444 * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
445 */
446 struct Double
447 #ifdef _ANSI_SOURCE
448 __log__D(double x)
449 #else
450 __log__D(x) double x;
451 #endif
452 {
453 int m, j;
454 double F, f, g, q, u, v, u2;
455 volatile double u1;
456 struct Double r;
457
458 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
459 /* y = F*(1 + f/F) for |f| <= 2^-8 */
460
461 m = logb(x);
462 g = ldexp(x, -m);
463 if (_IEEE && m == -1022) {
464 j = logb(g), m += j;
465 g = ldexp(g, -j);
466 }
467 j = N*(g-1) + .5;
468 F = (1.0/N) * j + 1;
469 f = g - F;
470
471 g = 1/(2*F+f);
472 u = 2*f*g;
473 v = u*u;
474 q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
475 if (m | j)
476 u1 = u + 513, u1 -= 513;
477 else
478 u1 = u, TRUNC(u1);
479 u2 = (2.0*(f - F*u1) - u1*f) * g;
480
481 u1 += m*logF_head[N] + logF_head[j];
482
483 u2 += logF_tail[j]; u2 += q;
484 u2 += logF_tail[N]*m;
485 r.a = u1 + u2; /* Only difference is here */
486 TRUNC(r.a);
487 r.b = (u1 - r.a) + u2;
488 return (r);
489 }
490