Home | History | Annotate | Line # | Download | only in noieee_src
n_log.c revision 1.3
      1 /*      $NetBSD: n_log.c,v 1.3 1998/10/20 02:26:12 matt Exp $ */
      2 /*
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 #if 0
     37 static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
     38 #endif
     39 #endif /* not lint */
     40 
     41 #include <math.h>
     42 #include <errno.h>
     43 
     44 #include "mathimpl.h"
     45 
     46 /* Table-driven natural logarithm.
     47  *
     48  * This code was derived, with minor modifications, from:
     49  *	Peter Tang, "Table-Driven Implementation of the
     50  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
     51  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
     52  *
     53  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
     54  * where F = j/128 for j an integer in [0, 128].
     55  *
     56  * log(2^m) = log2_hi*m + log2_tail*m
     57  * since m is an integer, the dominant term is exact.
     58  * m has at most 10 digits (for subnormal numbers),
     59  * and log2_hi has 11 trailing zero bits.
     60  *
     61  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
     62  * logF_hi[] + 512 is exact.
     63  *
     64  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
     65  * the leading term is calculated to extra precision in two
     66  * parts, the larger of which adds exactly to the dominant
     67  * m and F terms.
     68  * There are two cases:
     69  *	1. when m, j are non-zero (m | j), use absolute
     70  *	   precision for the leading term.
     71  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
     72  *	   In this case, use a relative precision of 24 bits.
     73  * (This is done differently in the original paper)
     74  *
     75  * Special cases:
     76  *	0	return signalling -Inf
     77  *	neg	return signalling NaN
     78  *	+Inf	return +Inf
     79 */
     80 
     81 #if defined(__vax__) || defined(tahoe)
     82 #define _IEEE		0
     83 #define TRUNC(x)	x = (double) (float) (x)
     84 #else
     85 #define _IEEE		1
     86 #define endian		(((*(int *) &one)) ? 1 : 0)
     87 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
     88 #define infnan(x)	0.0
     89 #endif
     90 
     91 #define N 128
     92 
     93 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
     94  * Used for generation of extend precision logarithms.
     95  * The constant 35184372088832 is 2^45, so the divide is exact.
     96  * It ensures correct reading of logF_head, even for inaccurate
     97  * decimal-to-binary conversion routines.  (Everybody gets the
     98  * right answer for integers less than 2^53.)
     99  * Values for log(F) were generated using error < 10^-57 absolute
    100  * with the bc -l package.
    101 */
    102 static double	A1 = 	  .08333333333333178827;
    103 static double	A2 = 	  .01250000000377174923;
    104 static double	A3 =	 .002232139987919447809;
    105 static double	A4 =	.0004348877777076145742;
    106 
    107 static double logF_head[N+1] = {
    108 	0.,
    109 	.007782140442060381246,
    110 	.015504186535963526694,
    111 	.023167059281547608406,
    112 	.030771658666765233647,
    113 	.038318864302141264488,
    114 	.045809536031242714670,
    115 	.053244514518837604555,
    116 	.060624621816486978786,
    117 	.067950661908525944454,
    118 	.075223421237524235039,
    119 	.082443669210988446138,
    120 	.089612158689760690322,
    121 	.096729626458454731618,
    122 	.103796793681567578460,
    123 	.110814366340264314203,
    124 	.117783035656430001836,
    125 	.124703478501032805070,
    126 	.131576357788617315236,
    127 	.138402322859292326029,
    128 	.145182009844575077295,
    129 	.151916042025732167530,
    130 	.158605030176659056451,
    131 	.165249572895390883786,
    132 	.171850256926518341060,
    133 	.178407657472689606947,
    134 	.184922338493834104156,
    135 	.191394852999565046047,
    136 	.197825743329758552135,
    137 	.204215541428766300668,
    138 	.210564769107350002741,
    139 	.216873938300523150246,
    140 	.223143551314024080056,
    141 	.229374101064877322642,
    142 	.235566071312860003672,
    143 	.241719936886966024758,
    144 	.247836163904594286577,
    145 	.253915209980732470285,
    146 	.259957524436686071567,
    147 	.265963548496984003577,
    148 	.271933715484010463114,
    149 	.277868451003087102435,
    150 	.283768173130738432519,
    151 	.289633292582948342896,
    152 	.295464212893421063199,
    153 	.301261330578199704177,
    154 	.307025035294827830512,
    155 	.312755710004239517729,
    156 	.318453731118097493890,
    157 	.324119468654316733591,
    158 	.329753286372579168528,
    159 	.335355541920762334484,
    160 	.340926586970454081892,
    161 	.346466767346100823488,
    162 	.351976423156884266063,
    163 	.357455888922231679316,
    164 	.362905493689140712376,
    165 	.368325561158599157352,
    166 	.373716409793814818840,
    167 	.379078352934811846353,
    168 	.384411698910298582632,
    169 	.389716751140440464951,
    170 	.394993808240542421117,
    171 	.400243164127459749579,
    172 	.405465108107819105498,
    173 	.410659924985338875558,
    174 	.415827895143593195825,
    175 	.420969294644237379543,
    176 	.426084395310681429691,
    177 	.431173464818130014464,
    178 	.436236766774527495726,
    179 	.441274560805140936281,
    180 	.446287102628048160113,
    181 	.451274644139630254358,
    182 	.456237433481874177232,
    183 	.461175715122408291790,
    184 	.466089729924533457960,
    185 	.470979715219073113985,
    186 	.475845904869856894947,
    187 	.480688529345570714212,
    188 	.485507815781602403149,
    189 	.490303988045525329653,
    190 	.495077266798034543171,
    191 	.499827869556611403822,
    192 	.504556010751912253908,
    193 	.509261901790523552335,
    194 	.513945751101346104405,
    195 	.518607764208354637958,
    196 	.523248143765158602036,
    197 	.527867089620485785417,
    198 	.532464798869114019908,
    199 	.537041465897345915436,
    200 	.541597282432121573947,
    201 	.546132437597407260909,
    202 	.550647117952394182793,
    203 	.555141507540611200965,
    204 	.559615787935399566777,
    205 	.564070138285387656651,
    206 	.568504735352689749561,
    207 	.572919753562018740922,
    208 	.577315365035246941260,
    209 	.581691739635061821900,
    210 	.586049045003164792433,
    211 	.590387446602107957005,
    212 	.594707107746216934174,
    213 	.599008189645246602594,
    214 	.603290851438941899687,
    215 	.607555250224322662688,
    216 	.611801541106615331955,
    217 	.616029877215623855590,
    218 	.620240409751204424537,
    219 	.624433288012369303032,
    220 	.628608659422752680256,
    221 	.632766669570628437213,
    222 	.636907462236194987781,
    223 	.641031179420679109171,
    224 	.645137961373620782978,
    225 	.649227946625615004450,
    226 	.653301272011958644725,
    227 	.657358072709030238911,
    228 	.661398482245203922502,
    229 	.665422632544505177065,
    230 	.669430653942981734871,
    231 	.673422675212350441142,
    232 	.677398823590920073911,
    233 	.681359224807238206267,
    234 	.685304003098281100392,
    235 	.689233281238557538017,
    236 	.693147180560117703862
    237 };
    238 
    239 static double logF_tail[N+1] = {
    240 	0.,
    241 	-.00000000000000543229938420049,
    242 	 .00000000000000172745674997061,
    243 	-.00000000000001323017818229233,
    244 	-.00000000000001154527628289872,
    245 	-.00000000000000466529469958300,
    246 	 .00000000000005148849572685810,
    247 	-.00000000000002532168943117445,
    248 	-.00000000000005213620639136504,
    249 	-.00000000000001819506003016881,
    250 	 .00000000000006329065958724544,
    251 	 .00000000000008614512936087814,
    252 	-.00000000000007355770219435028,
    253 	 .00000000000009638067658552277,
    254 	 .00000000000007598636597194141,
    255 	 .00000000000002579999128306990,
    256 	-.00000000000004654729747598444,
    257 	-.00000000000007556920687451336,
    258 	 .00000000000010195735223708472,
    259 	-.00000000000017319034406422306,
    260 	-.00000000000007718001336828098,
    261 	 .00000000000010980754099855238,
    262 	-.00000000000002047235780046195,
    263 	-.00000000000008372091099235912,
    264 	 .00000000000014088127937111135,
    265 	 .00000000000012869017157588257,
    266 	 .00000000000017788850778198106,
    267 	 .00000000000006440856150696891,
    268 	 .00000000000016132822667240822,
    269 	-.00000000000007540916511956188,
    270 	-.00000000000000036507188831790,
    271 	 .00000000000009120937249914984,
    272 	 .00000000000018567570959796010,
    273 	-.00000000000003149265065191483,
    274 	-.00000000000009309459495196889,
    275 	 .00000000000017914338601329117,
    276 	-.00000000000001302979717330866,
    277 	 .00000000000023097385217586939,
    278 	 .00000000000023999540484211737,
    279 	 .00000000000015393776174455408,
    280 	-.00000000000036870428315837678,
    281 	 .00000000000036920375082080089,
    282 	-.00000000000009383417223663699,
    283 	 .00000000000009433398189512690,
    284 	 .00000000000041481318704258568,
    285 	-.00000000000003792316480209314,
    286 	 .00000000000008403156304792424,
    287 	-.00000000000034262934348285429,
    288 	 .00000000000043712191957429145,
    289 	-.00000000000010475750058776541,
    290 	-.00000000000011118671389559323,
    291 	 .00000000000037549577257259853,
    292 	 .00000000000013912841212197565,
    293 	 .00000000000010775743037572640,
    294 	 .00000000000029391859187648000,
    295 	-.00000000000042790509060060774,
    296 	 .00000000000022774076114039555,
    297 	 .00000000000010849569622967912,
    298 	-.00000000000023073801945705758,
    299 	 .00000000000015761203773969435,
    300 	 .00000000000003345710269544082,
    301 	-.00000000000041525158063436123,
    302 	 .00000000000032655698896907146,
    303 	-.00000000000044704265010452446,
    304 	 .00000000000034527647952039772,
    305 	-.00000000000007048962392109746,
    306 	 .00000000000011776978751369214,
    307 	-.00000000000010774341461609578,
    308 	 .00000000000021863343293215910,
    309 	 .00000000000024132639491333131,
    310 	 .00000000000039057462209830700,
    311 	-.00000000000026570679203560751,
    312 	 .00000000000037135141919592021,
    313 	-.00000000000017166921336082431,
    314 	-.00000000000028658285157914353,
    315 	-.00000000000023812542263446809,
    316 	 .00000000000006576659768580062,
    317 	-.00000000000028210143846181267,
    318 	 .00000000000010701931762114254,
    319 	 .00000000000018119346366441110,
    320 	 .00000000000009840465278232627,
    321 	-.00000000000033149150282752542,
    322 	-.00000000000018302857356041668,
    323 	-.00000000000016207400156744949,
    324 	 .00000000000048303314949553201,
    325 	-.00000000000071560553172382115,
    326 	 .00000000000088821239518571855,
    327 	-.00000000000030900580513238244,
    328 	-.00000000000061076551972851496,
    329 	 .00000000000035659969663347830,
    330 	 .00000000000035782396591276383,
    331 	-.00000000000046226087001544578,
    332 	 .00000000000062279762917225156,
    333 	 .00000000000072838947272065741,
    334 	 .00000000000026809646615211673,
    335 	-.00000000000010960825046059278,
    336 	 .00000000000002311949383800537,
    337 	-.00000000000058469058005299247,
    338 	-.00000000000002103748251144494,
    339 	-.00000000000023323182945587408,
    340 	-.00000000000042333694288141916,
    341 	-.00000000000043933937969737844,
    342 	 .00000000000041341647073835565,
    343 	 .00000000000006841763641591466,
    344 	 .00000000000047585534004430641,
    345 	 .00000000000083679678674757695,
    346 	-.00000000000085763734646658640,
    347 	 .00000000000021913281229340092,
    348 	-.00000000000062242842536431148,
    349 	-.00000000000010983594325438430,
    350 	 .00000000000065310431377633651,
    351 	-.00000000000047580199021710769,
    352 	-.00000000000037854251265457040,
    353 	 .00000000000040939233218678664,
    354 	 .00000000000087424383914858291,
    355 	 .00000000000025218188456842882,
    356 	-.00000000000003608131360422557,
    357 	-.00000000000050518555924280902,
    358 	 .00000000000078699403323355317,
    359 	-.00000000000067020876961949060,
    360 	 .00000000000016108575753932458,
    361 	 .00000000000058527188436251509,
    362 	-.00000000000035246757297904791,
    363 	-.00000000000018372084495629058,
    364 	 .00000000000088606689813494916,
    365 	 .00000000000066486268071468700,
    366 	 .00000000000063831615170646519,
    367 	 .00000000000025144230728376072,
    368 	-.00000000000017239444525614834
    369 };
    370 
    371 double
    372 #ifdef _ANSI_SOURCE
    373 log(double x)
    374 #else
    375 log(x) double x;
    376 #endif
    377 {
    378 	int m, j;
    379 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
    380 	volatile double u1;
    381 
    382 	/* Catch special cases */
    383 	if (x <= 0) {
    384 		if (_IEEE && x == zero)	/* log(0) = -Inf */
    385 			return (-one/zero);
    386 		else if (_IEEE)		/* log(neg) = NaN */
    387 			return (zero/zero);
    388 		else if (x == zero)	/* NOT REACHED IF _IEEE */
    389 			return (infnan(-ERANGE));
    390 		else
    391 			return (infnan(EDOM));
    392 	} else if (!finite(x)) {
    393 		if (_IEEE)		/* x = NaN, Inf */
    394 			return (x+x);
    395 		else
    396 			return (infnan(ERANGE));
    397 	}
    398 
    399 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    400 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    401 
    402 	m = logb(x);
    403 	g = ldexp(x, -m);
    404 	if (_IEEE && m == -1022) {
    405 		j = logb(g), m += j;
    406 		g = ldexp(g, -j);
    407 	}
    408 	j = N*(g-1) + .5;
    409 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
    410 	f = g - F;
    411 
    412 	/* Approximate expansion for log(1+f/F) ~= u + q */
    413 	g = 1/(2*F+f);
    414 	u = 2*f*g;
    415 	v = u*u;
    416 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    417 
    418     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
    419      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
    420      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
    421     */
    422 	if (m | j)
    423 		u1 = u + 513, u1 -= 513;
    424 
    425     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
    426      * 		u1 = u to 24 bits.
    427     */
    428 	else
    429 		u1 = u, TRUNC(u1);
    430 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    431 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
    432 
    433 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
    434 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
    435 	/* (exact) + (tiny)						*/
    436 
    437 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
    438 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
    439 	u2 += logF_tail[N]*m;
    440 	return (u1 + u2);
    441 }
    442 
    443 /*
    444  * Extra precision variant, returning struct {double a, b;};
    445  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
    446  */
    447 struct Double
    448 #ifdef _ANSI_SOURCE
    449 __log__D(double x)
    450 #else
    451 __log__D(x) double x;
    452 #endif
    453 {
    454 	int m, j;
    455 	double F, f, g, q, u, v, u2;
    456 	volatile double u1;
    457 	struct Double r;
    458 
    459 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    460 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    461 
    462 	m = logb(x);
    463 	g = ldexp(x, -m);
    464 	if (_IEEE && m == -1022) {
    465 		j = logb(g), m += j;
    466 		g = ldexp(g, -j);
    467 	}
    468 	j = N*(g-1) + .5;
    469 	F = (1.0/N) * j + 1;
    470 	f = g - F;
    471 
    472 	g = 1/(2*F+f);
    473 	u = 2*f*g;
    474 	v = u*u;
    475 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    476 	if (m | j)
    477 		u1 = u + 513, u1 -= 513;
    478 	else
    479 		u1 = u, TRUNC(u1);
    480 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    481 
    482 	u1 += m*logF_head[N] + logF_head[j];
    483 
    484 	u2 +=  logF_tail[j]; u2 += q;
    485 	u2 += logF_tail[N]*m;
    486 	r.a = u1 + u2;			/* Only difference is here */
    487 	TRUNC(r.a);
    488 	r.b = (u1 - r.a) + u2;
    489 	return (r);
    490 }
    491