n_log.c revision 1.5 1 /* $NetBSD: n_log.c,v 1.5 2002/06/15 00:10:17 matt Exp $ */
2 /*
3 * Copyright (c) 1992, 1993
4 * The Regents of the University of California. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 * must display the following acknowledgement:
16 * This product includes software developed by the University of
17 * California, Berkeley and its contributors.
18 * 4. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 */
34
35 #ifndef lint
36 #if 0
37 static char sccsid[] = "@(#)log.c 8.2 (Berkeley) 11/30/93";
38 #endif
39 #endif /* not lint */
40
41 #include <math.h>
42 #include <errno.h>
43
44 #include "mathimpl.h"
45
46 /* Table-driven natural logarithm.
47 *
48 * This code was derived, with minor modifications, from:
49 * Peter Tang, "Table-Driven Implementation of the
50 * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
51 * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
52 *
53 * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
54 * where F = j/128 for j an integer in [0, 128].
55 *
56 * log(2^m) = log2_hi*m + log2_tail*m
57 * since m is an integer, the dominant term is exact.
58 * m has at most 10 digits (for subnormal numbers),
59 * and log2_hi has 11 trailing zero bits.
60 *
61 * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
62 * logF_hi[] + 512 is exact.
63 *
64 * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
65 * the leading term is calculated to extra precision in two
66 * parts, the larger of which adds exactly to the dominant
67 * m and F terms.
68 * There are two cases:
69 * 1. when m, j are non-zero (m | j), use absolute
70 * precision for the leading term.
71 * 2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
72 * In this case, use a relative precision of 24 bits.
73 * (This is done differently in the original paper)
74 *
75 * Special cases:
76 * 0 return signalling -Inf
77 * neg return signalling NaN
78 * +Inf return +Inf
79 */
80
81 #if defined(__vax__) || defined(tahoe)
82 #define _IEEE 0
83 #define TRUNC(x) x = (double) (float) (x)
84 #else
85 #define _IEEE 1
86 #define endian (((*(int *) &one)) ? 1 : 0)
87 #define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
88 #define infnan(x) 0.0
89 #endif
90
91 #define N 128
92
93 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
94 * Used for generation of extend precision logarithms.
95 * The constant 35184372088832 is 2^45, so the divide is exact.
96 * It ensures correct reading of logF_head, even for inaccurate
97 * decimal-to-binary conversion routines. (Everybody gets the
98 * right answer for integers less than 2^53.)
99 * Values for log(F) were generated using error < 10^-57 absolute
100 * with the bc -l package.
101 */
102 static const double A1 = .08333333333333178827;
103 static const double A2 = .01250000000377174923;
104 static const double A3 = .002232139987919447809;
105 static const double A4 = .0004348877777076145742;
106
107 static const double logF_head[N+1] = {
108 0.,
109 .007782140442060381246,
110 .015504186535963526694,
111 .023167059281547608406,
112 .030771658666765233647,
113 .038318864302141264488,
114 .045809536031242714670,
115 .053244514518837604555,
116 .060624621816486978786,
117 .067950661908525944454,
118 .075223421237524235039,
119 .082443669210988446138,
120 .089612158689760690322,
121 .096729626458454731618,
122 .103796793681567578460,
123 .110814366340264314203,
124 .117783035656430001836,
125 .124703478501032805070,
126 .131576357788617315236,
127 .138402322859292326029,
128 .145182009844575077295,
129 .151916042025732167530,
130 .158605030176659056451,
131 .165249572895390883786,
132 .171850256926518341060,
133 .178407657472689606947,
134 .184922338493834104156,
135 .191394852999565046047,
136 .197825743329758552135,
137 .204215541428766300668,
138 .210564769107350002741,
139 .216873938300523150246,
140 .223143551314024080056,
141 .229374101064877322642,
142 .235566071312860003672,
143 .241719936886966024758,
144 .247836163904594286577,
145 .253915209980732470285,
146 .259957524436686071567,
147 .265963548496984003577,
148 .271933715484010463114,
149 .277868451003087102435,
150 .283768173130738432519,
151 .289633292582948342896,
152 .295464212893421063199,
153 .301261330578199704177,
154 .307025035294827830512,
155 .312755710004239517729,
156 .318453731118097493890,
157 .324119468654316733591,
158 .329753286372579168528,
159 .335355541920762334484,
160 .340926586970454081892,
161 .346466767346100823488,
162 .351976423156884266063,
163 .357455888922231679316,
164 .362905493689140712376,
165 .368325561158599157352,
166 .373716409793814818840,
167 .379078352934811846353,
168 .384411698910298582632,
169 .389716751140440464951,
170 .394993808240542421117,
171 .400243164127459749579,
172 .405465108107819105498,
173 .410659924985338875558,
174 .415827895143593195825,
175 .420969294644237379543,
176 .426084395310681429691,
177 .431173464818130014464,
178 .436236766774527495726,
179 .441274560805140936281,
180 .446287102628048160113,
181 .451274644139630254358,
182 .456237433481874177232,
183 .461175715122408291790,
184 .466089729924533457960,
185 .470979715219073113985,
186 .475845904869856894947,
187 .480688529345570714212,
188 .485507815781602403149,
189 .490303988045525329653,
190 .495077266798034543171,
191 .499827869556611403822,
192 .504556010751912253908,
193 .509261901790523552335,
194 .513945751101346104405,
195 .518607764208354637958,
196 .523248143765158602036,
197 .527867089620485785417,
198 .532464798869114019908,
199 .537041465897345915436,
200 .541597282432121573947,
201 .546132437597407260909,
202 .550647117952394182793,
203 .555141507540611200965,
204 .559615787935399566777,
205 .564070138285387656651,
206 .568504735352689749561,
207 .572919753562018740922,
208 .577315365035246941260,
209 .581691739635061821900,
210 .586049045003164792433,
211 .590387446602107957005,
212 .594707107746216934174,
213 .599008189645246602594,
214 .603290851438941899687,
215 .607555250224322662688,
216 .611801541106615331955,
217 .616029877215623855590,
218 .620240409751204424537,
219 .624433288012369303032,
220 .628608659422752680256,
221 .632766669570628437213,
222 .636907462236194987781,
223 .641031179420679109171,
224 .645137961373620782978,
225 .649227946625615004450,
226 .653301272011958644725,
227 .657358072709030238911,
228 .661398482245203922502,
229 .665422632544505177065,
230 .669430653942981734871,
231 .673422675212350441142,
232 .677398823590920073911,
233 .681359224807238206267,
234 .685304003098281100392,
235 .689233281238557538017,
236 .693147180560117703862
237 };
238
239 static const double logF_tail[N+1] = {
240 0.,
241 -.00000000000000543229938420049,
242 .00000000000000172745674997061,
243 -.00000000000001323017818229233,
244 -.00000000000001154527628289872,
245 -.00000000000000466529469958300,
246 .00000000000005148849572685810,
247 -.00000000000002532168943117445,
248 -.00000000000005213620639136504,
249 -.00000000000001819506003016881,
250 .00000000000006329065958724544,
251 .00000000000008614512936087814,
252 -.00000000000007355770219435028,
253 .00000000000009638067658552277,
254 .00000000000007598636597194141,
255 .00000000000002579999128306990,
256 -.00000000000004654729747598444,
257 -.00000000000007556920687451336,
258 .00000000000010195735223708472,
259 -.00000000000017319034406422306,
260 -.00000000000007718001336828098,
261 .00000000000010980754099855238,
262 -.00000000000002047235780046195,
263 -.00000000000008372091099235912,
264 .00000000000014088127937111135,
265 .00000000000012869017157588257,
266 .00000000000017788850778198106,
267 .00000000000006440856150696891,
268 .00000000000016132822667240822,
269 -.00000000000007540916511956188,
270 -.00000000000000036507188831790,
271 .00000000000009120937249914984,
272 .00000000000018567570959796010,
273 -.00000000000003149265065191483,
274 -.00000000000009309459495196889,
275 .00000000000017914338601329117,
276 -.00000000000001302979717330866,
277 .00000000000023097385217586939,
278 .00000000000023999540484211737,
279 .00000000000015393776174455408,
280 -.00000000000036870428315837678,
281 .00000000000036920375082080089,
282 -.00000000000009383417223663699,
283 .00000000000009433398189512690,
284 .00000000000041481318704258568,
285 -.00000000000003792316480209314,
286 .00000000000008403156304792424,
287 -.00000000000034262934348285429,
288 .00000000000043712191957429145,
289 -.00000000000010475750058776541,
290 -.00000000000011118671389559323,
291 .00000000000037549577257259853,
292 .00000000000013912841212197565,
293 .00000000000010775743037572640,
294 .00000000000029391859187648000,
295 -.00000000000042790509060060774,
296 .00000000000022774076114039555,
297 .00000000000010849569622967912,
298 -.00000000000023073801945705758,
299 .00000000000015761203773969435,
300 .00000000000003345710269544082,
301 -.00000000000041525158063436123,
302 .00000000000032655698896907146,
303 -.00000000000044704265010452446,
304 .00000000000034527647952039772,
305 -.00000000000007048962392109746,
306 .00000000000011776978751369214,
307 -.00000000000010774341461609578,
308 .00000000000021863343293215910,
309 .00000000000024132639491333131,
310 .00000000000039057462209830700,
311 -.00000000000026570679203560751,
312 .00000000000037135141919592021,
313 -.00000000000017166921336082431,
314 -.00000000000028658285157914353,
315 -.00000000000023812542263446809,
316 .00000000000006576659768580062,
317 -.00000000000028210143846181267,
318 .00000000000010701931762114254,
319 .00000000000018119346366441110,
320 .00000000000009840465278232627,
321 -.00000000000033149150282752542,
322 -.00000000000018302857356041668,
323 -.00000000000016207400156744949,
324 .00000000000048303314949553201,
325 -.00000000000071560553172382115,
326 .00000000000088821239518571855,
327 -.00000000000030900580513238244,
328 -.00000000000061076551972851496,
329 .00000000000035659969663347830,
330 .00000000000035782396591276383,
331 -.00000000000046226087001544578,
332 .00000000000062279762917225156,
333 .00000000000072838947272065741,
334 .00000000000026809646615211673,
335 -.00000000000010960825046059278,
336 .00000000000002311949383800537,
337 -.00000000000058469058005299247,
338 -.00000000000002103748251144494,
339 -.00000000000023323182945587408,
340 -.00000000000042333694288141916,
341 -.00000000000043933937969737844,
342 .00000000000041341647073835565,
343 .00000000000006841763641591466,
344 .00000000000047585534004430641,
345 .00000000000083679678674757695,
346 -.00000000000085763734646658640,
347 .00000000000021913281229340092,
348 -.00000000000062242842536431148,
349 -.00000000000010983594325438430,
350 .00000000000065310431377633651,
351 -.00000000000047580199021710769,
352 -.00000000000037854251265457040,
353 .00000000000040939233218678664,
354 .00000000000087424383914858291,
355 .00000000000025218188456842882,
356 -.00000000000003608131360422557,
357 -.00000000000050518555924280902,
358 .00000000000078699403323355317,
359 -.00000000000067020876961949060,
360 .00000000000016108575753932458,
361 .00000000000058527188436251509,
362 -.00000000000035246757297904791,
363 -.00000000000018372084495629058,
364 .00000000000088606689813494916,
365 .00000000000066486268071468700,
366 .00000000000063831615170646519,
367 .00000000000025144230728376072,
368 -.00000000000017239444525614834
369 };
370
371 double
372 log(double x)
373 {
374 int m, j;
375 double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
376 volatile double u1;
377
378 /* Catch special cases */
379 if (x <= 0) {
380 if (_IEEE && x == zero) /* log(0) = -Inf */
381 return (-one/zero);
382 else if (_IEEE) /* log(neg) = NaN */
383 return (zero/zero);
384 else if (x == zero) /* NOT REACHED IF _IEEE */
385 return (infnan(-ERANGE));
386 else
387 return (infnan(EDOM));
388 } else if (!finite(x)) {
389 if (_IEEE) /* x = NaN, Inf */
390 return (x+x);
391 else
392 return (infnan(ERANGE));
393 }
394
395 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
396 /* y = F*(1 + f/F) for |f| <= 2^-8 */
397
398 m = logb(x);
399 g = ldexp(x, -m);
400 if (_IEEE && m == -1022) {
401 j = logb(g), m += j;
402 g = ldexp(g, -j);
403 }
404 j = N*(g-1) + .5;
405 F = (1.0/N) * j + 1; /* F*128 is an integer in [128, 512] */
406 f = g - F;
407
408 /* Approximate expansion for log(1+f/F) ~= u + q */
409 g = 1/(2*F+f);
410 u = 2*f*g;
411 v = u*u;
412 q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
413
414 /* case 1: u1 = u rounded to 2^-43 absolute. Since u < 2^-8,
415 * u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
416 * It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
417 */
418 if (m | j)
419 u1 = u + 513, u1 -= 513;
420
421 /* case 2: |1-x| < 1/256. The m- and j- dependent terms are zero;
422 * u1 = u to 24 bits.
423 */
424 else
425 u1 = u, TRUNC(u1);
426 u2 = (2.0*(f - F*u1) - u1*f) * g;
427 /* u1 + u2 = 2f/(2F+f) to extra precision. */
428
429 /* log(x) = log(2^m*F*(1+f/F)) = */
430 /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q); */
431 /* (exact) + (tiny) */
432
433 u1 += m*logF_head[N] + logF_head[j]; /* exact */
434 u2 = (u2 + logF_tail[j]) + q; /* tiny */
435 u2 += logF_tail[N]*m;
436 return (u1 + u2);
437 }
438
439 /*
440 * Extra precision variant, returning struct {double a, b;};
441 * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
442 */
443 struct Double
444 __log__D(double x)
445 {
446 int m, j;
447 double F, f, g, q, u, v, u2;
448 volatile double u1;
449 struct Double r;
450
451 /* Argument reduction: 1 <= g < 2; x/2^m = g; */
452 /* y = F*(1 + f/F) for |f| <= 2^-8 */
453
454 m = logb(x);
455 g = ldexp(x, -m);
456 if (_IEEE && m == -1022) {
457 j = logb(g), m += j;
458 g = ldexp(g, -j);
459 }
460 j = N*(g-1) + .5;
461 F = (1.0/N) * j + 1;
462 f = g - F;
463
464 g = 1/(2*F+f);
465 u = 2*f*g;
466 v = u*u;
467 q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
468 if (m | j)
469 u1 = u + 513, u1 -= 513;
470 else
471 u1 = u, TRUNC(u1);
472 u2 = (2.0*(f - F*u1) - u1*f) * g;
473
474 u1 += m*logF_head[N] + logF_head[j];
475
476 u2 += logF_tail[j]; u2 += q;
477 u2 += logF_tail[N]*m;
478 r.a = u1 + u2; /* Only difference is here */
479 TRUNC(r.a);
480 r.b = (u1 - r.a) + u2;
481 return (r);
482 }
483