Home | History | Annotate | Line # | Download | only in noieee_src
n_log.c revision 1.5
      1 /*      $NetBSD: n_log.c,v 1.5 2002/06/15 00:10:17 matt Exp $ */
      2 /*
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. All advertising materials mentioning features or use of this software
     15  *    must display the following acknowledgement:
     16  *	This product includes software developed by the University of
     17  *	California, Berkeley and its contributors.
     18  * 4. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #ifndef lint
     36 #if 0
     37 static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
     38 #endif
     39 #endif /* not lint */
     40 
     41 #include <math.h>
     42 #include <errno.h>
     43 
     44 #include "mathimpl.h"
     45 
     46 /* Table-driven natural logarithm.
     47  *
     48  * This code was derived, with minor modifications, from:
     49  *	Peter Tang, "Table-Driven Implementation of the
     50  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
     51  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
     52  *
     53  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
     54  * where F = j/128 for j an integer in [0, 128].
     55  *
     56  * log(2^m) = log2_hi*m + log2_tail*m
     57  * since m is an integer, the dominant term is exact.
     58  * m has at most 10 digits (for subnormal numbers),
     59  * and log2_hi has 11 trailing zero bits.
     60  *
     61  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
     62  * logF_hi[] + 512 is exact.
     63  *
     64  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
     65  * the leading term is calculated to extra precision in two
     66  * parts, the larger of which adds exactly to the dominant
     67  * m and F terms.
     68  * There are two cases:
     69  *	1. when m, j are non-zero (m | j), use absolute
     70  *	   precision for the leading term.
     71  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
     72  *	   In this case, use a relative precision of 24 bits.
     73  * (This is done differently in the original paper)
     74  *
     75  * Special cases:
     76  *	0	return signalling -Inf
     77  *	neg	return signalling NaN
     78  *	+Inf	return +Inf
     79 */
     80 
     81 #if defined(__vax__) || defined(tahoe)
     82 #define _IEEE		0
     83 #define TRUNC(x)	x = (double) (float) (x)
     84 #else
     85 #define _IEEE		1
     86 #define endian		(((*(int *) &one)) ? 1 : 0)
     87 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
     88 #define infnan(x)	0.0
     89 #endif
     90 
     91 #define N 128
     92 
     93 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
     94  * Used for generation of extend precision logarithms.
     95  * The constant 35184372088832 is 2^45, so the divide is exact.
     96  * It ensures correct reading of logF_head, even for inaccurate
     97  * decimal-to-binary conversion routines.  (Everybody gets the
     98  * right answer for integers less than 2^53.)
     99  * Values for log(F) were generated using error < 10^-57 absolute
    100  * with the bc -l package.
    101 */
    102 static const double	A1 = 	  .08333333333333178827;
    103 static const double	A2 = 	  .01250000000377174923;
    104 static const double	A3 =	 .002232139987919447809;
    105 static const double	A4 =	.0004348877777076145742;
    106 
    107 static const double logF_head[N+1] = {
    108 	0.,
    109 	.007782140442060381246,
    110 	.015504186535963526694,
    111 	.023167059281547608406,
    112 	.030771658666765233647,
    113 	.038318864302141264488,
    114 	.045809536031242714670,
    115 	.053244514518837604555,
    116 	.060624621816486978786,
    117 	.067950661908525944454,
    118 	.075223421237524235039,
    119 	.082443669210988446138,
    120 	.089612158689760690322,
    121 	.096729626458454731618,
    122 	.103796793681567578460,
    123 	.110814366340264314203,
    124 	.117783035656430001836,
    125 	.124703478501032805070,
    126 	.131576357788617315236,
    127 	.138402322859292326029,
    128 	.145182009844575077295,
    129 	.151916042025732167530,
    130 	.158605030176659056451,
    131 	.165249572895390883786,
    132 	.171850256926518341060,
    133 	.178407657472689606947,
    134 	.184922338493834104156,
    135 	.191394852999565046047,
    136 	.197825743329758552135,
    137 	.204215541428766300668,
    138 	.210564769107350002741,
    139 	.216873938300523150246,
    140 	.223143551314024080056,
    141 	.229374101064877322642,
    142 	.235566071312860003672,
    143 	.241719936886966024758,
    144 	.247836163904594286577,
    145 	.253915209980732470285,
    146 	.259957524436686071567,
    147 	.265963548496984003577,
    148 	.271933715484010463114,
    149 	.277868451003087102435,
    150 	.283768173130738432519,
    151 	.289633292582948342896,
    152 	.295464212893421063199,
    153 	.301261330578199704177,
    154 	.307025035294827830512,
    155 	.312755710004239517729,
    156 	.318453731118097493890,
    157 	.324119468654316733591,
    158 	.329753286372579168528,
    159 	.335355541920762334484,
    160 	.340926586970454081892,
    161 	.346466767346100823488,
    162 	.351976423156884266063,
    163 	.357455888922231679316,
    164 	.362905493689140712376,
    165 	.368325561158599157352,
    166 	.373716409793814818840,
    167 	.379078352934811846353,
    168 	.384411698910298582632,
    169 	.389716751140440464951,
    170 	.394993808240542421117,
    171 	.400243164127459749579,
    172 	.405465108107819105498,
    173 	.410659924985338875558,
    174 	.415827895143593195825,
    175 	.420969294644237379543,
    176 	.426084395310681429691,
    177 	.431173464818130014464,
    178 	.436236766774527495726,
    179 	.441274560805140936281,
    180 	.446287102628048160113,
    181 	.451274644139630254358,
    182 	.456237433481874177232,
    183 	.461175715122408291790,
    184 	.466089729924533457960,
    185 	.470979715219073113985,
    186 	.475845904869856894947,
    187 	.480688529345570714212,
    188 	.485507815781602403149,
    189 	.490303988045525329653,
    190 	.495077266798034543171,
    191 	.499827869556611403822,
    192 	.504556010751912253908,
    193 	.509261901790523552335,
    194 	.513945751101346104405,
    195 	.518607764208354637958,
    196 	.523248143765158602036,
    197 	.527867089620485785417,
    198 	.532464798869114019908,
    199 	.537041465897345915436,
    200 	.541597282432121573947,
    201 	.546132437597407260909,
    202 	.550647117952394182793,
    203 	.555141507540611200965,
    204 	.559615787935399566777,
    205 	.564070138285387656651,
    206 	.568504735352689749561,
    207 	.572919753562018740922,
    208 	.577315365035246941260,
    209 	.581691739635061821900,
    210 	.586049045003164792433,
    211 	.590387446602107957005,
    212 	.594707107746216934174,
    213 	.599008189645246602594,
    214 	.603290851438941899687,
    215 	.607555250224322662688,
    216 	.611801541106615331955,
    217 	.616029877215623855590,
    218 	.620240409751204424537,
    219 	.624433288012369303032,
    220 	.628608659422752680256,
    221 	.632766669570628437213,
    222 	.636907462236194987781,
    223 	.641031179420679109171,
    224 	.645137961373620782978,
    225 	.649227946625615004450,
    226 	.653301272011958644725,
    227 	.657358072709030238911,
    228 	.661398482245203922502,
    229 	.665422632544505177065,
    230 	.669430653942981734871,
    231 	.673422675212350441142,
    232 	.677398823590920073911,
    233 	.681359224807238206267,
    234 	.685304003098281100392,
    235 	.689233281238557538017,
    236 	.693147180560117703862
    237 };
    238 
    239 static const double logF_tail[N+1] = {
    240 	0.,
    241 	-.00000000000000543229938420049,
    242 	 .00000000000000172745674997061,
    243 	-.00000000000001323017818229233,
    244 	-.00000000000001154527628289872,
    245 	-.00000000000000466529469958300,
    246 	 .00000000000005148849572685810,
    247 	-.00000000000002532168943117445,
    248 	-.00000000000005213620639136504,
    249 	-.00000000000001819506003016881,
    250 	 .00000000000006329065958724544,
    251 	 .00000000000008614512936087814,
    252 	-.00000000000007355770219435028,
    253 	 .00000000000009638067658552277,
    254 	 .00000000000007598636597194141,
    255 	 .00000000000002579999128306990,
    256 	-.00000000000004654729747598444,
    257 	-.00000000000007556920687451336,
    258 	 .00000000000010195735223708472,
    259 	-.00000000000017319034406422306,
    260 	-.00000000000007718001336828098,
    261 	 .00000000000010980754099855238,
    262 	-.00000000000002047235780046195,
    263 	-.00000000000008372091099235912,
    264 	 .00000000000014088127937111135,
    265 	 .00000000000012869017157588257,
    266 	 .00000000000017788850778198106,
    267 	 .00000000000006440856150696891,
    268 	 .00000000000016132822667240822,
    269 	-.00000000000007540916511956188,
    270 	-.00000000000000036507188831790,
    271 	 .00000000000009120937249914984,
    272 	 .00000000000018567570959796010,
    273 	-.00000000000003149265065191483,
    274 	-.00000000000009309459495196889,
    275 	 .00000000000017914338601329117,
    276 	-.00000000000001302979717330866,
    277 	 .00000000000023097385217586939,
    278 	 .00000000000023999540484211737,
    279 	 .00000000000015393776174455408,
    280 	-.00000000000036870428315837678,
    281 	 .00000000000036920375082080089,
    282 	-.00000000000009383417223663699,
    283 	 .00000000000009433398189512690,
    284 	 .00000000000041481318704258568,
    285 	-.00000000000003792316480209314,
    286 	 .00000000000008403156304792424,
    287 	-.00000000000034262934348285429,
    288 	 .00000000000043712191957429145,
    289 	-.00000000000010475750058776541,
    290 	-.00000000000011118671389559323,
    291 	 .00000000000037549577257259853,
    292 	 .00000000000013912841212197565,
    293 	 .00000000000010775743037572640,
    294 	 .00000000000029391859187648000,
    295 	-.00000000000042790509060060774,
    296 	 .00000000000022774076114039555,
    297 	 .00000000000010849569622967912,
    298 	-.00000000000023073801945705758,
    299 	 .00000000000015761203773969435,
    300 	 .00000000000003345710269544082,
    301 	-.00000000000041525158063436123,
    302 	 .00000000000032655698896907146,
    303 	-.00000000000044704265010452446,
    304 	 .00000000000034527647952039772,
    305 	-.00000000000007048962392109746,
    306 	 .00000000000011776978751369214,
    307 	-.00000000000010774341461609578,
    308 	 .00000000000021863343293215910,
    309 	 .00000000000024132639491333131,
    310 	 .00000000000039057462209830700,
    311 	-.00000000000026570679203560751,
    312 	 .00000000000037135141919592021,
    313 	-.00000000000017166921336082431,
    314 	-.00000000000028658285157914353,
    315 	-.00000000000023812542263446809,
    316 	 .00000000000006576659768580062,
    317 	-.00000000000028210143846181267,
    318 	 .00000000000010701931762114254,
    319 	 .00000000000018119346366441110,
    320 	 .00000000000009840465278232627,
    321 	-.00000000000033149150282752542,
    322 	-.00000000000018302857356041668,
    323 	-.00000000000016207400156744949,
    324 	 .00000000000048303314949553201,
    325 	-.00000000000071560553172382115,
    326 	 .00000000000088821239518571855,
    327 	-.00000000000030900580513238244,
    328 	-.00000000000061076551972851496,
    329 	 .00000000000035659969663347830,
    330 	 .00000000000035782396591276383,
    331 	-.00000000000046226087001544578,
    332 	 .00000000000062279762917225156,
    333 	 .00000000000072838947272065741,
    334 	 .00000000000026809646615211673,
    335 	-.00000000000010960825046059278,
    336 	 .00000000000002311949383800537,
    337 	-.00000000000058469058005299247,
    338 	-.00000000000002103748251144494,
    339 	-.00000000000023323182945587408,
    340 	-.00000000000042333694288141916,
    341 	-.00000000000043933937969737844,
    342 	 .00000000000041341647073835565,
    343 	 .00000000000006841763641591466,
    344 	 .00000000000047585534004430641,
    345 	 .00000000000083679678674757695,
    346 	-.00000000000085763734646658640,
    347 	 .00000000000021913281229340092,
    348 	-.00000000000062242842536431148,
    349 	-.00000000000010983594325438430,
    350 	 .00000000000065310431377633651,
    351 	-.00000000000047580199021710769,
    352 	-.00000000000037854251265457040,
    353 	 .00000000000040939233218678664,
    354 	 .00000000000087424383914858291,
    355 	 .00000000000025218188456842882,
    356 	-.00000000000003608131360422557,
    357 	-.00000000000050518555924280902,
    358 	 .00000000000078699403323355317,
    359 	-.00000000000067020876961949060,
    360 	 .00000000000016108575753932458,
    361 	 .00000000000058527188436251509,
    362 	-.00000000000035246757297904791,
    363 	-.00000000000018372084495629058,
    364 	 .00000000000088606689813494916,
    365 	 .00000000000066486268071468700,
    366 	 .00000000000063831615170646519,
    367 	 .00000000000025144230728376072,
    368 	-.00000000000017239444525614834
    369 };
    370 
    371 double
    372 log(double x)
    373 {
    374 	int m, j;
    375 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
    376 	volatile double u1;
    377 
    378 	/* Catch special cases */
    379 	if (x <= 0) {
    380 		if (_IEEE && x == zero)	/* log(0) = -Inf */
    381 			return (-one/zero);
    382 		else if (_IEEE)		/* log(neg) = NaN */
    383 			return (zero/zero);
    384 		else if (x == zero)	/* NOT REACHED IF _IEEE */
    385 			return (infnan(-ERANGE));
    386 		else
    387 			return (infnan(EDOM));
    388 	} else if (!finite(x)) {
    389 		if (_IEEE)		/* x = NaN, Inf */
    390 			return (x+x);
    391 		else
    392 			return (infnan(ERANGE));
    393 	}
    394 
    395 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    396 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    397 
    398 	m = logb(x);
    399 	g = ldexp(x, -m);
    400 	if (_IEEE && m == -1022) {
    401 		j = logb(g), m += j;
    402 		g = ldexp(g, -j);
    403 	}
    404 	j = N*(g-1) + .5;
    405 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
    406 	f = g - F;
    407 
    408 	/* Approximate expansion for log(1+f/F) ~= u + q */
    409 	g = 1/(2*F+f);
    410 	u = 2*f*g;
    411 	v = u*u;
    412 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    413 
    414     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
    415      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
    416      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
    417     */
    418 	if (m | j)
    419 		u1 = u + 513, u1 -= 513;
    420 
    421     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
    422      * 		u1 = u to 24 bits.
    423     */
    424 	else
    425 		u1 = u, TRUNC(u1);
    426 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    427 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
    428 
    429 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
    430 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
    431 	/* (exact) + (tiny)						*/
    432 
    433 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
    434 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
    435 	u2 += logF_tail[N]*m;
    436 	return (u1 + u2);
    437 }
    438 
    439 /*
    440  * Extra precision variant, returning struct {double a, b;};
    441  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
    442  */
    443 struct Double
    444 __log__D(double x)
    445 {
    446 	int m, j;
    447 	double F, f, g, q, u, v, u2;
    448 	volatile double u1;
    449 	struct Double r;
    450 
    451 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    452 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    453 
    454 	m = logb(x);
    455 	g = ldexp(x, -m);
    456 	if (_IEEE && m == -1022) {
    457 		j = logb(g), m += j;
    458 		g = ldexp(g, -j);
    459 	}
    460 	j = N*(g-1) + .5;
    461 	F = (1.0/N) * j + 1;
    462 	f = g - F;
    463 
    464 	g = 1/(2*F+f);
    465 	u = 2*f*g;
    466 	v = u*u;
    467 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    468 	if (m | j)
    469 		u1 = u + 513, u1 -= 513;
    470 	else
    471 		u1 = u, TRUNC(u1);
    472 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    473 
    474 	u1 += m*logF_head[N] + logF_head[j];
    475 
    476 	u2 +=  logF_tail[j]; u2 += q;
    477 	u2 += logF_tail[N]*m;
    478 	r.a = u1 + u2;			/* Only difference is here */
    479 	TRUNC(r.a);
    480 	r.b = (u1 - r.a) + u2;
    481 	return (r);
    482 }
    483