Home | History | Annotate | Line # | Download | only in noieee_src
n_log.c revision 1.7
      1 /*      $NetBSD: n_log.c,v 1.7 2008/03/20 16:41:26 mhitch Exp $ */
      2 /*
      3  * Copyright (c) 1992, 1993
      4  *	The Regents of the University of California.  All rights reserved.
      5  *
      6  * Redistribution and use in source and binary forms, with or without
      7  * modification, are permitted provided that the following conditions
      8  * are met:
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. Neither the name of the University nor the names of its contributors
     15  *    may be used to endorse or promote products derived from this software
     16  *    without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 #ifndef lint
     32 #if 0
     33 static char sccsid[] = "@(#)log.c	8.2 (Berkeley) 11/30/93";
     34 #endif
     35 #endif /* not lint */
     36 
     37 #include "../src/namespace.h"
     38 
     39 #include <math.h>
     40 #include <errno.h>
     41 
     42 #include "mathimpl.h"
     43 
     44 #ifdef __weak_alias
     45 __weak_alias(log, _log);
     46 __weak_alias(logf, _logf);
     47 #endif
     48 
     49 /* Table-driven natural logarithm.
     50  *
     51  * This code was derived, with minor modifications, from:
     52  *	Peter Tang, "Table-Driven Implementation of the
     53  *	Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
     54  *	Math Software, vol 16. no 4, pp 378-400, Dec 1990).
     55  *
     56  * Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
     57  * where F = j/128 for j an integer in [0, 128].
     58  *
     59  * log(2^m) = log2_hi*m + log2_tail*m
     60  * since m is an integer, the dominant term is exact.
     61  * m has at most 10 digits (for subnormal numbers),
     62  * and log2_hi has 11 trailing zero bits.
     63  *
     64  * log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
     65  * logF_hi[] + 512 is exact.
     66  *
     67  * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
     68  * the leading term is calculated to extra precision in two
     69  * parts, the larger of which adds exactly to the dominant
     70  * m and F terms.
     71  * There are two cases:
     72  *	1. when m, j are non-zero (m | j), use absolute
     73  *	   precision for the leading term.
     74  *	2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
     75  *	   In this case, use a relative precision of 24 bits.
     76  * (This is done differently in the original paper)
     77  *
     78  * Special cases:
     79  *	0	return signalling -Inf
     80  *	neg	return signalling NaN
     81  *	+Inf	return +Inf
     82 */
     83 
     84 #if defined(__vax__) || defined(tahoe)
     85 #define _IEEE		0
     86 #define TRUNC(x)	x = (double) (float) (x)
     87 #else
     88 #define _IEEE		1
     89 #define endian		(((*(int *) &one)) ? 1 : 0)
     90 #define TRUNC(x)	*(((int *) &x) + endian) &= 0xf8000000
     91 #define infnan(x)	0.0
     92 #endif
     93 
     94 #define N 128
     95 
     96 /* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
     97  * Used for generation of extend precision logarithms.
     98  * The constant 35184372088832 is 2^45, so the divide is exact.
     99  * It ensures correct reading of logF_head, even for inaccurate
    100  * decimal-to-binary conversion routines.  (Everybody gets the
    101  * right answer for integers less than 2^53.)
    102  * Values for log(F) were generated using error < 10^-57 absolute
    103  * with the bc -l package.
    104 */
    105 static const double	A1 = 	  .08333333333333178827;
    106 static const double	A2 = 	  .01250000000377174923;
    107 static const double	A3 =	 .002232139987919447809;
    108 static const double	A4 =	.0004348877777076145742;
    109 
    110 static const double logF_head[N+1] = {
    111 	0.,
    112 	.007782140442060381246,
    113 	.015504186535963526694,
    114 	.023167059281547608406,
    115 	.030771658666765233647,
    116 	.038318864302141264488,
    117 	.045809536031242714670,
    118 	.053244514518837604555,
    119 	.060624621816486978786,
    120 	.067950661908525944454,
    121 	.075223421237524235039,
    122 	.082443669210988446138,
    123 	.089612158689760690322,
    124 	.096729626458454731618,
    125 	.103796793681567578460,
    126 	.110814366340264314203,
    127 	.117783035656430001836,
    128 	.124703478501032805070,
    129 	.131576357788617315236,
    130 	.138402322859292326029,
    131 	.145182009844575077295,
    132 	.151916042025732167530,
    133 	.158605030176659056451,
    134 	.165249572895390883786,
    135 	.171850256926518341060,
    136 	.178407657472689606947,
    137 	.184922338493834104156,
    138 	.191394852999565046047,
    139 	.197825743329758552135,
    140 	.204215541428766300668,
    141 	.210564769107350002741,
    142 	.216873938300523150246,
    143 	.223143551314024080056,
    144 	.229374101064877322642,
    145 	.235566071312860003672,
    146 	.241719936886966024758,
    147 	.247836163904594286577,
    148 	.253915209980732470285,
    149 	.259957524436686071567,
    150 	.265963548496984003577,
    151 	.271933715484010463114,
    152 	.277868451003087102435,
    153 	.283768173130738432519,
    154 	.289633292582948342896,
    155 	.295464212893421063199,
    156 	.301261330578199704177,
    157 	.307025035294827830512,
    158 	.312755710004239517729,
    159 	.318453731118097493890,
    160 	.324119468654316733591,
    161 	.329753286372579168528,
    162 	.335355541920762334484,
    163 	.340926586970454081892,
    164 	.346466767346100823488,
    165 	.351976423156884266063,
    166 	.357455888922231679316,
    167 	.362905493689140712376,
    168 	.368325561158599157352,
    169 	.373716409793814818840,
    170 	.379078352934811846353,
    171 	.384411698910298582632,
    172 	.389716751140440464951,
    173 	.394993808240542421117,
    174 	.400243164127459749579,
    175 	.405465108107819105498,
    176 	.410659924985338875558,
    177 	.415827895143593195825,
    178 	.420969294644237379543,
    179 	.426084395310681429691,
    180 	.431173464818130014464,
    181 	.436236766774527495726,
    182 	.441274560805140936281,
    183 	.446287102628048160113,
    184 	.451274644139630254358,
    185 	.456237433481874177232,
    186 	.461175715122408291790,
    187 	.466089729924533457960,
    188 	.470979715219073113985,
    189 	.475845904869856894947,
    190 	.480688529345570714212,
    191 	.485507815781602403149,
    192 	.490303988045525329653,
    193 	.495077266798034543171,
    194 	.499827869556611403822,
    195 	.504556010751912253908,
    196 	.509261901790523552335,
    197 	.513945751101346104405,
    198 	.518607764208354637958,
    199 	.523248143765158602036,
    200 	.527867089620485785417,
    201 	.532464798869114019908,
    202 	.537041465897345915436,
    203 	.541597282432121573947,
    204 	.546132437597407260909,
    205 	.550647117952394182793,
    206 	.555141507540611200965,
    207 	.559615787935399566777,
    208 	.564070138285387656651,
    209 	.568504735352689749561,
    210 	.572919753562018740922,
    211 	.577315365035246941260,
    212 	.581691739635061821900,
    213 	.586049045003164792433,
    214 	.590387446602107957005,
    215 	.594707107746216934174,
    216 	.599008189645246602594,
    217 	.603290851438941899687,
    218 	.607555250224322662688,
    219 	.611801541106615331955,
    220 	.616029877215623855590,
    221 	.620240409751204424537,
    222 	.624433288012369303032,
    223 	.628608659422752680256,
    224 	.632766669570628437213,
    225 	.636907462236194987781,
    226 	.641031179420679109171,
    227 	.645137961373620782978,
    228 	.649227946625615004450,
    229 	.653301272011958644725,
    230 	.657358072709030238911,
    231 	.661398482245203922502,
    232 	.665422632544505177065,
    233 	.669430653942981734871,
    234 	.673422675212350441142,
    235 	.677398823590920073911,
    236 	.681359224807238206267,
    237 	.685304003098281100392,
    238 	.689233281238557538017,
    239 	.693147180560117703862
    240 };
    241 
    242 static const double logF_tail[N+1] = {
    243 	0.,
    244 	-.00000000000000543229938420049,
    245 	 .00000000000000172745674997061,
    246 	-.00000000000001323017818229233,
    247 	-.00000000000001154527628289872,
    248 	-.00000000000000466529469958300,
    249 	 .00000000000005148849572685810,
    250 	-.00000000000002532168943117445,
    251 	-.00000000000005213620639136504,
    252 	-.00000000000001819506003016881,
    253 	 .00000000000006329065958724544,
    254 	 .00000000000008614512936087814,
    255 	-.00000000000007355770219435028,
    256 	 .00000000000009638067658552277,
    257 	 .00000000000007598636597194141,
    258 	 .00000000000002579999128306990,
    259 	-.00000000000004654729747598444,
    260 	-.00000000000007556920687451336,
    261 	 .00000000000010195735223708472,
    262 	-.00000000000017319034406422306,
    263 	-.00000000000007718001336828098,
    264 	 .00000000000010980754099855238,
    265 	-.00000000000002047235780046195,
    266 	-.00000000000008372091099235912,
    267 	 .00000000000014088127937111135,
    268 	 .00000000000012869017157588257,
    269 	 .00000000000017788850778198106,
    270 	 .00000000000006440856150696891,
    271 	 .00000000000016132822667240822,
    272 	-.00000000000007540916511956188,
    273 	-.00000000000000036507188831790,
    274 	 .00000000000009120937249914984,
    275 	 .00000000000018567570959796010,
    276 	-.00000000000003149265065191483,
    277 	-.00000000000009309459495196889,
    278 	 .00000000000017914338601329117,
    279 	-.00000000000001302979717330866,
    280 	 .00000000000023097385217586939,
    281 	 .00000000000023999540484211737,
    282 	 .00000000000015393776174455408,
    283 	-.00000000000036870428315837678,
    284 	 .00000000000036920375082080089,
    285 	-.00000000000009383417223663699,
    286 	 .00000000000009433398189512690,
    287 	 .00000000000041481318704258568,
    288 	-.00000000000003792316480209314,
    289 	 .00000000000008403156304792424,
    290 	-.00000000000034262934348285429,
    291 	 .00000000000043712191957429145,
    292 	-.00000000000010475750058776541,
    293 	-.00000000000011118671389559323,
    294 	 .00000000000037549577257259853,
    295 	 .00000000000013912841212197565,
    296 	 .00000000000010775743037572640,
    297 	 .00000000000029391859187648000,
    298 	-.00000000000042790509060060774,
    299 	 .00000000000022774076114039555,
    300 	 .00000000000010849569622967912,
    301 	-.00000000000023073801945705758,
    302 	 .00000000000015761203773969435,
    303 	 .00000000000003345710269544082,
    304 	-.00000000000041525158063436123,
    305 	 .00000000000032655698896907146,
    306 	-.00000000000044704265010452446,
    307 	 .00000000000034527647952039772,
    308 	-.00000000000007048962392109746,
    309 	 .00000000000011776978751369214,
    310 	-.00000000000010774341461609578,
    311 	 .00000000000021863343293215910,
    312 	 .00000000000024132639491333131,
    313 	 .00000000000039057462209830700,
    314 	-.00000000000026570679203560751,
    315 	 .00000000000037135141919592021,
    316 	-.00000000000017166921336082431,
    317 	-.00000000000028658285157914353,
    318 	-.00000000000023812542263446809,
    319 	 .00000000000006576659768580062,
    320 	-.00000000000028210143846181267,
    321 	 .00000000000010701931762114254,
    322 	 .00000000000018119346366441110,
    323 	 .00000000000009840465278232627,
    324 	-.00000000000033149150282752542,
    325 	-.00000000000018302857356041668,
    326 	-.00000000000016207400156744949,
    327 	 .00000000000048303314949553201,
    328 	-.00000000000071560553172382115,
    329 	 .00000000000088821239518571855,
    330 	-.00000000000030900580513238244,
    331 	-.00000000000061076551972851496,
    332 	 .00000000000035659969663347830,
    333 	 .00000000000035782396591276383,
    334 	-.00000000000046226087001544578,
    335 	 .00000000000062279762917225156,
    336 	 .00000000000072838947272065741,
    337 	 .00000000000026809646615211673,
    338 	-.00000000000010960825046059278,
    339 	 .00000000000002311949383800537,
    340 	-.00000000000058469058005299247,
    341 	-.00000000000002103748251144494,
    342 	-.00000000000023323182945587408,
    343 	-.00000000000042333694288141916,
    344 	-.00000000000043933937969737844,
    345 	 .00000000000041341647073835565,
    346 	 .00000000000006841763641591466,
    347 	 .00000000000047585534004430641,
    348 	 .00000000000083679678674757695,
    349 	-.00000000000085763734646658640,
    350 	 .00000000000021913281229340092,
    351 	-.00000000000062242842536431148,
    352 	-.00000000000010983594325438430,
    353 	 .00000000000065310431377633651,
    354 	-.00000000000047580199021710769,
    355 	-.00000000000037854251265457040,
    356 	 .00000000000040939233218678664,
    357 	 .00000000000087424383914858291,
    358 	 .00000000000025218188456842882,
    359 	-.00000000000003608131360422557,
    360 	-.00000000000050518555924280902,
    361 	 .00000000000078699403323355317,
    362 	-.00000000000067020876961949060,
    363 	 .00000000000016108575753932458,
    364 	 .00000000000058527188436251509,
    365 	-.00000000000035246757297904791,
    366 	-.00000000000018372084495629058,
    367 	 .00000000000088606689813494916,
    368 	 .00000000000066486268071468700,
    369 	 .00000000000063831615170646519,
    370 	 .00000000000025144230728376072,
    371 	-.00000000000017239444525614834
    372 };
    373 
    374 double
    375 log(double x)
    376 {
    377 	int m, j;
    378 	double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
    379 	volatile double u1;
    380 
    381 	/* Catch special cases */
    382 	if (x <= 0) {
    383 		if (_IEEE && x == zero)	/* log(0) = -Inf */
    384 			return (-one/zero);
    385 		else if (_IEEE)		/* log(neg) = NaN */
    386 			return (zero/zero);
    387 		else if (x == zero)	/* NOT REACHED IF _IEEE */
    388 			return (infnan(-ERANGE));
    389 		else
    390 			return (infnan(EDOM));
    391 	} else if (!finite(x)) {
    392 		if (_IEEE)		/* x = NaN, Inf */
    393 			return (x+x);
    394 		else
    395 			return (infnan(ERANGE));
    396 	}
    397 
    398 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    399 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    400 
    401 	m = logb(x);
    402 	g = ldexp(x, -m);
    403 	if (_IEEE && m == -1022) {
    404 		j = logb(g), m += j;
    405 		g = ldexp(g, -j);
    406 	}
    407 	j = N*(g-1) + .5;
    408 	F = (1.0/N) * j + 1;	/* F*128 is an integer in [128, 512] */
    409 	f = g - F;
    410 
    411 	/* Approximate expansion for log(1+f/F) ~= u + q */
    412 	g = 1/(2*F+f);
    413 	u = 2*f*g;
    414 	v = u*u;
    415 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    416 
    417     /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
    418      * 	       u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
    419      *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
    420     */
    421 	if (m | j)
    422 		u1 = u + 513, u1 -= 513;
    423 
    424     /* case 2:	|1-x| < 1/256. The m- and j- dependent terms are zero;
    425      * 		u1 = u to 24 bits.
    426     */
    427 	else
    428 		u1 = u, TRUNC(u1);
    429 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    430 			/* u1 + u2 = 2f/(2F+f) to extra precision.	*/
    431 
    432 	/* log(x) = log(2^m*F*(1+f/F)) =				*/
    433 	/* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);	*/
    434 	/* (exact) + (tiny)						*/
    435 
    436 	u1 += m*logF_head[N] + logF_head[j];		/* exact */
    437 	u2 = (u2 + logF_tail[j]) + q;			/* tiny */
    438 	u2 += logF_tail[N]*m;
    439 	return (u1 + u2);
    440 }
    441 
    442 /*
    443  * Extra precision variant, returning struct {double a, b;};
    444  * log(x) = a+b to 63 bits, with a is rounded to 26 bits.
    445  */
    446 struct Double
    447 __log__D(double x)
    448 {
    449 	int m, j;
    450 	double F, f, g, q, u, v, u2;
    451 	volatile double u1;
    452 	struct Double r;
    453 
    454 	/* Argument reduction: 1 <= g < 2; x/2^m = g;	*/
    455 	/* y = F*(1 + f/F) for |f| <= 2^-8		*/
    456 
    457 	m = logb(x);
    458 	g = ldexp(x, -m);
    459 	if (_IEEE && m == -1022) {
    460 		j = logb(g), m += j;
    461 		g = ldexp(g, -j);
    462 	}
    463 	j = N*(g-1) + .5;
    464 	F = (1.0/N) * j + 1;
    465 	f = g - F;
    466 
    467 	g = 1/(2*F+f);
    468 	u = 2*f*g;
    469 	v = u*u;
    470 	q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
    471 	if (m | j)
    472 		u1 = u + 513, u1 -= 513;
    473 	else
    474 		u1 = u, TRUNC(u1);
    475 	u2 = (2.0*(f - F*u1) - u1*f) * g;
    476 
    477 	u1 += m*logF_head[N] + logF_head[j];
    478 
    479 	u2 +=  logF_tail[j]; u2 += q;
    480 	u2 += logF_tail[N]*m;
    481 	r.a = u1 + u2;			/* Only difference is here */
    482 	TRUNC(r.a);
    483 	r.b = (u1 - r.a) + u2;
    484 	return (r);
    485 }
    486 
    487 float
    488 logf(float x)
    489 {
    490 	return(log((double)x));
    491 }
    492