Home | History | Annotate | Line # | Download | only in src
      1  1.1  christos /*	$NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $	*/
      2  1.1  christos 
      3  1.1  christos /*-
      4  1.1  christos  * Copyright (c) 1992, 1993
      5  1.1  christos  *	The Regents of the University of California.  All rights reserved.
      6  1.1  christos  *
      7  1.1  christos  * Redistribution and use in source and binary forms, with or without
      8  1.1  christos  * modification, are permitted provided that the following conditions
      9  1.1  christos  * are met:
     10  1.1  christos  * 1. Redistributions of source code must retain the above copyright
     11  1.1  christos  *    notice, this list of conditions and the following disclaimer.
     12  1.1  christos  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  christos  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  christos  *    documentation and/or other materials provided with the distribution.
     15  1.1  christos  * 3. All advertising materials mentioning features or use of this software
     16  1.1  christos  *    must display the following acknowledgement:
     17  1.1  christos  *	This product includes software developed by the University of
     18  1.1  christos  *	California, Berkeley and its contributors.
     19  1.1  christos  * 4. Neither the name of the University nor the names of its contributors
     20  1.1  christos  *    may be used to endorse or promote products derived from this software
     21  1.1  christos  *    without specific prior written permission.
     22  1.1  christos  *
     23  1.1  christos  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  1.1  christos  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  1.1  christos  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  1.1  christos  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  1.1  christos  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  1.1  christos  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  1.1  christos  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  1.1  christos  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  1.1  christos  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  1.1  christos  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  1.1  christos  * SUCH DAMAGE.
     34  1.1  christos  */
     35  1.1  christos 
     36  1.1  christos /* @(#)gamma.c	8.1 (Berkeley) 6/4/93 */
     37  1.1  christos #include <sys/cdefs.h>
     38  1.1  christos #if 0
     39  1.1  christos __FBSDID("$FreeBSD: release/9.0.0/lib/msun/bsdsrc/b_tgamma.c 176449 2008-02-22 02:26:51Z das $");
     40  1.1  christos #else
     41  1.1  christos __RCSID("$NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $");
     42  1.1  christos #endif
     43  1.1  christos 
     44  1.1  christos /*
     45  1.1  christos  * This code by P. McIlroy, Oct 1992;
     46  1.1  christos  *
     47  1.1  christos  * The financial support of UUNET Communications Services is greatfully
     48  1.1  christos  * acknowledged.
     49  1.1  christos  */
     50  1.1  christos 
     51  1.1  christos #include "math.h"
     52  1.1  christos #include "math_private.h"
     53  1.1  christos 
     54  1.1  christos /* METHOD:
     55  1.1  christos  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
     56  1.1  christos  * 	At negative integers, return NaN and raise invalid.
     57  1.1  christos  *
     58  1.1  christos  * x < 6.5:
     59  1.1  christos  *	Use argument reduction G(x+1) = xG(x) to reach the
     60  1.1  christos  *	range [1.066124,2.066124].  Use a rational
     61  1.1  christos  *	approximation centered at the minimum (x0+1) to
     62  1.1  christos  *	ensure monotonicity.
     63  1.1  christos  *
     64  1.1  christos  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
     65  1.1  christos  *	adjusted for equal-ripples:
     66  1.1  christos  *
     67  1.1  christos  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
     68  1.1  christos  *
     69  1.1  christos  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
     70  1.1  christos  *	avoid premature round-off.
     71  1.1  christos  *
     72  1.1  christos  * Special values:
     73  1.1  christos  *	-Inf:			return NaN and raise invalid;
     74  1.1  christos  *	negative integer:	return NaN and raise invalid;
     75  1.1  christos  *	other x ~< 177.79:	return +-0 and raise underflow;
     76  1.1  christos  *	+-0:			return +-Inf and raise divide-by-zero;
     77  1.1  christos  *	finite x ~> 171.63:	return +Inf and raise overflow;
     78  1.1  christos  *	+Inf:			return +Inf;
     79  1.1  christos  *	NaN: 			return NaN.
     80  1.1  christos  *
     81  1.1  christos  * Accuracy: tgamma(x) is accurate to within
     82  1.1  christos  *	x > 0:  error provably < 0.9ulp.
     83  1.1  christos  *	Maximum observed in 1,000,000 trials was .87ulp.
     84  1.1  christos  *	x < 0:
     85  1.1  christos  *	Maximum observed error < 4ulp in 1,000,000 trials.
     86  1.1  christos  */
     87  1.1  christos 
     88  1.1  christos static double neg_gam(double);
     89  1.1  christos static double small_gam(double);
     90  1.1  christos static double smaller_gam(double);
     91  1.1  christos static struct Double large_gam(double);
     92  1.1  christos static struct Double ratfun_gam(double, double);
     93  1.1  christos 
     94  1.1  christos /*
     95  1.1  christos  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
     96  1.1  christos  * [1.066.., 2.066..] accurate to 4.25e-19.
     97  1.1  christos  */
     98  1.1  christos #define LEFT -.3955078125	/* left boundary for rat. approx */
     99  1.1  christos #define x0 .461632144968362356785	/* xmin - 1 */
    100  1.1  christos 
    101  1.1  christos #define a0_hi 0.88560319441088874992
    102  1.1  christos #define a0_lo -.00000000000000004996427036469019695
    103  1.1  christos #define P0	 6.21389571821820863029017800727e-01
    104  1.1  christos #define P1	 2.65757198651533466104979197553e-01
    105  1.1  christos #define P2	 5.53859446429917461063308081748e-03
    106  1.1  christos #define P3	 1.38456698304096573887145282811e-03
    107  1.1  christos #define P4	 2.40659950032711365819348969808e-03
    108  1.1  christos #define Q0	 1.45019531250000000000000000000e+00
    109  1.1  christos #define Q1	 1.06258521948016171343454061571e+00
    110  1.1  christos #define Q2	-2.07474561943859936441469926649e-01
    111  1.1  christos #define Q3	-1.46734131782005422506287573015e-01
    112  1.1  christos #define Q4	 3.07878176156175520361557573779e-02
    113  1.1  christos #define Q5	 5.12449347980666221336054633184e-03
    114  1.1  christos #define Q6	-1.76012741431666995019222898833e-03
    115  1.1  christos #define Q7	 9.35021023573788935372153030556e-05
    116  1.1  christos #define Q8	 6.13275507472443958924745652239e-06
    117  1.1  christos /*
    118  1.1  christos  * Constants for large x approximation (x in [6, Inf])
    119  1.1  christos  * (Accurate to 2.8*10^-19 absolute)
    120  1.1  christos  */
    121  1.1  christos #define lns2pi_hi 0.418945312500000
    122  1.1  christos #define lns2pi_lo -.000006779295327258219670263595
    123  1.1  christos #define Pa0	 8.33333333333333148296162562474e-02
    124  1.1  christos #define Pa1	-2.77777777774548123579378966497e-03
    125  1.1  christos #define Pa2	 7.93650778754435631476282786423e-04
    126  1.1  christos #define Pa3	-5.95235082566672847950717262222e-04
    127  1.1  christos #define Pa4	 8.41428560346653702135821806252e-04
    128  1.1  christos #define Pa5	-1.89773526463879200348872089421e-03
    129  1.1  christos #define Pa6	 5.69394463439411649408050664078e-03
    130  1.1  christos #define Pa7	-1.44705562421428915453880392761e-02
    131  1.1  christos 
    132  1.1  christos static const double zero = 0., one = 1.0, tiny = 1e-300;
    133  1.1  christos 
    134  1.1  christos double
    135  1.1  christos tgamma(double x)
    136  1.1  christos {
    137  1.1  christos 	struct Double u;
    138  1.1  christos 
    139  1.1  christos 	if (x >= 6) {
    140  1.1  christos 		if(x > 171.63)
    141  1.1  christos 			return (x / zero);
    142  1.1  christos 		u = large_gam(x);
    143  1.1  christos 		return(__exp__D(u.a, u.b));
    144  1.1  christos 	} else if (x >= 1.0 + LEFT + x0)
    145  1.1  christos 		return (small_gam(x));
    146  1.1  christos 	else if (x > 1.e-17)
    147  1.1  christos 		return (smaller_gam(x));
    148  1.1  christos 	else if (x > -1.e-17) {
    149  1.1  christos 		if (x != 0.0)
    150  1.1  christos 			u.a = one - tiny;	/* raise inexact */
    151  1.1  christos 		return (one/x);
    152  1.1  christos 	} else if (!finite(x))
    153  1.1  christos 		return (x - x);		/* x is NaN or -Inf */
    154  1.1  christos 	else
    155  1.1  christos 		return (neg_gam(x));
    156  1.1  christos }
    157  1.1  christos /*
    158  1.1  christos  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
    159  1.1  christos  */
    160  1.1  christos static struct Double
    161  1.1  christos large_gam(double x)
    162  1.1  christos {
    163  1.1  christos 	double z, p;
    164  1.1  christos 	struct Double t, u, v;
    165  1.1  christos 
    166  1.1  christos 	z = one/(x*x);
    167  1.1  christos 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
    168  1.1  christos 	p = p/x;
    169  1.1  christos 
    170  1.1  christos 	u = __log__D(x);
    171  1.1  christos 	u.a -= one;
    172  1.1  christos 	v.a = (x -= .5);
    173  1.1  christos 	TRUNC(v.a);
    174  1.1  christos 	v.b = x - v.a;
    175  1.1  christos 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
    176  1.1  christos 	t.b = v.b*u.a + x*u.b;
    177  1.1  christos 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
    178  1.1  christos 	t.b += lns2pi_lo; t.b += p;
    179  1.1  christos 	u.a = lns2pi_hi + t.b; u.a += t.a;
    180  1.1  christos 	u.b = t.a - u.a;
    181  1.1  christos 	u.b += lns2pi_hi; u.b += t.b;
    182  1.1  christos 	return (u);
    183  1.1  christos }
    184  1.1  christos /*
    185  1.1  christos  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
    186  1.1  christos  * It also has correct monotonicity.
    187  1.1  christos  */
    188  1.1  christos static double
    189  1.1  christos small_gam(double x)
    190  1.1  christos {
    191  1.1  christos 	double y, ym1, t;
    192  1.1  christos 	struct Double yy, r;
    193  1.1  christos 	y = x - one;
    194  1.1  christos 	ym1 = y - one;
    195  1.1  christos 	if (y <= 1.0 + (LEFT + x0)) {
    196  1.1  christos 		yy = ratfun_gam(y - x0, 0);
    197  1.1  christos 		return (yy.a + yy.b);
    198  1.1  christos 	}
    199  1.1  christos 	r.a = y;
    200  1.1  christos 	TRUNC(r.a);
    201  1.1  christos 	yy.a = r.a - one;
    202  1.1  christos 	y = ym1;
    203  1.1  christos 	yy.b = r.b = y - yy.a;
    204  1.1  christos 	/* Argument reduction: G(x+1) = x*G(x) */
    205  1.1  christos 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
    206  1.1  christos 		t = r.a*yy.a;
    207  1.1  christos 		r.b = r.a*yy.b + y*r.b;
    208  1.1  christos 		r.a = t;
    209  1.1  christos 		TRUNC(r.a);
    210  1.1  christos 		r.b += (t - r.a);
    211  1.1  christos 	}
    212  1.1  christos 	/* Return r*tgamma(y). */
    213  1.1  christos 	yy = ratfun_gam(y - x0, 0);
    214  1.1  christos 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
    215  1.1  christos 	y += yy.a*r.a;
    216  1.1  christos 	return (y);
    217  1.1  christos }
    218  1.1  christos /*
    219  1.1  christos  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
    220  1.1  christos  */
    221  1.1  christos static double
    222  1.1  christos smaller_gam(double x)
    223  1.1  christos {
    224  1.1  christos 	double t, d;
    225  1.1  christos 	struct Double r, xx;
    226  1.1  christos 	if (x < x0 + LEFT) {
    227  1.1  christos 		t = x, TRUNC(t);
    228  1.1  christos 		d = (t+x)*(x-t);
    229  1.1  christos 		t *= t;
    230  1.1  christos 		xx.a = (t + x), TRUNC(xx.a);
    231  1.1  christos 		xx.b = x - xx.a; xx.b += t; xx.b += d;
    232  1.1  christos 		t = (one-x0); t += x;
    233  1.1  christos 		d = (one-x0); d -= t; d += x;
    234  1.1  christos 		x = xx.a + xx.b;
    235  1.1  christos 	} else {
    236  1.1  christos 		xx.a =  x, TRUNC(xx.a);
    237  1.1  christos 		xx.b = x - xx.a;
    238  1.1  christos 		t = x - x0;
    239  1.1  christos 		d = (-x0 -t); d += x;
    240  1.1  christos 	}
    241  1.1  christos 	r = ratfun_gam(t, d);
    242  1.1  christos 	d = r.a/x, TRUNC(d);
    243  1.1  christos 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
    244  1.1  christos 	return (d + r.a/x);
    245  1.1  christos }
    246  1.1  christos /*
    247  1.1  christos  * returns (z+c)^2 * P(z)/Q(z) + a0
    248  1.1  christos  */
    249  1.1  christos static struct Double
    250  1.1  christos ratfun_gam(double z, double c)
    251  1.1  christos {
    252  1.1  christos 	double p, q;
    253  1.1  christos 	struct Double r, t;
    254  1.1  christos 
    255  1.1  christos 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
    256  1.1  christos 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
    257  1.1  christos 
    258  1.1  christos 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
    259  1.1  christos 	p = p/q;
    260  1.1  christos 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
    261  1.1  christos 	t.b = (z - t.a) + c;
    262  1.1  christos 	t.b *= (t.a + z);
    263  1.1  christos 	q = (t.a *= t.a);		/* t = (z+c)^2 */
    264  1.1  christos 	TRUNC(t.a);
    265  1.1  christos 	t.b += (q - t.a);
    266  1.1  christos 	r.a = p, TRUNC(r.a);		/* r = P/Q */
    267  1.1  christos 	r.b = p - r.a;
    268  1.1  christos 	t.b = t.b*p + t.a*r.b + a0_lo;
    269  1.1  christos 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
    270  1.1  christos 	r.a = t.a + a0_hi, TRUNC(r.a);
    271  1.1  christos 	r.b = ((a0_hi-r.a) + t.a) + t.b;
    272  1.1  christos 	return (r);			/* r = a0 + t */
    273  1.1  christos }
    274  1.1  christos 
    275  1.1  christos static double
    276  1.1  christos neg_gam(double x)
    277  1.1  christos {
    278  1.1  christos 	int sgn = 1;
    279  1.1  christos 	struct Double lg, lsine;
    280  1.1  christos 	double y, z;
    281  1.1  christos 
    282  1.1  christos 	y = ceil(x);
    283  1.1  christos 	if (y == x)		/* Negative integer. */
    284  1.1  christos 		return ((x - x) / zero);
    285  1.1  christos 	z = y - x;
    286  1.1  christos 	if (z > 0.5)
    287  1.1  christos 		z = one - z;
    288  1.1  christos 	y = 0.5 * y;
    289  1.1  christos 	if (y == ceil(y))
    290  1.1  christos 		sgn = -1;
    291  1.1  christos 	if (z < .25)
    292  1.1  christos 		z = sin(M_PI*z);
    293  1.1  christos 	else
    294  1.1  christos 		z = cos(M_PI*(0.5-z));
    295  1.1  christos 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
    296  1.1  christos 	if (x < -170) {
    297  1.1  christos 		if (x < -190)
    298  1.1  christos 			return ((double)sgn*tiny*tiny);
    299  1.1  christos 		y = one - x;		/* exact: 128 < |x| < 255 */
    300  1.1  christos 		lg = large_gam(y);
    301  1.1  christos 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
    302  1.1  christos 		lg.a -= lsine.a;		/* exact (opposite signs) */
    303  1.1  christos 		lg.b -= lsine.b;
    304  1.1  christos 		y = -(lg.a + lg.b);
    305  1.1  christos 		z = (y + lg.a) + lg.b;
    306  1.1  christos 		y = __exp__D(y, z);
    307  1.1  christos 		if (sgn < 0) y = -y;
    308  1.1  christos 		return (y);
    309  1.1  christos 	}
    310  1.1  christos 	y = one-x;
    311  1.1  christos 	if (one-y == x)
    312  1.1  christos 		y = tgamma(y);
    313  1.1  christos 	else		/* 1-x is inexact */
    314  1.1  christos 		y = -x*tgamma(-x);
    315  1.1  christos 	if (sgn < 0) y = -y;
    316  1.1  christos 	return (M_PI / (y*z));
    317  1.1  christos }
    318