Home | History | Annotate | Line # | Download | only in src
      1 /*	$NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1992, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  */
     35 
     36 /* @(#)gamma.c	8.1 (Berkeley) 6/4/93 */
     37 #include <sys/cdefs.h>
     38 #if 0
     39 __FBSDID("$FreeBSD: release/9.0.0/lib/msun/bsdsrc/b_tgamma.c 176449 2008-02-22 02:26:51Z das $");
     40 #else
     41 __RCSID("$NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $");
     42 #endif
     43 
     44 /*
     45  * This code by P. McIlroy, Oct 1992;
     46  *
     47  * The financial support of UUNET Communications Services is greatfully
     48  * acknowledged.
     49  */
     50 
     51 #include "math.h"
     52 #include "math_private.h"
     53 
     54 /* METHOD:
     55  * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
     56  * 	At negative integers, return NaN and raise invalid.
     57  *
     58  * x < 6.5:
     59  *	Use argument reduction G(x+1) = xG(x) to reach the
     60  *	range [1.066124,2.066124].  Use a rational
     61  *	approximation centered at the minimum (x0+1) to
     62  *	ensure monotonicity.
     63  *
     64  * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
     65  *	adjusted for equal-ripples:
     66  *
     67  *	log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
     68  *
     69  *	Keep extra precision in multiplying (x-.5)(log(x)-1), to
     70  *	avoid premature round-off.
     71  *
     72  * Special values:
     73  *	-Inf:			return NaN and raise invalid;
     74  *	negative integer:	return NaN and raise invalid;
     75  *	other x ~< 177.79:	return +-0 and raise underflow;
     76  *	+-0:			return +-Inf and raise divide-by-zero;
     77  *	finite x ~> 171.63:	return +Inf and raise overflow;
     78  *	+Inf:			return +Inf;
     79  *	NaN: 			return NaN.
     80  *
     81  * Accuracy: tgamma(x) is accurate to within
     82  *	x > 0:  error provably < 0.9ulp.
     83  *	Maximum observed in 1,000,000 trials was .87ulp.
     84  *	x < 0:
     85  *	Maximum observed error < 4ulp in 1,000,000 trials.
     86  */
     87 
     88 static double neg_gam(double);
     89 static double small_gam(double);
     90 static double smaller_gam(double);
     91 static struct Double large_gam(double);
     92 static struct Double ratfun_gam(double, double);
     93 
     94 /*
     95  * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
     96  * [1.066.., 2.066..] accurate to 4.25e-19.
     97  */
     98 #define LEFT -.3955078125	/* left boundary for rat. approx */
     99 #define x0 .461632144968362356785	/* xmin - 1 */
    100 
    101 #define a0_hi 0.88560319441088874992
    102 #define a0_lo -.00000000000000004996427036469019695
    103 #define P0	 6.21389571821820863029017800727e-01
    104 #define P1	 2.65757198651533466104979197553e-01
    105 #define P2	 5.53859446429917461063308081748e-03
    106 #define P3	 1.38456698304096573887145282811e-03
    107 #define P4	 2.40659950032711365819348969808e-03
    108 #define Q0	 1.45019531250000000000000000000e+00
    109 #define Q1	 1.06258521948016171343454061571e+00
    110 #define Q2	-2.07474561943859936441469926649e-01
    111 #define Q3	-1.46734131782005422506287573015e-01
    112 #define Q4	 3.07878176156175520361557573779e-02
    113 #define Q5	 5.12449347980666221336054633184e-03
    114 #define Q6	-1.76012741431666995019222898833e-03
    115 #define Q7	 9.35021023573788935372153030556e-05
    116 #define Q8	 6.13275507472443958924745652239e-06
    117 /*
    118  * Constants for large x approximation (x in [6, Inf])
    119  * (Accurate to 2.8*10^-19 absolute)
    120  */
    121 #define lns2pi_hi 0.418945312500000
    122 #define lns2pi_lo -.000006779295327258219670263595
    123 #define Pa0	 8.33333333333333148296162562474e-02
    124 #define Pa1	-2.77777777774548123579378966497e-03
    125 #define Pa2	 7.93650778754435631476282786423e-04
    126 #define Pa3	-5.95235082566672847950717262222e-04
    127 #define Pa4	 8.41428560346653702135821806252e-04
    128 #define Pa5	-1.89773526463879200348872089421e-03
    129 #define Pa6	 5.69394463439411649408050664078e-03
    130 #define Pa7	-1.44705562421428915453880392761e-02
    131 
    132 static const double zero = 0., one = 1.0, tiny = 1e-300;
    133 
    134 double
    135 tgamma(double x)
    136 {
    137 	struct Double u;
    138 
    139 	if (x >= 6) {
    140 		if(x > 171.63)
    141 			return (x / zero);
    142 		u = large_gam(x);
    143 		return(__exp__D(u.a, u.b));
    144 	} else if (x >= 1.0 + LEFT + x0)
    145 		return (small_gam(x));
    146 	else if (x > 1.e-17)
    147 		return (smaller_gam(x));
    148 	else if (x > -1.e-17) {
    149 		if (x != 0.0)
    150 			u.a = one - tiny;	/* raise inexact */
    151 		return (one/x);
    152 	} else if (!finite(x))
    153 		return (x - x);		/* x is NaN or -Inf */
    154 	else
    155 		return (neg_gam(x));
    156 }
    157 /*
    158  * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
    159  */
    160 static struct Double
    161 large_gam(double x)
    162 {
    163 	double z, p;
    164 	struct Double t, u, v;
    165 
    166 	z = one/(x*x);
    167 	p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
    168 	p = p/x;
    169 
    170 	u = __log__D(x);
    171 	u.a -= one;
    172 	v.a = (x -= .5);
    173 	TRUNC(v.a);
    174 	v.b = x - v.a;
    175 	t.a = v.a*u.a;			/* t = (x-.5)*(log(x)-1) */
    176 	t.b = v.b*u.a + x*u.b;
    177 	/* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
    178 	t.b += lns2pi_lo; t.b += p;
    179 	u.a = lns2pi_hi + t.b; u.a += t.a;
    180 	u.b = t.a - u.a;
    181 	u.b += lns2pi_hi; u.b += t.b;
    182 	return (u);
    183 }
    184 /*
    185  * Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
    186  * It also has correct monotonicity.
    187  */
    188 static double
    189 small_gam(double x)
    190 {
    191 	double y, ym1, t;
    192 	struct Double yy, r;
    193 	y = x - one;
    194 	ym1 = y - one;
    195 	if (y <= 1.0 + (LEFT + x0)) {
    196 		yy = ratfun_gam(y - x0, 0);
    197 		return (yy.a + yy.b);
    198 	}
    199 	r.a = y;
    200 	TRUNC(r.a);
    201 	yy.a = r.a - one;
    202 	y = ym1;
    203 	yy.b = r.b = y - yy.a;
    204 	/* Argument reduction: G(x+1) = x*G(x) */
    205 	for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
    206 		t = r.a*yy.a;
    207 		r.b = r.a*yy.b + y*r.b;
    208 		r.a = t;
    209 		TRUNC(r.a);
    210 		r.b += (t - r.a);
    211 	}
    212 	/* Return r*tgamma(y). */
    213 	yy = ratfun_gam(y - x0, 0);
    214 	y = r.b*(yy.a + yy.b) + r.a*yy.b;
    215 	y += yy.a*r.a;
    216 	return (y);
    217 }
    218 /*
    219  * Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
    220  */
    221 static double
    222 smaller_gam(double x)
    223 {
    224 	double t, d;
    225 	struct Double r, xx;
    226 	if (x < x0 + LEFT) {
    227 		t = x, TRUNC(t);
    228 		d = (t+x)*(x-t);
    229 		t *= t;
    230 		xx.a = (t + x), TRUNC(xx.a);
    231 		xx.b = x - xx.a; xx.b += t; xx.b += d;
    232 		t = (one-x0); t += x;
    233 		d = (one-x0); d -= t; d += x;
    234 		x = xx.a + xx.b;
    235 	} else {
    236 		xx.a =  x, TRUNC(xx.a);
    237 		xx.b = x - xx.a;
    238 		t = x - x0;
    239 		d = (-x0 -t); d += x;
    240 	}
    241 	r = ratfun_gam(t, d);
    242 	d = r.a/x, TRUNC(d);
    243 	r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
    244 	return (d + r.a/x);
    245 }
    246 /*
    247  * returns (z+c)^2 * P(z)/Q(z) + a0
    248  */
    249 static struct Double
    250 ratfun_gam(double z, double c)
    251 {
    252 	double p, q;
    253 	struct Double r, t;
    254 
    255 	q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
    256 	p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
    257 
    258 	/* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
    259 	p = p/q;
    260 	t.a = z, TRUNC(t.a);		/* t ~= z + c */
    261 	t.b = (z - t.a) + c;
    262 	t.b *= (t.a + z);
    263 	q = (t.a *= t.a);		/* t = (z+c)^2 */
    264 	TRUNC(t.a);
    265 	t.b += (q - t.a);
    266 	r.a = p, TRUNC(r.a);		/* r = P/Q */
    267 	r.b = p - r.a;
    268 	t.b = t.b*p + t.a*r.b + a0_lo;
    269 	t.a *= r.a;			/* t = (z+c)^2*(P/Q) */
    270 	r.a = t.a + a0_hi, TRUNC(r.a);
    271 	r.b = ((a0_hi-r.a) + t.a) + t.b;
    272 	return (r);			/* r = a0 + t */
    273 }
    274 
    275 static double
    276 neg_gam(double x)
    277 {
    278 	int sgn = 1;
    279 	struct Double lg, lsine;
    280 	double y, z;
    281 
    282 	y = ceil(x);
    283 	if (y == x)		/* Negative integer. */
    284 		return ((x - x) / zero);
    285 	z = y - x;
    286 	if (z > 0.5)
    287 		z = one - z;
    288 	y = 0.5 * y;
    289 	if (y == ceil(y))
    290 		sgn = -1;
    291 	if (z < .25)
    292 		z = sin(M_PI*z);
    293 	else
    294 		z = cos(M_PI*(0.5-z));
    295 	/* Special case: G(1-x) = Inf; G(x) may be nonzero. */
    296 	if (x < -170) {
    297 		if (x < -190)
    298 			return ((double)sgn*tiny*tiny);
    299 		y = one - x;		/* exact: 128 < |x| < 255 */
    300 		lg = large_gam(y);
    301 		lsine = __log__D(M_PI/z);	/* = TRUNC(log(u)) + small */
    302 		lg.a -= lsine.a;		/* exact (opposite signs) */
    303 		lg.b -= lsine.b;
    304 		y = -(lg.a + lg.b);
    305 		z = (y + lg.a) + lg.b;
    306 		y = __exp__D(y, z);
    307 		if (sgn < 0) y = -y;
    308 		return (y);
    309 	}
    310 	y = one-x;
    311 	if (one-y == x)
    312 		y = tgamma(y);
    313 	else		/* 1-x is inexact */
    314 		y = -x*tgamma(-x);
    315 	if (sgn < 0) y = -y;
    316 	return (M_PI / (y*z));
    317 }
    318