b_tgamma.c revision 1.1 1 1.1 christos /* $NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $ */
2 1.1 christos
3 1.1 christos /*-
4 1.1 christos * Copyright (c) 1992, 1993
5 1.1 christos * The Regents of the University of California. All rights reserved.
6 1.1 christos *
7 1.1 christos * Redistribution and use in source and binary forms, with or without
8 1.1 christos * modification, are permitted provided that the following conditions
9 1.1 christos * are met:
10 1.1 christos * 1. Redistributions of source code must retain the above copyright
11 1.1 christos * notice, this list of conditions and the following disclaimer.
12 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 christos * notice, this list of conditions and the following disclaimer in the
14 1.1 christos * documentation and/or other materials provided with the distribution.
15 1.1 christos * 3. All advertising materials mentioning features or use of this software
16 1.1 christos * must display the following acknowledgement:
17 1.1 christos * This product includes software developed by the University of
18 1.1 christos * California, Berkeley and its contributors.
19 1.1 christos * 4. Neither the name of the University nor the names of its contributors
20 1.1 christos * may be used to endorse or promote products derived from this software
21 1.1 christos * without specific prior written permission.
22 1.1 christos *
23 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 1.1 christos * SUCH DAMAGE.
34 1.1 christos */
35 1.1 christos
36 1.1 christos /* @(#)gamma.c 8.1 (Berkeley) 6/4/93 */
37 1.1 christos #include <sys/cdefs.h>
38 1.1 christos #if 0
39 1.1 christos __FBSDID("$FreeBSD: release/9.0.0/lib/msun/bsdsrc/b_tgamma.c 176449 2008-02-22 02:26:51Z das $");
40 1.1 christos #else
41 1.1 christos __RCSID("$NetBSD: b_tgamma.c,v 1.1 2012/05/05 17:54:14 christos Exp $");
42 1.1 christos #endif
43 1.1 christos
44 1.1 christos /*
45 1.1 christos * This code by P. McIlroy, Oct 1992;
46 1.1 christos *
47 1.1 christos * The financial support of UUNET Communications Services is greatfully
48 1.1 christos * acknowledged.
49 1.1 christos */
50 1.1 christos
51 1.1 christos #include "math.h"
52 1.1 christos #include "math_private.h"
53 1.1 christos
54 1.1 christos /* METHOD:
55 1.1 christos * x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
56 1.1 christos * At negative integers, return NaN and raise invalid.
57 1.1 christos *
58 1.1 christos * x < 6.5:
59 1.1 christos * Use argument reduction G(x+1) = xG(x) to reach the
60 1.1 christos * range [1.066124,2.066124]. Use a rational
61 1.1 christos * approximation centered at the minimum (x0+1) to
62 1.1 christos * ensure monotonicity.
63 1.1 christos *
64 1.1 christos * x >= 6.5: Use the asymptotic approximation (Stirling's formula)
65 1.1 christos * adjusted for equal-ripples:
66 1.1 christos *
67 1.1 christos * log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
68 1.1 christos *
69 1.1 christos * Keep extra precision in multiplying (x-.5)(log(x)-1), to
70 1.1 christos * avoid premature round-off.
71 1.1 christos *
72 1.1 christos * Special values:
73 1.1 christos * -Inf: return NaN and raise invalid;
74 1.1 christos * negative integer: return NaN and raise invalid;
75 1.1 christos * other x ~< 177.79: return +-0 and raise underflow;
76 1.1 christos * +-0: return +-Inf and raise divide-by-zero;
77 1.1 christos * finite x ~> 171.63: return +Inf and raise overflow;
78 1.1 christos * +Inf: return +Inf;
79 1.1 christos * NaN: return NaN.
80 1.1 christos *
81 1.1 christos * Accuracy: tgamma(x) is accurate to within
82 1.1 christos * x > 0: error provably < 0.9ulp.
83 1.1 christos * Maximum observed in 1,000,000 trials was .87ulp.
84 1.1 christos * x < 0:
85 1.1 christos * Maximum observed error < 4ulp in 1,000,000 trials.
86 1.1 christos */
87 1.1 christos
88 1.1 christos static double neg_gam(double);
89 1.1 christos static double small_gam(double);
90 1.1 christos static double smaller_gam(double);
91 1.1 christos static struct Double large_gam(double);
92 1.1 christos static struct Double ratfun_gam(double, double);
93 1.1 christos
94 1.1 christos /*
95 1.1 christos * Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
96 1.1 christos * [1.066.., 2.066..] accurate to 4.25e-19.
97 1.1 christos */
98 1.1 christos #define LEFT -.3955078125 /* left boundary for rat. approx */
99 1.1 christos #define x0 .461632144968362356785 /* xmin - 1 */
100 1.1 christos
101 1.1 christos #define a0_hi 0.88560319441088874992
102 1.1 christos #define a0_lo -.00000000000000004996427036469019695
103 1.1 christos #define P0 6.21389571821820863029017800727e-01
104 1.1 christos #define P1 2.65757198651533466104979197553e-01
105 1.1 christos #define P2 5.53859446429917461063308081748e-03
106 1.1 christos #define P3 1.38456698304096573887145282811e-03
107 1.1 christos #define P4 2.40659950032711365819348969808e-03
108 1.1 christos #define Q0 1.45019531250000000000000000000e+00
109 1.1 christos #define Q1 1.06258521948016171343454061571e+00
110 1.1 christos #define Q2 -2.07474561943859936441469926649e-01
111 1.1 christos #define Q3 -1.46734131782005422506287573015e-01
112 1.1 christos #define Q4 3.07878176156175520361557573779e-02
113 1.1 christos #define Q5 5.12449347980666221336054633184e-03
114 1.1 christos #define Q6 -1.76012741431666995019222898833e-03
115 1.1 christos #define Q7 9.35021023573788935372153030556e-05
116 1.1 christos #define Q8 6.13275507472443958924745652239e-06
117 1.1 christos /*
118 1.1 christos * Constants for large x approximation (x in [6, Inf])
119 1.1 christos * (Accurate to 2.8*10^-19 absolute)
120 1.1 christos */
121 1.1 christos #define lns2pi_hi 0.418945312500000
122 1.1 christos #define lns2pi_lo -.000006779295327258219670263595
123 1.1 christos #define Pa0 8.33333333333333148296162562474e-02
124 1.1 christos #define Pa1 -2.77777777774548123579378966497e-03
125 1.1 christos #define Pa2 7.93650778754435631476282786423e-04
126 1.1 christos #define Pa3 -5.95235082566672847950717262222e-04
127 1.1 christos #define Pa4 8.41428560346653702135821806252e-04
128 1.1 christos #define Pa5 -1.89773526463879200348872089421e-03
129 1.1 christos #define Pa6 5.69394463439411649408050664078e-03
130 1.1 christos #define Pa7 -1.44705562421428915453880392761e-02
131 1.1 christos
132 1.1 christos static const double zero = 0., one = 1.0, tiny = 1e-300;
133 1.1 christos
134 1.1 christos double
135 1.1 christos tgamma(double x)
136 1.1 christos {
137 1.1 christos struct Double u;
138 1.1 christos
139 1.1 christos if (x >= 6) {
140 1.1 christos if(x > 171.63)
141 1.1 christos return (x / zero);
142 1.1 christos u = large_gam(x);
143 1.1 christos return(__exp__D(u.a, u.b));
144 1.1 christos } else if (x >= 1.0 + LEFT + x0)
145 1.1 christos return (small_gam(x));
146 1.1 christos else if (x > 1.e-17)
147 1.1 christos return (smaller_gam(x));
148 1.1 christos else if (x > -1.e-17) {
149 1.1 christos if (x != 0.0)
150 1.1 christos u.a = one - tiny; /* raise inexact */
151 1.1 christos return (one/x);
152 1.1 christos } else if (!finite(x))
153 1.1 christos return (x - x); /* x is NaN or -Inf */
154 1.1 christos else
155 1.1 christos return (neg_gam(x));
156 1.1 christos }
157 1.1 christos /*
158 1.1 christos * Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
159 1.1 christos */
160 1.1 christos static struct Double
161 1.1 christos large_gam(double x)
162 1.1 christos {
163 1.1 christos double z, p;
164 1.1 christos struct Double t, u, v;
165 1.1 christos
166 1.1 christos z = one/(x*x);
167 1.1 christos p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
168 1.1 christos p = p/x;
169 1.1 christos
170 1.1 christos u = __log__D(x);
171 1.1 christos u.a -= one;
172 1.1 christos v.a = (x -= .5);
173 1.1 christos TRUNC(v.a);
174 1.1 christos v.b = x - v.a;
175 1.1 christos t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
176 1.1 christos t.b = v.b*u.a + x*u.b;
177 1.1 christos /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
178 1.1 christos t.b += lns2pi_lo; t.b += p;
179 1.1 christos u.a = lns2pi_hi + t.b; u.a += t.a;
180 1.1 christos u.b = t.a - u.a;
181 1.1 christos u.b += lns2pi_hi; u.b += t.b;
182 1.1 christos return (u);
183 1.1 christos }
184 1.1 christos /*
185 1.1 christos * Good to < 1 ulp. (provably .90 ulp; .87 ulp on 1,000,000 runs.)
186 1.1 christos * It also has correct monotonicity.
187 1.1 christos */
188 1.1 christos static double
189 1.1 christos small_gam(double x)
190 1.1 christos {
191 1.1 christos double y, ym1, t;
192 1.1 christos struct Double yy, r;
193 1.1 christos y = x - one;
194 1.1 christos ym1 = y - one;
195 1.1 christos if (y <= 1.0 + (LEFT + x0)) {
196 1.1 christos yy = ratfun_gam(y - x0, 0);
197 1.1 christos return (yy.a + yy.b);
198 1.1 christos }
199 1.1 christos r.a = y;
200 1.1 christos TRUNC(r.a);
201 1.1 christos yy.a = r.a - one;
202 1.1 christos y = ym1;
203 1.1 christos yy.b = r.b = y - yy.a;
204 1.1 christos /* Argument reduction: G(x+1) = x*G(x) */
205 1.1 christos for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
206 1.1 christos t = r.a*yy.a;
207 1.1 christos r.b = r.a*yy.b + y*r.b;
208 1.1 christos r.a = t;
209 1.1 christos TRUNC(r.a);
210 1.1 christos r.b += (t - r.a);
211 1.1 christos }
212 1.1 christos /* Return r*tgamma(y). */
213 1.1 christos yy = ratfun_gam(y - x0, 0);
214 1.1 christos y = r.b*(yy.a + yy.b) + r.a*yy.b;
215 1.1 christos y += yy.a*r.a;
216 1.1 christos return (y);
217 1.1 christos }
218 1.1 christos /*
219 1.1 christos * Good on (0, 1+x0+LEFT]. Accurate to 1ulp.
220 1.1 christos */
221 1.1 christos static double
222 1.1 christos smaller_gam(double x)
223 1.1 christos {
224 1.1 christos double t, d;
225 1.1 christos struct Double r, xx;
226 1.1 christos if (x < x0 + LEFT) {
227 1.1 christos t = x, TRUNC(t);
228 1.1 christos d = (t+x)*(x-t);
229 1.1 christos t *= t;
230 1.1 christos xx.a = (t + x), TRUNC(xx.a);
231 1.1 christos xx.b = x - xx.a; xx.b += t; xx.b += d;
232 1.1 christos t = (one-x0); t += x;
233 1.1 christos d = (one-x0); d -= t; d += x;
234 1.1 christos x = xx.a + xx.b;
235 1.1 christos } else {
236 1.1 christos xx.a = x, TRUNC(xx.a);
237 1.1 christos xx.b = x - xx.a;
238 1.1 christos t = x - x0;
239 1.1 christos d = (-x0 -t); d += x;
240 1.1 christos }
241 1.1 christos r = ratfun_gam(t, d);
242 1.1 christos d = r.a/x, TRUNC(d);
243 1.1 christos r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
244 1.1 christos return (d + r.a/x);
245 1.1 christos }
246 1.1 christos /*
247 1.1 christos * returns (z+c)^2 * P(z)/Q(z) + a0
248 1.1 christos */
249 1.1 christos static struct Double
250 1.1 christos ratfun_gam(double z, double c)
251 1.1 christos {
252 1.1 christos double p, q;
253 1.1 christos struct Double r, t;
254 1.1 christos
255 1.1 christos q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
256 1.1 christos p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));
257 1.1 christos
258 1.1 christos /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
259 1.1 christos p = p/q;
260 1.1 christos t.a = z, TRUNC(t.a); /* t ~= z + c */
261 1.1 christos t.b = (z - t.a) + c;
262 1.1 christos t.b *= (t.a + z);
263 1.1 christos q = (t.a *= t.a); /* t = (z+c)^2 */
264 1.1 christos TRUNC(t.a);
265 1.1 christos t.b += (q - t.a);
266 1.1 christos r.a = p, TRUNC(r.a); /* r = P/Q */
267 1.1 christos r.b = p - r.a;
268 1.1 christos t.b = t.b*p + t.a*r.b + a0_lo;
269 1.1 christos t.a *= r.a; /* t = (z+c)^2*(P/Q) */
270 1.1 christos r.a = t.a + a0_hi, TRUNC(r.a);
271 1.1 christos r.b = ((a0_hi-r.a) + t.a) + t.b;
272 1.1 christos return (r); /* r = a0 + t */
273 1.1 christos }
274 1.1 christos
275 1.1 christos static double
276 1.1 christos neg_gam(double x)
277 1.1 christos {
278 1.1 christos int sgn = 1;
279 1.1 christos struct Double lg, lsine;
280 1.1 christos double y, z;
281 1.1 christos
282 1.1 christos y = ceil(x);
283 1.1 christos if (y == x) /* Negative integer. */
284 1.1 christos return ((x - x) / zero);
285 1.1 christos z = y - x;
286 1.1 christos if (z > 0.5)
287 1.1 christos z = one - z;
288 1.1 christos y = 0.5 * y;
289 1.1 christos if (y == ceil(y))
290 1.1 christos sgn = -1;
291 1.1 christos if (z < .25)
292 1.1 christos z = sin(M_PI*z);
293 1.1 christos else
294 1.1 christos z = cos(M_PI*(0.5-z));
295 1.1 christos /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
296 1.1 christos if (x < -170) {
297 1.1 christos if (x < -190)
298 1.1 christos return ((double)sgn*tiny*tiny);
299 1.1 christos y = one - x; /* exact: 128 < |x| < 255 */
300 1.1 christos lg = large_gam(y);
301 1.1 christos lsine = __log__D(M_PI/z); /* = TRUNC(log(u)) + small */
302 1.1 christos lg.a -= lsine.a; /* exact (opposite signs) */
303 1.1 christos lg.b -= lsine.b;
304 1.1 christos y = -(lg.a + lg.b);
305 1.1 christos z = (y + lg.a) + lg.b;
306 1.1 christos y = __exp__D(y, z);
307 1.1 christos if (sgn < 0) y = -y;
308 1.1 christos return (y);
309 1.1 christos }
310 1.1 christos y = one-x;
311 1.1 christos if (one-y == x)
312 1.1 christos y = tgamma(y);
313 1.1 christos else /* 1-x is inexact */
314 1.1 christos y = -x*tgamma(-x);
315 1.1 christos if (sgn < 0) y = -y;
316 1.1 christos return (M_PI / (y*z));
317 1.1 christos }
318