Home | History | Annotate | Line # | Download | only in include
      1 /* $NetBSD: softfloat-specialize,v 1.2 2008/04/28 20:23:04 martin Exp $ */
      2 
      3 /* This is a derivative work. */
      4 
      5 /*-
      6  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by Ross Harvey.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     23  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     24  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     31  * POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 /*
     35 ===============================================================================
     36 
     37 This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
     38 Arithmetic Package, Release 2a.
     39 
     40 Written by John R. Hauser.  This work was made possible in part by the
     41 International Computer Science Institute, located at Suite 600, 1947 Center
     42 Street, Berkeley, California 94704.  Funding was partially provided by the
     43 National Science Foundation under grant MIP-9311980.  The original version
     44 of this code was written as part of a project to build a fixed-point vector
     45 processor in collaboration with the University of California at Berkeley,
     46 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     47 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
     48 arithmetic/SoftFloat.html'.
     49 
     50 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
     51 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
     52 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
     53 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
     54 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
     55 
     56 Derivative works are acceptable, even for commercial purposes, so long as
     57 (1) they include prominent notice that the work is derivative, and (2) they
     58 include prominent notice akin to these four paragraphs for those parts of
     59 this code that are retained.
     60 
     61 ===============================================================================
     62 */
     63 
     64 /*
     65 -------------------------------------------------------------------------------
     66 Underflow tininess-detection mode, statically initialized to default value.
     67 -------------------------------------------------------------------------------
     68 */
     69 int float_detect_tininess = float_tininess_after_rounding;
     70 
     71 /*
     72 -------------------------------------------------------------------------------
     73 Raises the exceptions specified by `flags'.  Floating-point traps can be
     74 defined here if desired.  It is currently not possible for such a trap
     75 to substitute a result value.  If traps are not implemented, this routine
     76 should be simply `float_exception_flags |= flags;'.
     77 -------------------------------------------------------------------------------
     78 */
     79 void float_raise( int flags )
     80 {
     81 
     82     float_exception_flags |= flags;
     83 
     84 }
     85 
     86 /*
     87 -------------------------------------------------------------------------------
     88 Internal canonical NaN format.
     89 -------------------------------------------------------------------------------
     90 */
     91 typedef struct {
     92     flag sign;
     93     bits64 high, low;
     94 } commonNaNT;
     95 
     96 /*
     97 -------------------------------------------------------------------------------
     98 The pattern for a default generated single-precision NaN.
     99 -------------------------------------------------------------------------------
    100 */
    101 #define float32_default_nan 0xFFC00000
    102 
    103 /*
    104 -------------------------------------------------------------------------------
    105 Returns 1 if the single-precision floating-point value `a' is a NaN;
    106 otherwise returns 0.
    107 -------------------------------------------------------------------------------
    108 */
    109 static flag float32_is_nan( float32 a )
    110 {
    111 
    112     return ( 0xFF000000 < (bits32) ( a<<1 ) );
    113 
    114 }
    115 
    116 /*
    117 -------------------------------------------------------------------------------
    118 Returns 1 if the single-precision floating-point value `a' is a signaling
    119 NaN; otherwise returns 0.
    120 -------------------------------------------------------------------------------
    121 */
    122 flag float32_is_signaling_nan( float32 a )
    123 {
    124 
    125     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
    126 
    127 }
    128 
    129 /*
    130 -------------------------------------------------------------------------------
    131 Returns the result of converting the single-precision floating-point NaN
    132 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    133 exception is raised.
    134 -------------------------------------------------------------------------------
    135 */
    136 static commonNaNT float32ToCommonNaN( float32 a )
    137 {
    138     commonNaNT z;
    139 
    140     if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    141     z.sign = a>>31;
    142     z.low = 0;
    143     z.high = ( (bits64) a )<<41;
    144     return z;
    145 
    146 }
    147 
    148 /*
    149 -------------------------------------------------------------------------------
    150 Returns the result of converting the canonical NaN `a' to the single-
    151 precision floating-point format.
    152 -------------------------------------------------------------------------------
    153 */
    154 static float32 commonNaNToFloat32( commonNaNT a )
    155 {
    156 
    157     return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
    158 
    159 }
    160 
    161 /*
    162 -------------------------------------------------------------------------------
    163 Takes two single-precision floating-point values `a' and `b', one of which
    164 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    165 signaling NaN, the invalid exception is raised.
    166 -------------------------------------------------------------------------------
    167 */
    168 static float32 propagateFloat32NaN( float32 a, float32 b )
    169 {
    170     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    171 
    172     aIsNaN = float32_is_nan( a );
    173     aIsSignalingNaN = float32_is_signaling_nan( a );
    174     bIsNaN = float32_is_nan( b );
    175     bIsSignalingNaN = float32_is_signaling_nan( b );
    176     a |= 0x00400000;
    177     b |= 0x00400000;
    178     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    179     if ( aIsSignalingNaN ) {
    180         if ( bIsSignalingNaN ) goto returnLargerSignificand;
    181         return bIsNaN ? b : a;
    182     }
    183     else if ( aIsNaN ) {
    184         if ( bIsSignalingNaN | ! bIsNaN ) return a;
    185  returnLargerSignificand:
    186         if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b;
    187         if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a;
    188         return ( a < b ) ? a : b;
    189     }
    190     else {
    191         return b;
    192     }
    193 
    194 }
    195 
    196 /*
    197 -------------------------------------------------------------------------------
    198 The pattern for a default generated double-precision NaN.
    199 -------------------------------------------------------------------------------
    200 */
    201 #define float64_default_nan LIT64( 0xFFF8000000000000 )
    202 
    203 /*
    204 -------------------------------------------------------------------------------
    205 Returns 1 if the double-precision floating-point value `a' is a NaN;
    206 otherwise returns 0.
    207 -------------------------------------------------------------------------------
    208 */
    209 static flag float64_is_nan( float64 a )
    210 {
    211 
    212     return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
    213 
    214 }
    215 
    216 /*
    217 -------------------------------------------------------------------------------
    218 Returns 1 if the double-precision floating-point value `a' is a signaling
    219 NaN; otherwise returns 0.
    220 -------------------------------------------------------------------------------
    221 */
    222 flag float64_is_signaling_nan( float64 a )
    223 {
    224 
    225     return
    226            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
    227         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
    228 
    229 }
    230 
    231 /*
    232 -------------------------------------------------------------------------------
    233 Returns the result of converting the double-precision floating-point NaN
    234 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    235 exception is raised.
    236 -------------------------------------------------------------------------------
    237 */
    238 static commonNaNT float64ToCommonNaN( float64 a )
    239 {
    240     commonNaNT z;
    241 
    242     if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    243     z.sign = a>>63;
    244     z.low = 0;
    245     z.high = a<<12;
    246     return z;
    247 
    248 }
    249 
    250 /*
    251 -------------------------------------------------------------------------------
    252 Returns the result of converting the canonical NaN `a' to the double-
    253 precision floating-point format.
    254 -------------------------------------------------------------------------------
    255 */
    256 static float64 commonNaNToFloat64( commonNaNT a )
    257 {
    258 
    259     return
    260           ( ( (bits64) a.sign )<<63 )
    261         | LIT64( 0x7FF8000000000000 )
    262         | ( a.high>>12 );
    263 
    264 }
    265 
    266 /*
    267 -------------------------------------------------------------------------------
    268 Takes two double-precision floating-point values `a' and `b', one of which
    269 is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
    270 signaling NaN, the invalid exception is raised.
    271 -------------------------------------------------------------------------------
    272 */
    273 static float64 propagateFloat64NaN( float64 a, float64 b )
    274 {
    275     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    276 
    277     aIsNaN = float64_is_nan( a );
    278     aIsSignalingNaN = float64_is_signaling_nan( a );
    279     bIsNaN = float64_is_nan( b );
    280     bIsSignalingNaN = float64_is_signaling_nan( b );
    281     a |= LIT64( 0x0008000000000000 );
    282     b |= LIT64( 0x0008000000000000 );
    283     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    284     if ( aIsSignalingNaN ) {
    285         if ( bIsSignalingNaN ) goto returnLargerSignificand;
    286         return bIsNaN ? b : a;
    287     }
    288     else if ( aIsNaN ) {
    289         if ( bIsSignalingNaN | ! bIsNaN ) return a;
    290  returnLargerSignificand:
    291         if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b;
    292         if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a;
    293         return ( a < b ) ? a : b;
    294     }
    295     else {
    296         return b;
    297     }
    298 
    299 }
    300 
    301 #ifdef FLOATX80
    302 
    303 /*
    304 -------------------------------------------------------------------------------
    305 The pattern for a default generated extended double-precision NaN.  The
    306 `high' and `low' values hold the most- and least-significant bits,
    307 respectively.
    308 -------------------------------------------------------------------------------
    309 */
    310 #define floatx80_default_nan_high 0xFFFF
    311 #define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
    312 
    313 /*
    314 -------------------------------------------------------------------------------
    315 Returns 1 if the extended double-precision floating-point value `a' is a
    316 NaN; otherwise returns 0.
    317 -------------------------------------------------------------------------------
    318 */
    319 static flag floatx80_is_nan( floatx80 a )
    320 {
    321 
    322     return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
    323 
    324 }
    325 
    326 /*
    327 -------------------------------------------------------------------------------
    328 Returns 1 if the extended double-precision floating-point value `a' is a
    329 signaling NaN; otherwise returns 0.
    330 -------------------------------------------------------------------------------
    331 */
    332 flag floatx80_is_signaling_nan( floatx80 a )
    333 {
    334     bits64 aLow;
    335 
    336     aLow = a.low & ~ LIT64( 0x4000000000000000 );
    337     return
    338            ( ( a.high & 0x7FFF ) == 0x7FFF )
    339         && (bits64) ( aLow<<1 )
    340         && ( a.low == aLow );
    341 
    342 }
    343 
    344 /*
    345 -------------------------------------------------------------------------------
    346 Returns the result of converting the extended double-precision floating-
    347 point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
    348 invalid exception is raised.
    349 -------------------------------------------------------------------------------
    350 */
    351 static commonNaNT floatx80ToCommonNaN( floatx80 a )
    352 {
    353     commonNaNT z;
    354 
    355     if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    356     z.sign = a.high>>15;
    357     z.low = 0;
    358     z.high = a.low<<1;
    359     return z;
    360 
    361 }
    362 
    363 /*
    364 -------------------------------------------------------------------------------
    365 Returns the result of converting the canonical NaN `a' to the extended
    366 double-precision floating-point format.
    367 -------------------------------------------------------------------------------
    368 */
    369 static floatx80 commonNaNToFloatx80( commonNaNT a )
    370 {
    371     floatx80 z;
    372 
    373     z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
    374     z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
    375     return z;
    376 
    377 }
    378 
    379 /*
    380 -------------------------------------------------------------------------------
    381 Takes two extended double-precision floating-point values `a' and `b', one
    382 of which is a NaN, and returns the appropriate NaN result.  If either `a' or
    383 `b' is a signaling NaN, the invalid exception is raised.
    384 -------------------------------------------------------------------------------
    385 */
    386 static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
    387 {
    388     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    389 
    390     aIsNaN = floatx80_is_nan( a );
    391     aIsSignalingNaN = floatx80_is_signaling_nan( a );
    392     bIsNaN = floatx80_is_nan( b );
    393     bIsSignalingNaN = floatx80_is_signaling_nan( b );
    394     a.low |= LIT64( 0xC000000000000000 );
    395     b.low |= LIT64( 0xC000000000000000 );
    396     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    397     if ( aIsSignalingNaN ) {
    398         if ( bIsSignalingNaN ) goto returnLargerSignificand;
    399         return bIsNaN ? b : a;
    400     }
    401     else if ( aIsNaN ) {
    402         if ( bIsSignalingNaN | ! bIsNaN ) return a;
    403  returnLargerSignificand:
    404         if ( a.low < b.low ) return b;
    405         if ( b.low < a.low ) return a;
    406         return ( a.high < b.high ) ? a : b;
    407     }
    408     else {
    409         return b;
    410     }
    411 
    412 }
    413 
    414 #endif
    415 
    416 #ifdef FLOAT128
    417 
    418 /*
    419 -------------------------------------------------------------------------------
    420 The pattern for a default generated quadruple-precision NaN.  The `high' and
    421 `low' values hold the most- and least-significant bits, respectively.
    422 -------------------------------------------------------------------------------
    423 */
    424 #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
    425 #define float128_default_nan_low  LIT64( 0x0000000000000000 )
    426 
    427 /*
    428 -------------------------------------------------------------------------------
    429 Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
    430 otherwise returns 0.
    431 -------------------------------------------------------------------------------
    432 */
    433 flag float128_is_nan( float128 a )
    434 {
    435 
    436     return
    437            ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
    438         && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
    439 
    440 }
    441 
    442 /*
    443 -------------------------------------------------------------------------------
    444 Returns 1 if the quadruple-precision floating-point value `a' is a
    445 signaling NaN; otherwise returns 0.
    446 -------------------------------------------------------------------------------
    447 */
    448 flag float128_is_signaling_nan( float128 a )
    449 {
    450 
    451     return
    452            ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
    453         && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
    454 
    455 }
    456 
    457 /*
    458 -------------------------------------------------------------------------------
    459 Returns the result of converting the quadruple-precision floating-point NaN
    460 `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
    461 exception is raised.
    462 -------------------------------------------------------------------------------
    463 */
    464 static commonNaNT float128ToCommonNaN( float128 a )
    465 {
    466     commonNaNT z;
    467 
    468     if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
    469     z.sign = a.high>>63;
    470     shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
    471     return z;
    472 
    473 }
    474 
    475 /*
    476 -------------------------------------------------------------------------------
    477 Returns the result of converting the canonical NaN `a' to the quadruple-
    478 precision floating-point format.
    479 -------------------------------------------------------------------------------
    480 */
    481 static float128 commonNaNToFloat128( commonNaNT a )
    482 {
    483     float128 z;
    484 
    485     shift128Right( a.high, a.low, 16, &z.high, &z.low );
    486     z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
    487     return z;
    488 
    489 }
    490 
    491 /*
    492 -------------------------------------------------------------------------------
    493 Takes two quadruple-precision floating-point values `a' and `b', one of
    494 which is a NaN, and returns the appropriate NaN result.  If either `a' or
    495 `b' is a signaling NaN, the invalid exception is raised.
    496 -------------------------------------------------------------------------------
    497 */
    498 static float128 propagateFloat128NaN( float128 a, float128 b )
    499 {
    500     flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
    501 
    502     aIsNaN = float128_is_nan( a );
    503     aIsSignalingNaN = float128_is_signaling_nan( a );
    504     bIsNaN = float128_is_nan( b );
    505     bIsSignalingNaN = float128_is_signaling_nan( b );
    506     a.high |= LIT64( 0x0000800000000000 );
    507     b.high |= LIT64( 0x0000800000000000 );
    508     if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
    509     if ( aIsSignalingNaN ) {
    510         if ( bIsSignalingNaN ) goto returnLargerSignificand;
    511         return bIsNaN ? b : a;
    512     }
    513     else if ( aIsNaN ) {
    514         if ( bIsSignalingNaN | ! bIsNaN ) return a;
    515  returnLargerSignificand:
    516         if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
    517         if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
    518         return ( a.high < b.high ) ? a : b;
    519     }
    520     else {
    521         return b;
    522     }
    523 
    524 }
    525 
    526 #endif
    527 
    528