softfloat-specialize revision 1.2 1 1.2 martin /* $NetBSD: softfloat-specialize,v 1.2 2008/04/28 20:23:04 martin Exp $ */
2 1.1 ross
3 1.1 ross /* This is a derivative work. */
4 1.1 ross
5 1.1 ross /*-
6 1.1 ross * Copyright (c) 2001 The NetBSD Foundation, Inc.
7 1.1 ross * All rights reserved.
8 1.1 ross *
9 1.1 ross * This code is derived from software contributed to The NetBSD Foundation
10 1.1 ross * by Ross Harvey.
11 1.1 ross *
12 1.1 ross * Redistribution and use in source and binary forms, with or without
13 1.1 ross * modification, are permitted provided that the following conditions
14 1.1 ross * are met:
15 1.1 ross * 1. Redistributions of source code must retain the above copyright
16 1.1 ross * notice, this list of conditions and the following disclaimer.
17 1.1 ross * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 ross * notice, this list of conditions and the following disclaimer in the
19 1.1 ross * documentation and/or other materials provided with the distribution.
20 1.1 ross *
21 1.1 ross * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.1 ross * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.1 ross * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.1 ross * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.1 ross * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.1 ross * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.1 ross * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.1 ross * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.1 ross * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.1 ross * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.1 ross * POSSIBILITY OF SUCH DAMAGE.
32 1.1 ross */
33 1.1 ross
34 1.1 ross /*
35 1.1 ross ===============================================================================
36 1.1 ross
37 1.1 ross This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
38 1.1 ross Arithmetic Package, Release 2a.
39 1.1 ross
40 1.1 ross Written by John R. Hauser. This work was made possible in part by the
41 1.1 ross International Computer Science Institute, located at Suite 600, 1947 Center
42 1.1 ross Street, Berkeley, California 94704. Funding was partially provided by the
43 1.1 ross National Science Foundation under grant MIP-9311980. The original version
44 1.1 ross of this code was written as part of a project to build a fixed-point vector
45 1.1 ross processor in collaboration with the University of California at Berkeley,
46 1.1 ross overseen by Profs. Nelson Morgan and John Wawrzynek. More information
47 1.1 ross is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
48 1.1 ross arithmetic/SoftFloat.html'.
49 1.1 ross
50 1.1 ross THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
51 1.1 ross has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
52 1.1 ross TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
53 1.1 ross PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
54 1.1 ross AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
55 1.1 ross
56 1.1 ross Derivative works are acceptable, even for commercial purposes, so long as
57 1.1 ross (1) they include prominent notice that the work is derivative, and (2) they
58 1.1 ross include prominent notice akin to these four paragraphs for those parts of
59 1.1 ross this code that are retained.
60 1.1 ross
61 1.1 ross ===============================================================================
62 1.1 ross */
63 1.1 ross
64 1.1 ross /*
65 1.1 ross -------------------------------------------------------------------------------
66 1.1 ross Underflow tininess-detection mode, statically initialized to default value.
67 1.1 ross -------------------------------------------------------------------------------
68 1.1 ross */
69 1.1 ross int float_detect_tininess = float_tininess_after_rounding;
70 1.1 ross
71 1.1 ross /*
72 1.1 ross -------------------------------------------------------------------------------
73 1.1 ross Raises the exceptions specified by `flags'. Floating-point traps can be
74 1.1 ross defined here if desired. It is currently not possible for such a trap
75 1.1 ross to substitute a result value. If traps are not implemented, this routine
76 1.1 ross should be simply `float_exception_flags |= flags;'.
77 1.1 ross -------------------------------------------------------------------------------
78 1.1 ross */
79 1.1 ross void float_raise( int flags )
80 1.1 ross {
81 1.1 ross
82 1.1 ross float_exception_flags |= flags;
83 1.1 ross
84 1.1 ross }
85 1.1 ross
86 1.1 ross /*
87 1.1 ross -------------------------------------------------------------------------------
88 1.1 ross Internal canonical NaN format.
89 1.1 ross -------------------------------------------------------------------------------
90 1.1 ross */
91 1.1 ross typedef struct {
92 1.1 ross flag sign;
93 1.1 ross bits64 high, low;
94 1.1 ross } commonNaNT;
95 1.1 ross
96 1.1 ross /*
97 1.1 ross -------------------------------------------------------------------------------
98 1.1 ross The pattern for a default generated single-precision NaN.
99 1.1 ross -------------------------------------------------------------------------------
100 1.1 ross */
101 1.1 ross #define float32_default_nan 0xFFC00000
102 1.1 ross
103 1.1 ross /*
104 1.1 ross -------------------------------------------------------------------------------
105 1.1 ross Returns 1 if the single-precision floating-point value `a' is a NaN;
106 1.1 ross otherwise returns 0.
107 1.1 ross -------------------------------------------------------------------------------
108 1.1 ross */
109 1.1 ross static flag float32_is_nan( float32 a )
110 1.1 ross {
111 1.1 ross
112 1.1 ross return ( 0xFF000000 < (bits32) ( a<<1 ) );
113 1.1 ross
114 1.1 ross }
115 1.1 ross
116 1.1 ross /*
117 1.1 ross -------------------------------------------------------------------------------
118 1.1 ross Returns 1 if the single-precision floating-point value `a' is a signaling
119 1.1 ross NaN; otherwise returns 0.
120 1.1 ross -------------------------------------------------------------------------------
121 1.1 ross */
122 1.1 ross flag float32_is_signaling_nan( float32 a )
123 1.1 ross {
124 1.1 ross
125 1.1 ross return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
126 1.1 ross
127 1.1 ross }
128 1.1 ross
129 1.1 ross /*
130 1.1 ross -------------------------------------------------------------------------------
131 1.1 ross Returns the result of converting the single-precision floating-point NaN
132 1.1 ross `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
133 1.1 ross exception is raised.
134 1.1 ross -------------------------------------------------------------------------------
135 1.1 ross */
136 1.1 ross static commonNaNT float32ToCommonNaN( float32 a )
137 1.1 ross {
138 1.1 ross commonNaNT z;
139 1.1 ross
140 1.1 ross if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
141 1.1 ross z.sign = a>>31;
142 1.1 ross z.low = 0;
143 1.1 ross z.high = ( (bits64) a )<<41;
144 1.1 ross return z;
145 1.1 ross
146 1.1 ross }
147 1.1 ross
148 1.1 ross /*
149 1.1 ross -------------------------------------------------------------------------------
150 1.1 ross Returns the result of converting the canonical NaN `a' to the single-
151 1.1 ross precision floating-point format.
152 1.1 ross -------------------------------------------------------------------------------
153 1.1 ross */
154 1.1 ross static float32 commonNaNToFloat32( commonNaNT a )
155 1.1 ross {
156 1.1 ross
157 1.1 ross return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
158 1.1 ross
159 1.1 ross }
160 1.1 ross
161 1.1 ross /*
162 1.1 ross -------------------------------------------------------------------------------
163 1.1 ross Takes two single-precision floating-point values `a' and `b', one of which
164 1.1 ross is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
165 1.1 ross signaling NaN, the invalid exception is raised.
166 1.1 ross -------------------------------------------------------------------------------
167 1.1 ross */
168 1.1 ross static float32 propagateFloat32NaN( float32 a, float32 b )
169 1.1 ross {
170 1.1 ross flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
171 1.1 ross
172 1.1 ross aIsNaN = float32_is_nan( a );
173 1.1 ross aIsSignalingNaN = float32_is_signaling_nan( a );
174 1.1 ross bIsNaN = float32_is_nan( b );
175 1.1 ross bIsSignalingNaN = float32_is_signaling_nan( b );
176 1.1 ross a |= 0x00400000;
177 1.1 ross b |= 0x00400000;
178 1.1 ross if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
179 1.1 ross if ( aIsSignalingNaN ) {
180 1.1 ross if ( bIsSignalingNaN ) goto returnLargerSignificand;
181 1.1 ross return bIsNaN ? b : a;
182 1.1 ross }
183 1.1 ross else if ( aIsNaN ) {
184 1.1 ross if ( bIsSignalingNaN | ! bIsNaN ) return a;
185 1.1 ross returnLargerSignificand:
186 1.1 ross if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b;
187 1.1 ross if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a;
188 1.1 ross return ( a < b ) ? a : b;
189 1.1 ross }
190 1.1 ross else {
191 1.1 ross return b;
192 1.1 ross }
193 1.1 ross
194 1.1 ross }
195 1.1 ross
196 1.1 ross /*
197 1.1 ross -------------------------------------------------------------------------------
198 1.1 ross The pattern for a default generated double-precision NaN.
199 1.1 ross -------------------------------------------------------------------------------
200 1.1 ross */
201 1.1 ross #define float64_default_nan LIT64( 0xFFF8000000000000 )
202 1.1 ross
203 1.1 ross /*
204 1.1 ross -------------------------------------------------------------------------------
205 1.1 ross Returns 1 if the double-precision floating-point value `a' is a NaN;
206 1.1 ross otherwise returns 0.
207 1.1 ross -------------------------------------------------------------------------------
208 1.1 ross */
209 1.1 ross static flag float64_is_nan( float64 a )
210 1.1 ross {
211 1.1 ross
212 1.1 ross return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
213 1.1 ross
214 1.1 ross }
215 1.1 ross
216 1.1 ross /*
217 1.1 ross -------------------------------------------------------------------------------
218 1.1 ross Returns 1 if the double-precision floating-point value `a' is a signaling
219 1.1 ross NaN; otherwise returns 0.
220 1.1 ross -------------------------------------------------------------------------------
221 1.1 ross */
222 1.1 ross flag float64_is_signaling_nan( float64 a )
223 1.1 ross {
224 1.1 ross
225 1.1 ross return
226 1.1 ross ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
227 1.1 ross && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
228 1.1 ross
229 1.1 ross }
230 1.1 ross
231 1.1 ross /*
232 1.1 ross -------------------------------------------------------------------------------
233 1.1 ross Returns the result of converting the double-precision floating-point NaN
234 1.1 ross `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
235 1.1 ross exception is raised.
236 1.1 ross -------------------------------------------------------------------------------
237 1.1 ross */
238 1.1 ross static commonNaNT float64ToCommonNaN( float64 a )
239 1.1 ross {
240 1.1 ross commonNaNT z;
241 1.1 ross
242 1.1 ross if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
243 1.1 ross z.sign = a>>63;
244 1.1 ross z.low = 0;
245 1.1 ross z.high = a<<12;
246 1.1 ross return z;
247 1.1 ross
248 1.1 ross }
249 1.1 ross
250 1.1 ross /*
251 1.1 ross -------------------------------------------------------------------------------
252 1.1 ross Returns the result of converting the canonical NaN `a' to the double-
253 1.1 ross precision floating-point format.
254 1.1 ross -------------------------------------------------------------------------------
255 1.1 ross */
256 1.1 ross static float64 commonNaNToFloat64( commonNaNT a )
257 1.1 ross {
258 1.1 ross
259 1.1 ross return
260 1.1 ross ( ( (bits64) a.sign )<<63 )
261 1.1 ross | LIT64( 0x7FF8000000000000 )
262 1.1 ross | ( a.high>>12 );
263 1.1 ross
264 1.1 ross }
265 1.1 ross
266 1.1 ross /*
267 1.1 ross -------------------------------------------------------------------------------
268 1.1 ross Takes two double-precision floating-point values `a' and `b', one of which
269 1.1 ross is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
270 1.1 ross signaling NaN, the invalid exception is raised.
271 1.1 ross -------------------------------------------------------------------------------
272 1.1 ross */
273 1.1 ross static float64 propagateFloat64NaN( float64 a, float64 b )
274 1.1 ross {
275 1.1 ross flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
276 1.1 ross
277 1.1 ross aIsNaN = float64_is_nan( a );
278 1.1 ross aIsSignalingNaN = float64_is_signaling_nan( a );
279 1.1 ross bIsNaN = float64_is_nan( b );
280 1.1 ross bIsSignalingNaN = float64_is_signaling_nan( b );
281 1.1 ross a |= LIT64( 0x0008000000000000 );
282 1.1 ross b |= LIT64( 0x0008000000000000 );
283 1.1 ross if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
284 1.1 ross if ( aIsSignalingNaN ) {
285 1.1 ross if ( bIsSignalingNaN ) goto returnLargerSignificand;
286 1.1 ross return bIsNaN ? b : a;
287 1.1 ross }
288 1.1 ross else if ( aIsNaN ) {
289 1.1 ross if ( bIsSignalingNaN | ! bIsNaN ) return a;
290 1.1 ross returnLargerSignificand:
291 1.1 ross if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b;
292 1.1 ross if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a;
293 1.1 ross return ( a < b ) ? a : b;
294 1.1 ross }
295 1.1 ross else {
296 1.1 ross return b;
297 1.1 ross }
298 1.1 ross
299 1.1 ross }
300 1.1 ross
301 1.1 ross #ifdef FLOATX80
302 1.1 ross
303 1.1 ross /*
304 1.1 ross -------------------------------------------------------------------------------
305 1.1 ross The pattern for a default generated extended double-precision NaN. The
306 1.1 ross `high' and `low' values hold the most- and least-significant bits,
307 1.1 ross respectively.
308 1.1 ross -------------------------------------------------------------------------------
309 1.1 ross */
310 1.1 ross #define floatx80_default_nan_high 0xFFFF
311 1.1 ross #define floatx80_default_nan_low LIT64( 0xC000000000000000 )
312 1.1 ross
313 1.1 ross /*
314 1.1 ross -------------------------------------------------------------------------------
315 1.1 ross Returns 1 if the extended double-precision floating-point value `a' is a
316 1.1 ross NaN; otherwise returns 0.
317 1.1 ross -------------------------------------------------------------------------------
318 1.1 ross */
319 1.1 ross static flag floatx80_is_nan( floatx80 a )
320 1.1 ross {
321 1.1 ross
322 1.1 ross return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
323 1.1 ross
324 1.1 ross }
325 1.1 ross
326 1.1 ross /*
327 1.1 ross -------------------------------------------------------------------------------
328 1.1 ross Returns 1 if the extended double-precision floating-point value `a' is a
329 1.1 ross signaling NaN; otherwise returns 0.
330 1.1 ross -------------------------------------------------------------------------------
331 1.1 ross */
332 1.1 ross flag floatx80_is_signaling_nan( floatx80 a )
333 1.1 ross {
334 1.1 ross bits64 aLow;
335 1.1 ross
336 1.1 ross aLow = a.low & ~ LIT64( 0x4000000000000000 );
337 1.1 ross return
338 1.1 ross ( ( a.high & 0x7FFF ) == 0x7FFF )
339 1.1 ross && (bits64) ( aLow<<1 )
340 1.1 ross && ( a.low == aLow );
341 1.1 ross
342 1.1 ross }
343 1.1 ross
344 1.1 ross /*
345 1.1 ross -------------------------------------------------------------------------------
346 1.1 ross Returns the result of converting the extended double-precision floating-
347 1.1 ross point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
348 1.1 ross invalid exception is raised.
349 1.1 ross -------------------------------------------------------------------------------
350 1.1 ross */
351 1.1 ross static commonNaNT floatx80ToCommonNaN( floatx80 a )
352 1.1 ross {
353 1.1 ross commonNaNT z;
354 1.1 ross
355 1.1 ross if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
356 1.1 ross z.sign = a.high>>15;
357 1.1 ross z.low = 0;
358 1.1 ross z.high = a.low<<1;
359 1.1 ross return z;
360 1.1 ross
361 1.1 ross }
362 1.1 ross
363 1.1 ross /*
364 1.1 ross -------------------------------------------------------------------------------
365 1.1 ross Returns the result of converting the canonical NaN `a' to the extended
366 1.1 ross double-precision floating-point format.
367 1.1 ross -------------------------------------------------------------------------------
368 1.1 ross */
369 1.1 ross static floatx80 commonNaNToFloatx80( commonNaNT a )
370 1.1 ross {
371 1.1 ross floatx80 z;
372 1.1 ross
373 1.1 ross z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
374 1.1 ross z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
375 1.1 ross return z;
376 1.1 ross
377 1.1 ross }
378 1.1 ross
379 1.1 ross /*
380 1.1 ross -------------------------------------------------------------------------------
381 1.1 ross Takes two extended double-precision floating-point values `a' and `b', one
382 1.1 ross of which is a NaN, and returns the appropriate NaN result. If either `a' or
383 1.1 ross `b' is a signaling NaN, the invalid exception is raised.
384 1.1 ross -------------------------------------------------------------------------------
385 1.1 ross */
386 1.1 ross static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b )
387 1.1 ross {
388 1.1 ross flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
389 1.1 ross
390 1.1 ross aIsNaN = floatx80_is_nan( a );
391 1.1 ross aIsSignalingNaN = floatx80_is_signaling_nan( a );
392 1.1 ross bIsNaN = floatx80_is_nan( b );
393 1.1 ross bIsSignalingNaN = floatx80_is_signaling_nan( b );
394 1.1 ross a.low |= LIT64( 0xC000000000000000 );
395 1.1 ross b.low |= LIT64( 0xC000000000000000 );
396 1.1 ross if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
397 1.1 ross if ( aIsSignalingNaN ) {
398 1.1 ross if ( bIsSignalingNaN ) goto returnLargerSignificand;
399 1.1 ross return bIsNaN ? b : a;
400 1.1 ross }
401 1.1 ross else if ( aIsNaN ) {
402 1.1 ross if ( bIsSignalingNaN | ! bIsNaN ) return a;
403 1.1 ross returnLargerSignificand:
404 1.1 ross if ( a.low < b.low ) return b;
405 1.1 ross if ( b.low < a.low ) return a;
406 1.1 ross return ( a.high < b.high ) ? a : b;
407 1.1 ross }
408 1.1 ross else {
409 1.1 ross return b;
410 1.1 ross }
411 1.1 ross
412 1.1 ross }
413 1.1 ross
414 1.1 ross #endif
415 1.1 ross
416 1.1 ross #ifdef FLOAT128
417 1.1 ross
418 1.1 ross /*
419 1.1 ross -------------------------------------------------------------------------------
420 1.1 ross The pattern for a default generated quadruple-precision NaN. The `high' and
421 1.1 ross `low' values hold the most- and least-significant bits, respectively.
422 1.1 ross -------------------------------------------------------------------------------
423 1.1 ross */
424 1.1 ross #define float128_default_nan_high LIT64( 0xFFFF800000000000 )
425 1.1 ross #define float128_default_nan_low LIT64( 0x0000000000000000 )
426 1.1 ross
427 1.1 ross /*
428 1.1 ross -------------------------------------------------------------------------------
429 1.1 ross Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
430 1.1 ross otherwise returns 0.
431 1.1 ross -------------------------------------------------------------------------------
432 1.1 ross */
433 1.1 ross flag float128_is_nan( float128 a )
434 1.1 ross {
435 1.1 ross
436 1.1 ross return
437 1.1 ross ( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
438 1.1 ross && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
439 1.1 ross
440 1.1 ross }
441 1.1 ross
442 1.1 ross /*
443 1.1 ross -------------------------------------------------------------------------------
444 1.1 ross Returns 1 if the quadruple-precision floating-point value `a' is a
445 1.1 ross signaling NaN; otherwise returns 0.
446 1.1 ross -------------------------------------------------------------------------------
447 1.1 ross */
448 1.1 ross flag float128_is_signaling_nan( float128 a )
449 1.1 ross {
450 1.1 ross
451 1.1 ross return
452 1.1 ross ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
453 1.1 ross && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
454 1.1 ross
455 1.1 ross }
456 1.1 ross
457 1.1 ross /*
458 1.1 ross -------------------------------------------------------------------------------
459 1.1 ross Returns the result of converting the quadruple-precision floating-point NaN
460 1.1 ross `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
461 1.1 ross exception is raised.
462 1.1 ross -------------------------------------------------------------------------------
463 1.1 ross */
464 1.1 ross static commonNaNT float128ToCommonNaN( float128 a )
465 1.1 ross {
466 1.1 ross commonNaNT z;
467 1.1 ross
468 1.1 ross if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid );
469 1.1 ross z.sign = a.high>>63;
470 1.1 ross shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
471 1.1 ross return z;
472 1.1 ross
473 1.1 ross }
474 1.1 ross
475 1.1 ross /*
476 1.1 ross -------------------------------------------------------------------------------
477 1.1 ross Returns the result of converting the canonical NaN `a' to the quadruple-
478 1.1 ross precision floating-point format.
479 1.1 ross -------------------------------------------------------------------------------
480 1.1 ross */
481 1.1 ross static float128 commonNaNToFloat128( commonNaNT a )
482 1.1 ross {
483 1.1 ross float128 z;
484 1.1 ross
485 1.1 ross shift128Right( a.high, a.low, 16, &z.high, &z.low );
486 1.1 ross z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
487 1.1 ross return z;
488 1.1 ross
489 1.1 ross }
490 1.1 ross
491 1.1 ross /*
492 1.1 ross -------------------------------------------------------------------------------
493 1.1 ross Takes two quadruple-precision floating-point values `a' and `b', one of
494 1.1 ross which is a NaN, and returns the appropriate NaN result. If either `a' or
495 1.1 ross `b' is a signaling NaN, the invalid exception is raised.
496 1.1 ross -------------------------------------------------------------------------------
497 1.1 ross */
498 1.1 ross static float128 propagateFloat128NaN( float128 a, float128 b )
499 1.1 ross {
500 1.1 ross flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
501 1.1 ross
502 1.1 ross aIsNaN = float128_is_nan( a );
503 1.1 ross aIsSignalingNaN = float128_is_signaling_nan( a );
504 1.1 ross bIsNaN = float128_is_nan( b );
505 1.1 ross bIsSignalingNaN = float128_is_signaling_nan( b );
506 1.1 ross a.high |= LIT64( 0x0000800000000000 );
507 1.1 ross b.high |= LIT64( 0x0000800000000000 );
508 1.1 ross if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid );
509 1.1 ross if ( aIsSignalingNaN ) {
510 1.1 ross if ( bIsSignalingNaN ) goto returnLargerSignificand;
511 1.1 ross return bIsNaN ? b : a;
512 1.1 ross }
513 1.1 ross else if ( aIsNaN ) {
514 1.1 ross if ( bIsSignalingNaN | ! bIsNaN ) return a;
515 1.1 ross returnLargerSignificand:
516 1.1 ross if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
517 1.1 ross if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
518 1.1 ross return ( a.high < b.high ) ? a : b;
519 1.1 ross }
520 1.1 ross else {
521 1.1 ross return b;
522 1.1 ross }
523 1.1 ross
524 1.1 ross }
525 1.1 ross
526 1.1 ross #endif
527 1.1 ross
528