Home | History | Annotate | Line # | Download | only in altq
      1  1.31       joe /*	$NetBSD: altq_hfsc.c,v 1.31 2025/01/08 13:00:04 joe Exp $	*/
      2  1.19     peter /*	$KAME: altq_hfsc.c,v 1.26 2005/04/13 03:44:24 suz Exp $	*/
      3   1.1   thorpej 
      4   1.1   thorpej /*
      5   1.1   thorpej  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
      6   1.1   thorpej  *
      7   1.1   thorpej  * Permission to use, copy, modify, and distribute this software and
      8   1.1   thorpej  * its documentation is hereby granted (including for commercial or
      9   1.1   thorpej  * for-profit use), provided that both the copyright notice and this
     10   1.1   thorpej  * permission notice appear in all copies of the software, derivative
     11  1.19     peter  * works, or modified versions, and any portions thereof.
     12   1.1   thorpej  *
     13   1.1   thorpej  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
     14   1.1   thorpej  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
     15   1.1   thorpej  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
     16   1.1   thorpej  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17   1.1   thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18   1.1   thorpej  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
     19   1.1   thorpej  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     20   1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
     21   1.1   thorpej  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     22   1.1   thorpej  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     23   1.1   thorpej  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24   1.1   thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
     25   1.1   thorpej  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
     26   1.1   thorpej  * DAMAGE.
     27   1.1   thorpej  *
     28   1.1   thorpej  * Carnegie Mellon encourages (but does not require) users of this
     29   1.1   thorpej  * software to return any improvements or extensions that they make,
     30   1.1   thorpej  * and to grant Carnegie Mellon the rights to redistribute these
     31   1.1   thorpej  * changes without encumbrance.
     32   1.1   thorpej  */
     33   1.1   thorpej /*
     34   1.1   thorpej  * H-FSC is described in Proceedings of SIGCOMM'97,
     35  1.10     perry  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
     36   1.1   thorpej  * Real-Time and Priority Service"
     37   1.1   thorpej  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
     38  1.19     peter  *
     39  1.19     peter  * Oleg Cherevko <olwi (at) aq.ml.com.ua> added the upperlimit for link-sharing.
     40  1.19     peter  * when a class has an upperlimit, the fit-time is computed from the
     41  1.19     peter  * upperlimit service curve.  the link-sharing scheduler does not schedule
     42  1.19     peter  * a class whose fit-time exceeds the current time.
     43   1.1   thorpej  */
     44   1.5     lukem 
     45   1.5     lukem #include <sys/cdefs.h>
     46  1.31       joe __KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.31 2025/01/08 13:00:04 joe Exp $");
     47   1.1   thorpej 
     48  1.19     peter #ifdef _KERNEL_OPT
     49   1.1   thorpej #include "opt_altq.h"
     50   1.1   thorpej #include "opt_inet.h"
     51  1.20     peter #include "pf.h"
     52   1.1   thorpej #endif
     53   1.1   thorpej 
     54   1.1   thorpej #ifdef ALTQ_HFSC  /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
     55   1.1   thorpej 
     56   1.1   thorpej #include <sys/param.h>
     57   1.1   thorpej #include <sys/malloc.h>
     58   1.1   thorpej #include <sys/mbuf.h>
     59   1.1   thorpej #include <sys/socket.h>
     60  1.19     peter #include <sys/systm.h>
     61  1.19     peter #include <sys/errno.h>
     62  1.19     peter #include <sys/queue.h>
     63  1.19     peter #if 1 /* ALTQ3_COMPAT */
     64   1.1   thorpej #include <sys/sockio.h>
     65   1.1   thorpej #include <sys/proc.h>
     66   1.1   thorpej #include <sys/kernel.h>
     67  1.19     peter #endif /* ALTQ3_COMPAT */
     68  1.16  christos #include <sys/kauth.h>
     69   1.1   thorpej 
     70   1.1   thorpej #include <net/if.h>
     71  1.19     peter #include <netinet/in.h>
     72   1.1   thorpej 
     73  1.20     peter #if NPF > 0
     74  1.19     peter #include <net/pfvar.h>
     75  1.20     peter #endif
     76   1.1   thorpej #include <altq/altq.h>
     77  1.19     peter #include <altq/altq_hfsc.h>
     78  1.19     peter #ifdef ALTQ3_COMPAT
     79   1.1   thorpej #include <altq/altq_conf.h>
     80  1.19     peter #endif
     81   1.1   thorpej 
     82   1.1   thorpej /*
     83   1.1   thorpej  * function prototypes
     84   1.1   thorpej  */
     85  1.19     peter static int			 hfsc_clear_interface(struct hfsc_if *);
     86  1.19     peter static int			 hfsc_request(struct ifaltq *, int, void *);
     87  1.19     peter static void			 hfsc_purge(struct hfsc_if *);
     88  1.19     peter static struct hfsc_class	*hfsc_class_create(struct hfsc_if *,
     89  1.19     peter     struct service_curve *, struct service_curve *, struct service_curve *,
     90  1.19     peter     struct hfsc_class *, int, int, int);
     91  1.19     peter static int			 hfsc_class_destroy(struct hfsc_class *);
     92  1.19     peter static struct hfsc_class	*hfsc_nextclass(struct hfsc_class *);
     93  1.26  knakahar static int			 hfsc_enqueue(struct ifaltq *, struct mbuf *);
     94  1.19     peter static struct mbuf		*hfsc_dequeue(struct ifaltq *, int);
     95  1.19     peter 
     96  1.19     peter static int		 hfsc_addq(struct hfsc_class *, struct mbuf *);
     97  1.19     peter static struct mbuf	*hfsc_getq(struct hfsc_class *);
     98  1.19     peter static struct mbuf	*hfsc_pollq(struct hfsc_class *);
     99  1.19     peter static void		 hfsc_purgeq(struct hfsc_class *);
    100  1.19     peter 
    101  1.19     peter static void		 update_cfmin(struct hfsc_class *);
    102  1.19     peter static void		 set_active(struct hfsc_class *, int);
    103  1.19     peter static void		 set_passive(struct hfsc_class *);
    104  1.19     peter 
    105  1.19     peter static void		 init_ed(struct hfsc_class *, int);
    106  1.19     peter static void		 update_ed(struct hfsc_class *, int);
    107  1.19     peter static void		 update_d(struct hfsc_class *, int);
    108  1.19     peter static void		 init_vf(struct hfsc_class *, int);
    109  1.19     peter static void		 update_vf(struct hfsc_class *, int, u_int64_t);
    110  1.19     peter static ellist_t		*ellist_alloc(void);
    111  1.19     peter static void		 ellist_destroy(ellist_t *);
    112  1.19     peter static void		 ellist_insert(struct hfsc_class *);
    113  1.19     peter static void		 ellist_remove(struct hfsc_class *);
    114  1.19     peter static void		 ellist_update(struct hfsc_class *);
    115  1.19     peter struct hfsc_class	*ellist_get_mindl(ellist_t *, u_int64_t);
    116  1.19     peter static actlist_t	*actlist_alloc(void);
    117  1.19     peter static void		 actlist_destroy(actlist_t *);
    118  1.19     peter static void		 actlist_insert(struct hfsc_class *);
    119  1.19     peter static void		 actlist_remove(struct hfsc_class *);
    120  1.19     peter static void		 actlist_update(struct hfsc_class *);
    121  1.19     peter 
    122  1.19     peter static struct hfsc_class	*actlist_firstfit(struct hfsc_class *,
    123  1.19     peter 				    u_int64_t);
    124  1.19     peter 
    125  1.19     peter static inline u_int64_t	seg_x2y(u_int64_t, u_int64_t);
    126  1.19     peter static inline u_int64_t	seg_y2x(u_int64_t, u_int64_t);
    127  1.19     peter static inline u_int64_t	m2sm(u_int);
    128  1.19     peter static inline u_int64_t	m2ism(u_int);
    129  1.19     peter static inline u_int64_t	d2dx(u_int);
    130  1.19     peter static u_int			sm2m(u_int64_t);
    131  1.19     peter static u_int			dx2d(u_int64_t);
    132  1.19     peter 
    133  1.19     peter static void		sc2isc(struct service_curve *, struct internal_sc *);
    134  1.19     peter static void		rtsc_init(struct runtime_sc *, struct internal_sc *,
    135  1.19     peter 			    u_int64_t, u_int64_t);
    136  1.19     peter static u_int64_t	rtsc_y2x(struct runtime_sc *, u_int64_t);
    137  1.19     peter static u_int64_t	rtsc_x2y(struct runtime_sc *, u_int64_t);
    138  1.19     peter static void		rtsc_min(struct runtime_sc *, struct internal_sc *,
    139  1.19     peter 			    u_int64_t, u_int64_t);
    140  1.19     peter 
    141  1.19     peter static void			 get_class_stats(struct hfsc_classstats *,
    142  1.19     peter 				    struct hfsc_class *);
    143  1.19     peter static struct hfsc_class	*clh_to_clp(struct hfsc_if *, u_int32_t);
    144  1.19     peter 
    145  1.19     peter 
    146  1.19     peter #ifdef ALTQ3_COMPAT
    147  1.19     peter static struct hfsc_if *hfsc_attach(struct ifaltq *, u_int);
    148  1.25  christos static void hfsc_detach(struct hfsc_if *);
    149  1.19     peter static int hfsc_class_modify(struct hfsc_class *, struct service_curve *,
    150  1.19     peter     struct service_curve *, struct service_curve *);
    151  1.19     peter 
    152  1.19     peter static int hfsccmd_if_attach(struct hfsc_attach *);
    153  1.19     peter static int hfsccmd_if_detach(struct hfsc_interface *);
    154  1.19     peter static int hfsccmd_add_class(struct hfsc_add_class *);
    155  1.19     peter static int hfsccmd_delete_class(struct hfsc_delete_class *);
    156  1.19     peter static int hfsccmd_modify_class(struct hfsc_modify_class *);
    157  1.19     peter static int hfsccmd_add_filter(struct hfsc_add_filter *);
    158  1.19     peter static int hfsccmd_delete_filter(struct hfsc_delete_filter *);
    159  1.19     peter static int hfsccmd_class_stats(struct hfsc_class_stats *);
    160  1.19     peter 
    161  1.19     peter altqdev_decl(hfsc);
    162  1.19     peter #endif /* ALTQ3_COMPAT */
    163   1.1   thorpej 
    164   1.1   thorpej /*
    165   1.1   thorpej  * macros
    166   1.1   thorpej  */
    167   1.1   thorpej #define	is_a_parent_class(cl)	((cl)->cl_children != NULL)
    168   1.1   thorpej 
    169  1.19     peter #define	HT_INFINITY	0xffffffffffffffffLL	/* infinite time value */
    170  1.19     peter 
    171  1.19     peter #ifdef ALTQ3_COMPAT
    172   1.1   thorpej /* hif_list keeps all hfsc_if's allocated. */
    173   1.1   thorpej static struct hfsc_if *hif_list = NULL;
    174  1.19     peter #endif /* ALTQ3_COMPAT */
    175  1.19     peter 
    176  1.20     peter #if NPF > 0
    177  1.19     peter int
    178  1.19     peter hfsc_pfattach(struct pf_altq *a)
    179  1.19     peter {
    180  1.19     peter 	struct ifnet *ifp;
    181  1.19     peter 	int s, error;
    182  1.19     peter 
    183  1.19     peter 	if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
    184  1.31       joe 		return EINVAL;
    185  1.19     peter 	s = splnet();
    186  1.19     peter 	error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
    187  1.19     peter 	    hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
    188  1.19     peter 	splx(s);
    189  1.31       joe 	return error;
    190  1.19     peter }
    191   1.1   thorpej 
    192  1.19     peter int
    193  1.19     peter hfsc_add_altq(struct pf_altq *a)
    194   1.1   thorpej {
    195   1.1   thorpej 	struct hfsc_if *hif;
    196  1.19     peter 	struct ifnet *ifp;
    197  1.19     peter 
    198  1.19     peter 	if ((ifp = ifunit(a->ifname)) == NULL)
    199  1.31       joe 		return EINVAL;
    200  1.19     peter 	if (!ALTQ_IS_READY(&ifp->if_snd))
    201  1.31       joe 		return ENODEV;
    202   1.1   thorpej 
    203  1.13  christos 	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
    204   1.1   thorpej 	if (hif == NULL)
    205  1.31       joe 		return ENOMEM;
    206   1.1   thorpej 
    207   1.1   thorpej 	hif->hif_eligible = ellist_alloc();
    208   1.1   thorpej 	if (hif->hif_eligible == NULL) {
    209  1.13  christos 		free(hif, M_DEVBUF);
    210  1.31       joe 		return ENOMEM;
    211   1.1   thorpej 	}
    212   1.1   thorpej 
    213  1.19     peter 	hif->hif_ifq = &ifp->if_snd;
    214  1.19     peter 
    215  1.19     peter 	/* keep the state in pf_altq */
    216  1.19     peter 	a->altq_disc = hif;
    217  1.19     peter 
    218  1.31       joe 	return 0;
    219  1.19     peter }
    220  1.19     peter 
    221  1.19     peter int
    222  1.19     peter hfsc_remove_altq(struct pf_altq *a)
    223  1.19     peter {
    224  1.19     peter 	struct hfsc_if *hif;
    225  1.19     peter 
    226  1.19     peter 	if ((hif = a->altq_disc) == NULL)
    227  1.31       joe 		return EINVAL;
    228  1.19     peter 	a->altq_disc = NULL;
    229  1.19     peter 
    230  1.19     peter 	(void)hfsc_clear_interface(hif);
    231  1.19     peter 	(void)hfsc_class_destroy(hif->hif_rootclass);
    232  1.19     peter 
    233  1.19     peter 	ellist_destroy(hif->hif_eligible);
    234  1.19     peter 
    235  1.19     peter 	free(hif, M_DEVBUF);
    236  1.19     peter 
    237  1.31       joe 	return 0;
    238  1.19     peter }
    239  1.19     peter 
    240  1.19     peter int
    241  1.19     peter hfsc_add_queue(struct pf_altq *a)
    242  1.19     peter {
    243  1.19     peter 	struct hfsc_if *hif;
    244  1.19     peter 	struct hfsc_class *cl, *parent;
    245  1.19     peter 	struct hfsc_opts *opts;
    246  1.19     peter 	struct service_curve rtsc, lssc, ulsc;
    247  1.19     peter 
    248  1.19     peter 	if ((hif = a->altq_disc) == NULL)
    249  1.31       joe 		return EINVAL;
    250  1.19     peter 
    251  1.19     peter 	opts = &a->pq_u.hfsc_opts;
    252  1.19     peter 
    253  1.19     peter 	if (a->parent_qid == HFSC_NULLCLASS_HANDLE &&
    254  1.19     peter 	    hif->hif_rootclass == NULL)
    255  1.19     peter 		parent = NULL;
    256  1.19     peter 	else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
    257  1.31       joe 		return EINVAL;
    258  1.19     peter 
    259  1.19     peter 	if (a->qid == 0)
    260  1.31       joe 		return EINVAL;
    261  1.19     peter 
    262  1.19     peter 	if (clh_to_clp(hif, a->qid) != NULL)
    263  1.31       joe 		return EBUSY;
    264   1.1   thorpej 
    265  1.19     peter 	rtsc.m1 = opts->rtsc_m1;
    266  1.19     peter 	rtsc.d  = opts->rtsc_d;
    267  1.19     peter 	rtsc.m2 = opts->rtsc_m2;
    268  1.19     peter 	lssc.m1 = opts->lssc_m1;
    269  1.19     peter 	lssc.d  = opts->lssc_d;
    270  1.19     peter 	lssc.m2 = opts->lssc_m2;
    271  1.19     peter 	ulsc.m1 = opts->ulsc_m1;
    272  1.19     peter 	ulsc.d  = opts->ulsc_d;
    273  1.19     peter 	ulsc.m2 = opts->ulsc_m2;
    274   1.1   thorpej 
    275  1.19     peter 	cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc,
    276  1.19     peter 	    parent, a->qlimit, opts->flags, a->qid);
    277  1.19     peter 	if (cl == NULL)
    278  1.31       joe 		return ENOMEM;
    279   1.1   thorpej 
    280  1.31       joe 	return 0;
    281   1.1   thorpej }
    282   1.1   thorpej 
    283  1.19     peter int
    284  1.19     peter hfsc_remove_queue(struct pf_altq *a)
    285  1.19     peter {
    286   1.1   thorpej 	struct hfsc_if *hif;
    287  1.19     peter 	struct hfsc_class *cl;
    288  1.19     peter 
    289  1.19     peter 	if ((hif = a->altq_disc) == NULL)
    290  1.31       joe 		return EINVAL;
    291  1.19     peter 
    292  1.19     peter 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
    293  1.31       joe 		return EINVAL;
    294  1.19     peter 
    295  1.19     peter 	return (hfsc_class_destroy(cl));
    296  1.19     peter }
    297  1.19     peter 
    298  1.19     peter int
    299  1.19     peter hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
    300   1.1   thorpej {
    301  1.19     peter 	struct hfsc_if *hif;
    302  1.19     peter 	struct hfsc_class *cl;
    303  1.19     peter 	struct hfsc_classstats stats;
    304  1.19     peter 	int error = 0;
    305   1.1   thorpej 
    306  1.19     peter 	if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
    307  1.31       joe 		return EBADF;
    308  1.10     perry 
    309  1.19     peter 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
    310  1.31       joe 		return EINVAL;
    311   1.1   thorpej 
    312  1.19     peter 	if (*nbytes < sizeof(stats))
    313  1.31       joe 		return EINVAL;
    314   1.1   thorpej 
    315  1.27  riastrad 	memset(&stats, 0, sizeof(stats));
    316  1.19     peter 	get_class_stats(&stats, cl);
    317   1.1   thorpej 
    318  1.23  christos 	if ((error = copyout((void *)&stats, ubuf, sizeof(stats))) != 0)
    319  1.31       joe 		return error;
    320  1.19     peter 	*nbytes = sizeof(stats);
    321  1.31       joe 	return 0;
    322   1.1   thorpej }
    323  1.20     peter #endif /* NPF > 0 */
    324   1.1   thorpej 
    325   1.1   thorpej /*
    326   1.1   thorpej  * bring the interface back to the initial state by discarding
    327   1.1   thorpej  * all the filters and classes except the root class.
    328   1.1   thorpej  */
    329   1.1   thorpej static int
    330  1.19     peter hfsc_clear_interface(struct hfsc_if *hif)
    331   1.1   thorpej {
    332   1.1   thorpej 	struct hfsc_class	*cl;
    333   1.1   thorpej 
    334  1.19     peter #ifdef ALTQ3_COMPAT
    335   1.1   thorpej 	/* free the filters for this interface */
    336   1.1   thorpej 	acc_discard_filters(&hif->hif_classifier, NULL, 1);
    337  1.19     peter #endif
    338   1.1   thorpej 
    339   1.1   thorpej 	/* clear out the classes */
    340  1.19     peter 	while (hif->hif_rootclass != NULL &&
    341  1.19     peter 	    (cl = hif->hif_rootclass->cl_children) != NULL) {
    342   1.1   thorpej 		/*
    343   1.1   thorpej 		 * remove the first leaf class found in the hierarchy
    344   1.1   thorpej 		 * then start over
    345   1.1   thorpej 		 */
    346   1.1   thorpej 		for (; cl != NULL; cl = hfsc_nextclass(cl)) {
    347   1.1   thorpej 			if (!is_a_parent_class(cl)) {
    348   1.1   thorpej 				(void)hfsc_class_destroy(cl);
    349   1.1   thorpej 				break;
    350   1.1   thorpej 			}
    351   1.1   thorpej 		}
    352   1.1   thorpej 	}
    353  1.10     perry 
    354  1.31       joe 	return 0;
    355   1.1   thorpej }
    356   1.1   thorpej 
    357   1.1   thorpej static int
    358  1.22  christos hfsc_request(struct ifaltq *ifq, int req, void *arg)
    359   1.1   thorpej {
    360   1.1   thorpej 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
    361   1.1   thorpej 
    362   1.1   thorpej 	switch (req) {
    363   1.1   thorpej 	case ALTRQ_PURGE:
    364   1.1   thorpej 		hfsc_purge(hif);
    365   1.1   thorpej 		break;
    366   1.1   thorpej 	}
    367  1.31       joe 	return 0;
    368   1.1   thorpej }
    369   1.1   thorpej 
    370   1.1   thorpej /* discard all the queued packets on the interface */
    371   1.1   thorpej static void
    372  1.19     peter hfsc_purge(struct hfsc_if *hif)
    373   1.1   thorpej {
    374   1.1   thorpej 	struct hfsc_class *cl;
    375   1.1   thorpej 
    376   1.1   thorpej 	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
    377   1.1   thorpej 		if (!qempty(cl->cl_q))
    378   1.1   thorpej 			hfsc_purgeq(cl);
    379   1.1   thorpej 	if (ALTQ_IS_ENABLED(hif->hif_ifq))
    380   1.1   thorpej 		hif->hif_ifq->ifq_len = 0;
    381   1.1   thorpej }
    382   1.1   thorpej 
    383   1.1   thorpej struct hfsc_class *
    384  1.19     peter hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
    385  1.19     peter     struct service_curve *fsc, struct service_curve *usc,
    386  1.19     peter     struct hfsc_class *parent, int qlimit, int flags, int qid)
    387   1.1   thorpej {
    388   1.1   thorpej 	struct hfsc_class *cl, *p;
    389  1.19     peter 	int i, s;
    390  1.19     peter 
    391  1.19     peter 	if (hif->hif_classes >= HFSC_MAX_CLASSES)
    392  1.31       joe 		return NULL;
    393   1.1   thorpej 
    394   1.1   thorpej #ifndef ALTQ_RED
    395   1.1   thorpej 	if (flags & HFCF_RED) {
    396  1.19     peter #ifdef ALTQ_DEBUG
    397   1.1   thorpej 		printf("hfsc_class_create: RED not configured for HFSC!\n");
    398  1.19     peter #endif
    399  1.31       joe 		return NULL;
    400   1.1   thorpej 	}
    401   1.1   thorpej #endif
    402   1.1   thorpej 
    403  1.13  christos 	cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_WAITOK|M_ZERO);
    404   1.1   thorpej 	if (cl == NULL)
    405  1.31       joe 		return NULL;
    406   1.1   thorpej 
    407  1.13  christos 	cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_WAITOK|M_ZERO);
    408   1.1   thorpej 	if (cl->cl_q == NULL)
    409   1.1   thorpej 		goto err_ret;
    410   1.1   thorpej 
    411   1.1   thorpej 	cl->cl_actc = actlist_alloc();
    412   1.1   thorpej 	if (cl->cl_actc == NULL)
    413   1.1   thorpej 		goto err_ret;
    414   1.1   thorpej 
    415   1.1   thorpej 	if (qlimit == 0)
    416   1.1   thorpej 		qlimit = 50;  /* use default */
    417   1.1   thorpej 	qlimit(cl->cl_q) = qlimit;
    418   1.1   thorpej 	qtype(cl->cl_q) = Q_DROPTAIL;
    419   1.1   thorpej 	qlen(cl->cl_q) = 0;
    420   1.1   thorpej 	cl->cl_flags = flags;
    421   1.1   thorpej #ifdef ALTQ_RED
    422   1.1   thorpej 	if (flags & (HFCF_RED|HFCF_RIO)) {
    423   1.1   thorpej 		int red_flags, red_pkttime;
    424  1.19     peter 		u_int m2;
    425  1.19     peter 
    426  1.19     peter 		m2 = 0;
    427  1.19     peter 		if (rsc != NULL && rsc->m2 > m2)
    428  1.19     peter 			m2 = rsc->m2;
    429  1.19     peter 		if (fsc != NULL && fsc->m2 > m2)
    430  1.19     peter 			m2 = fsc->m2;
    431  1.19     peter 		if (usc != NULL && usc->m2 > m2)
    432  1.19     peter 			m2 = usc->m2;
    433   1.1   thorpej 
    434   1.1   thorpej 		red_flags = 0;
    435   1.1   thorpej 		if (flags & HFCF_ECN)
    436   1.1   thorpej 			red_flags |= REDF_ECN;
    437   1.1   thorpej #ifdef ALTQ_RIO
    438   1.1   thorpej 		if (flags & HFCF_CLEARDSCP)
    439   1.1   thorpej 			red_flags |= RIOF_CLEARDSCP;
    440   1.1   thorpej #endif
    441  1.19     peter 		if (m2 < 8)
    442   1.1   thorpej 			red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
    443   1.1   thorpej 		else
    444   1.1   thorpej 			red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
    445  1.19     peter 				* 1000 * 1000 * 1000 / (m2 / 8);
    446   1.1   thorpej 		if (flags & HFCF_RED) {
    447  1.19     peter 			cl->cl_red = red_alloc(0, 0,
    448  1.19     peter 			    qlimit(cl->cl_q) * 10/100,
    449  1.19     peter 			    qlimit(cl->cl_q) * 30/100,
    450  1.19     peter 			    red_flags, red_pkttime);
    451   1.1   thorpej 			if (cl->cl_red != NULL)
    452   1.1   thorpej 				qtype(cl->cl_q) = Q_RED;
    453   1.1   thorpej 		}
    454   1.1   thorpej #ifdef ALTQ_RIO
    455   1.1   thorpej 		else {
    456   1.1   thorpej 			cl->cl_red = (red_t *)rio_alloc(0, NULL,
    457  1.19     peter 			    red_flags, red_pkttime);
    458   1.1   thorpej 			if (cl->cl_red != NULL)
    459   1.1   thorpej 				qtype(cl->cl_q) = Q_RIO;
    460   1.1   thorpej 		}
    461   1.1   thorpej #endif
    462   1.1   thorpej 	}
    463   1.1   thorpej #endif /* ALTQ_RED */
    464   1.1   thorpej 
    465  1.19     peter 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
    466  1.13  christos 		cl->cl_rsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
    467  1.13  christos 		    M_WAITOK|M_ZERO);
    468   1.1   thorpej 		if (cl->cl_rsc == NULL)
    469   1.1   thorpej 			goto err_ret;
    470  1.19     peter 		sc2isc(rsc, cl->cl_rsc);
    471   1.1   thorpej 		rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
    472   1.1   thorpej 		rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
    473  1.19     peter 	}
    474  1.19     peter 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
    475  1.13  christos 		cl->cl_fsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
    476  1.13  christos 		    M_WAITOK|M_ZERO);
    477   1.1   thorpej 		if (cl->cl_fsc == NULL)
    478   1.1   thorpej 			goto err_ret;
    479  1.19     peter 		sc2isc(fsc, cl->cl_fsc);
    480   1.1   thorpej 		rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
    481   1.1   thorpej 	}
    482  1.19     peter 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
    483  1.19     peter 		cl->cl_usc = malloc(sizeof(struct internal_sc), M_DEVBUF,
    484  1.19     peter 		    M_WAITOK|M_ZERO);
    485  1.19     peter 		if (cl->cl_usc == NULL)
    486  1.19     peter 			goto err_ret;
    487  1.19     peter 		sc2isc(usc, cl->cl_usc);
    488  1.19     peter 		rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
    489  1.19     peter 	}
    490   1.1   thorpej 
    491   1.1   thorpej 	cl->cl_id = hif->hif_classid++;
    492  1.19     peter 	cl->cl_handle = qid;
    493   1.1   thorpej 	cl->cl_hif = hif;
    494   1.1   thorpej 	cl->cl_parent = parent;
    495   1.1   thorpej 
    496   1.3   thorpej 	s = splnet();
    497   1.1   thorpej 	hif->hif_classes++;
    498  1.19     peter 
    499  1.19     peter 	/*
    500  1.19     peter 	 * find a free slot in the class table.  if the slot matching
    501  1.19     peter 	 * the lower bits of qid is free, use this slot.  otherwise,
    502  1.19     peter 	 * use the first free slot.
    503  1.19     peter 	 */
    504  1.19     peter 	i = qid % HFSC_MAX_CLASSES;
    505  1.19     peter 	if (hif->hif_class_tbl[i] == NULL)
    506  1.19     peter 		hif->hif_class_tbl[i] = cl;
    507  1.19     peter 	else {
    508  1.19     peter 		for (i = 0; i < HFSC_MAX_CLASSES; i++)
    509  1.19     peter 			if (hif->hif_class_tbl[i] == NULL) {
    510  1.19     peter 				hif->hif_class_tbl[i] = cl;
    511  1.19     peter 				break;
    512  1.19     peter 			}
    513  1.19     peter 		if (i == HFSC_MAX_CLASSES) {
    514  1.19     peter 			splx(s);
    515  1.19     peter 			goto err_ret;
    516  1.19     peter 		}
    517  1.19     peter 	}
    518  1.19     peter 
    519   1.1   thorpej 	if (flags & HFCF_DEFAULTCLASS)
    520   1.1   thorpej 		hif->hif_defaultclass = cl;
    521   1.1   thorpej 
    522   1.1   thorpej 	if (parent == NULL) {
    523   1.1   thorpej 		/* this is root class */
    524  1.19     peter 		hif->hif_rootclass = cl;
    525  1.19     peter 	} else {
    526  1.19     peter 		/* add this class to the children list of the parent */
    527  1.19     peter 		if ((p = parent->cl_children) == NULL)
    528  1.19     peter 			parent->cl_children = cl;
    529  1.19     peter 		else {
    530  1.19     peter 			while (p->cl_siblings != NULL)
    531  1.19     peter 				p = p->cl_siblings;
    532  1.19     peter 			p->cl_siblings = cl;
    533  1.19     peter 		}
    534   1.1   thorpej 	}
    535   1.1   thorpej 	splx(s);
    536   1.1   thorpej 
    537  1.31       joe 	return cl;
    538   1.1   thorpej 
    539   1.1   thorpej  err_ret:
    540   1.1   thorpej 	if (cl->cl_actc != NULL)
    541   1.1   thorpej 		actlist_destroy(cl->cl_actc);
    542   1.1   thorpej 	if (cl->cl_red != NULL) {
    543   1.1   thorpej #ifdef ALTQ_RIO
    544   1.1   thorpej 		if (q_is_rio(cl->cl_q))
    545   1.1   thorpej 			rio_destroy((rio_t *)cl->cl_red);
    546   1.1   thorpej #endif
    547   1.1   thorpej #ifdef ALTQ_RED
    548   1.1   thorpej 		if (q_is_red(cl->cl_q))
    549   1.1   thorpej 			red_destroy(cl->cl_red);
    550   1.1   thorpej #endif
    551   1.1   thorpej 	}
    552   1.1   thorpej 	if (cl->cl_fsc != NULL)
    553  1.13  christos 		free(cl->cl_fsc, M_DEVBUF);
    554   1.1   thorpej 	if (cl->cl_rsc != NULL)
    555  1.13  christos 		free(cl->cl_rsc, M_DEVBUF);
    556  1.19     peter 	if (cl->cl_usc != NULL)
    557  1.19     peter 		free(cl->cl_usc, M_DEVBUF);
    558   1.1   thorpej 	if (cl->cl_q != NULL)
    559  1.13  christos 		free(cl->cl_q, M_DEVBUF);
    560  1.13  christos 	free(cl, M_DEVBUF);
    561  1.31       joe 	return NULL;
    562   1.1   thorpej }
    563   1.1   thorpej 
    564   1.1   thorpej static int
    565  1.19     peter hfsc_class_destroy(struct hfsc_class *cl)
    566   1.1   thorpej {
    567  1.19     peter 	int i, s;
    568  1.19     peter 
    569  1.19     peter 	if (cl == NULL)
    570  1.31       joe 		return 0;
    571   1.1   thorpej 
    572   1.1   thorpej 	if (is_a_parent_class(cl))
    573  1.31       joe 		return EBUSY;
    574   1.1   thorpej 
    575   1.3   thorpej 	s = splnet();
    576   1.1   thorpej 
    577  1.19     peter #ifdef ALTQ3_COMPAT
    578   1.1   thorpej 	/* delete filters referencing to this class */
    579   1.1   thorpej 	acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
    580  1.19     peter #endif /* ALTQ3_COMPAT */
    581   1.1   thorpej 
    582   1.1   thorpej 	if (!qempty(cl->cl_q))
    583   1.1   thorpej 		hfsc_purgeq(cl);
    584   1.1   thorpej 
    585   1.1   thorpej 	if (cl->cl_parent == NULL) {
    586   1.1   thorpej 		/* this is root class */
    587   1.1   thorpej 	} else {
    588   1.1   thorpej 		struct hfsc_class *p = cl->cl_parent->cl_children;
    589   1.1   thorpej 
    590   1.1   thorpej 		if (p == cl)
    591   1.1   thorpej 			cl->cl_parent->cl_children = cl->cl_siblings;
    592   1.1   thorpej 		else do {
    593   1.1   thorpej 			if (p->cl_siblings == cl) {
    594   1.1   thorpej 				p->cl_siblings = cl->cl_siblings;
    595   1.1   thorpej 				break;
    596   1.1   thorpej 			}
    597   1.1   thorpej 		} while ((p = p->cl_siblings) != NULL);
    598   1.1   thorpej 		ASSERT(p != NULL);
    599   1.1   thorpej 	}
    600  1.19     peter 
    601  1.19     peter 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
    602  1.19     peter 		if (cl->cl_hif->hif_class_tbl[i] == cl) {
    603  1.19     peter 			cl->cl_hif->hif_class_tbl[i] = NULL;
    604  1.19     peter 			break;
    605  1.19     peter 		}
    606  1.19     peter 
    607   1.1   thorpej 	cl->cl_hif->hif_classes--;
    608   1.1   thorpej 	splx(s);
    609   1.1   thorpej 
    610   1.1   thorpej 	actlist_destroy(cl->cl_actc);
    611   1.1   thorpej 
    612   1.1   thorpej 	if (cl->cl_red != NULL) {
    613   1.1   thorpej #ifdef ALTQ_RIO
    614   1.1   thorpej 		if (q_is_rio(cl->cl_q))
    615   1.1   thorpej 			rio_destroy((rio_t *)cl->cl_red);
    616   1.1   thorpej #endif
    617   1.1   thorpej #ifdef ALTQ_RED
    618   1.1   thorpej 		if (q_is_red(cl->cl_q))
    619   1.1   thorpej 			red_destroy(cl->cl_red);
    620   1.1   thorpej #endif
    621   1.1   thorpej 	}
    622  1.19     peter 
    623  1.19     peter 	if (cl == cl->cl_hif->hif_rootclass)
    624  1.19     peter 		cl->cl_hif->hif_rootclass = NULL;
    625  1.19     peter 	if (cl == cl->cl_hif->hif_defaultclass)
    626  1.19     peter 		cl->cl_hif->hif_defaultclass = NULL;
    627  1.19     peter 
    628  1.19     peter 	if (cl->cl_usc != NULL)
    629  1.19     peter 		free(cl->cl_usc, M_DEVBUF);
    630   1.1   thorpej 	if (cl->cl_fsc != NULL)
    631  1.13  christos 		free(cl->cl_fsc, M_DEVBUF);
    632   1.1   thorpej 	if (cl->cl_rsc != NULL)
    633  1.13  christos 		free(cl->cl_rsc, M_DEVBUF);
    634  1.13  christos 	free(cl->cl_q, M_DEVBUF);
    635  1.13  christos 	free(cl, M_DEVBUF);
    636   1.1   thorpej 
    637  1.31       joe 	return 0;
    638   1.1   thorpej }
    639   1.1   thorpej 
    640   1.1   thorpej /*
    641   1.1   thorpej  * hfsc_nextclass returns the next class in the tree.
    642   1.1   thorpej  *   usage:
    643  1.19     peter  *	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
    644   1.1   thorpej  *		do_something;
    645   1.1   thorpej  */
    646   1.1   thorpej static struct hfsc_class *
    647  1.19     peter hfsc_nextclass(struct hfsc_class *cl)
    648   1.1   thorpej {
    649   1.1   thorpej 	if (cl->cl_children != NULL)
    650   1.1   thorpej 		cl = cl->cl_children;
    651   1.1   thorpej 	else if (cl->cl_siblings != NULL)
    652   1.1   thorpej 		cl = cl->cl_siblings;
    653   1.1   thorpej 	else {
    654   1.1   thorpej 		while ((cl = cl->cl_parent) != NULL)
    655   1.1   thorpej 			if (cl->cl_siblings) {
    656   1.1   thorpej 				cl = cl->cl_siblings;
    657   1.1   thorpej 				break;
    658   1.1   thorpej 			}
    659   1.1   thorpej 	}
    660   1.1   thorpej 
    661  1.31       joe 	return cl;
    662   1.1   thorpej }
    663   1.1   thorpej 
    664   1.1   thorpej /*
    665   1.1   thorpej  * hfsc_enqueue is an enqueue function to be registered to
    666   1.1   thorpej  * (*altq_enqueue) in struct ifaltq.
    667   1.1   thorpej  */
    668  1.10     perry static int
    669  1.26  knakahar hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m)
    670   1.1   thorpej {
    671  1.26  knakahar 	struct altq_pktattr pktattr;
    672   1.1   thorpej 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
    673   1.1   thorpej 	struct hfsc_class *cl;
    674  1.19     peter 	struct m_tag *t;
    675   1.1   thorpej 	int len;
    676   1.1   thorpej 
    677   1.1   thorpej 	/* grab class set by classifier */
    678  1.19     peter 	if ((m->m_flags & M_PKTHDR) == 0) {
    679  1.19     peter 		/* should not happen */
    680  1.19     peter 		printf("altq: packet for %s does not have pkthdr\n",
    681  1.19     peter 		    ifq->altq_ifp->if_xname);
    682  1.19     peter 		m_freem(m);
    683  1.31       joe 		return ENOBUFS;
    684  1.19     peter 	}
    685  1.19     peter 	cl = NULL;
    686  1.28      maxv 	if ((t = m_tag_find(m, PACKET_TAG_ALTQ_QID)) != NULL)
    687  1.19     peter 		cl = clh_to_clp(hif, ((struct altq_tag *)(t+1))->qid);
    688  1.19     peter #ifdef ALTQ3_COMPAT
    689  1.26  knakahar 	else if ((ifq->altq_flags & ALTQF_CLASSIFY))
    690  1.26  knakahar 		cl = m->m_pkthdr.pattr_class;
    691  1.19     peter #endif
    692  1.19     peter 	if (cl == NULL || is_a_parent_class(cl)) {
    693   1.1   thorpej 		cl = hif->hif_defaultclass;
    694  1.19     peter 		if (cl == NULL) {
    695  1.19     peter 			m_freem(m);
    696  1.19     peter 			return (ENOBUFS);
    697  1.19     peter 		}
    698  1.19     peter 	}
    699  1.19     peter #ifdef ALTQ3_COMPAT
    700  1.26  knakahar 	if (m->m_pkthdr.pattr_af != AF_UNSPEC) {
    701  1.26  knakahar 		pktattr.pattr_class = m->m_pkthdr.pattr_class;
    702  1.26  knakahar 		pktattr.pattr_af = m->m_pkthdr.pattr_af;
    703  1.26  knakahar 		pktattr.pattr_hdr = m->m_pkthdr.pattr_hdr;
    704  1.26  knakahar 
    705  1.26  knakahar 		cl->cl_pktattr = &pktattr;  /* save proto hdr used by ECN */
    706  1.26  knakahar 	} else
    707  1.19     peter #endif
    708  1.19     peter 		cl->cl_pktattr = NULL;
    709   1.1   thorpej 	len = m_pktlen(m);
    710   1.1   thorpej 	if (hfsc_addq(cl, m) != 0) {
    711   1.1   thorpej 		/* drop occurred.  mbuf was freed in hfsc_addq. */
    712   1.1   thorpej 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
    713  1.31       joe 		return ENOBUFS;
    714   1.1   thorpej 	}
    715   1.1   thorpej 	IFQ_INC_LEN(ifq);
    716   1.1   thorpej 	cl->cl_hif->hif_packets++;
    717   1.1   thorpej 
    718   1.1   thorpej 	/* successfully queued. */
    719   1.1   thorpej 	if (qlen(cl->cl_q) == 1)
    720   1.1   thorpej 		set_active(cl, m_pktlen(m));
    721   1.1   thorpej 
    722  1.31       joe 	return 0;
    723   1.1   thorpej }
    724   1.1   thorpej 
    725   1.1   thorpej /*
    726   1.1   thorpej  * hfsc_dequeue is a dequeue function to be registered to
    727   1.1   thorpej  * (*altq_dequeue) in struct ifaltq.
    728   1.1   thorpej  *
    729   1.1   thorpej  * note: ALTDQ_POLL returns the next packet without removing the packet
    730   1.1   thorpej  *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
    731   1.1   thorpej  *	ALTDQ_REMOVE must return the same packet if called immediately
    732   1.1   thorpej  *	after ALTDQ_POLL.
    733   1.1   thorpej  */
    734   1.1   thorpej static struct mbuf *
    735  1.19     peter hfsc_dequeue(struct ifaltq *ifq, int op)
    736   1.1   thorpej {
    737   1.1   thorpej 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
    738   1.1   thorpej 	struct hfsc_class *cl;
    739   1.1   thorpej 	struct mbuf *m;
    740   1.1   thorpej 	int len, next_len;
    741   1.1   thorpej 	int realtime = 0;
    742  1.19     peter 	u_int64_t cur_time;
    743   1.1   thorpej 
    744   1.1   thorpej 	if (hif->hif_packets == 0)
    745   1.1   thorpej 		/* no packet in the tree */
    746  1.31       joe 		return NULL;
    747   1.1   thorpej 
    748  1.19     peter 	cur_time = read_machclk();
    749  1.19     peter 
    750   1.1   thorpej 	if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
    751  1.10     perry 
    752   1.1   thorpej 		cl = hif->hif_pollcache;
    753   1.1   thorpej 		hif->hif_pollcache = NULL;
    754   1.1   thorpej 		/* check if the class was scheduled by real-time criteria */
    755  1.19     peter 		if (cl->cl_rsc != NULL)
    756   1.1   thorpej 			realtime = (cl->cl_e <= cur_time);
    757   1.1   thorpej 	} else {
    758   1.1   thorpej 		/*
    759   1.1   thorpej 		 * if there are eligible classes, use real-time criteria.
    760   1.1   thorpej 		 * find the class with the minimum deadline among
    761   1.1   thorpej 		 * the eligible classes.
    762   1.1   thorpej 		 */
    763  1.19     peter 		if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time))
    764  1.19     peter 		    != NULL) {
    765   1.1   thorpej 			realtime = 1;
    766   1.1   thorpej 		} else {
    767  1.19     peter #ifdef ALTQ_DEBUG
    768  1.19     peter 			int fits = 0;
    769  1.19     peter #endif
    770   1.1   thorpej 			/*
    771   1.1   thorpej 			 * use link-sharing criteria
    772   1.1   thorpej 			 * get the class with the minimum vt in the hierarchy
    773   1.1   thorpej 			 */
    774   1.1   thorpej 			cl = hif->hif_rootclass;
    775   1.1   thorpej 			while (is_a_parent_class(cl)) {
    776  1.19     peter 
    777  1.19     peter 				cl = actlist_firstfit(cl, cur_time);
    778  1.19     peter 				if (cl == NULL) {
    779  1.19     peter #ifdef ALTQ_DEBUG
    780  1.19     peter 					if (fits > 0)
    781  1.19     peter 						printf("%d fit but none found\n",fits);
    782  1.19     peter #endif
    783   1.1   thorpej 					return (NULL);
    784  1.19     peter 				}
    785  1.19     peter 				/*
    786  1.19     peter 				 * update parent's cl_cvtmin.
    787  1.19     peter 				 * don't update if the new vt is smaller.
    788  1.19     peter 				 */
    789  1.19     peter 				if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
    790  1.19     peter 					cl->cl_parent->cl_cvtmin = cl->cl_vt;
    791  1.19     peter #ifdef ALTQ_DEBUG
    792  1.19     peter 				fits++;
    793  1.19     peter #endif
    794   1.1   thorpej 			}
    795   1.1   thorpej 		}
    796   1.1   thorpej 
    797   1.1   thorpej 		if (op == ALTDQ_POLL) {
    798   1.1   thorpej 			hif->hif_pollcache = cl;
    799   1.1   thorpej 			m = hfsc_pollq(cl);
    800  1.31       joe 			return m;
    801   1.1   thorpej 		}
    802   1.1   thorpej 	}
    803   1.1   thorpej 
    804   1.1   thorpej 	m = hfsc_getq(cl);
    805  1.19     peter 	if (m == NULL)
    806  1.19     peter 		panic("hfsc_dequeue:");
    807   1.1   thorpej 	len = m_pktlen(m);
    808   1.1   thorpej 	cl->cl_hif->hif_packets--;
    809   1.1   thorpej 	IFQ_DEC_LEN(ifq);
    810   1.1   thorpej 	PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
    811   1.1   thorpej 
    812  1.19     peter 	update_vf(cl, len, cur_time);
    813   1.1   thorpej 	if (realtime)
    814   1.1   thorpej 		cl->cl_cumul += len;
    815   1.1   thorpej 
    816   1.1   thorpej 	if (!qempty(cl->cl_q)) {
    817   1.1   thorpej 		if (cl->cl_rsc != NULL) {
    818   1.1   thorpej 			/* update ed */
    819   1.1   thorpej 			next_len = m_pktlen(qhead(cl->cl_q));
    820  1.10     perry 
    821   1.1   thorpej 			if (realtime)
    822   1.1   thorpej 				update_ed(cl, next_len);
    823   1.1   thorpej 			else
    824   1.1   thorpej 				update_d(cl, next_len);
    825   1.1   thorpej 		}
    826   1.1   thorpej 	} else {
    827   1.1   thorpej 		/* the class becomes passive */
    828   1.1   thorpej 		set_passive(cl);
    829   1.1   thorpej 	}
    830   1.1   thorpej 
    831  1.31       joe 	return m;
    832   1.1   thorpej }
    833   1.1   thorpej 
    834   1.1   thorpej static int
    835  1.19     peter hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
    836   1.1   thorpej {
    837   1.1   thorpej 
    838   1.1   thorpej #ifdef ALTQ_RIO
    839   1.1   thorpej 	if (q_is_rio(cl->cl_q))
    840   1.1   thorpej 		return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
    841   1.1   thorpej 				m, cl->cl_pktattr);
    842   1.1   thorpej #endif
    843   1.1   thorpej #ifdef ALTQ_RED
    844   1.1   thorpej 	if (q_is_red(cl->cl_q))
    845   1.1   thorpej 		return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
    846   1.1   thorpej #endif
    847   1.1   thorpej 	if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
    848   1.1   thorpej 		m_freem(m);
    849  1.31       joe 		return -1;
    850   1.1   thorpej 	}
    851   1.1   thorpej 
    852   1.1   thorpej 	if (cl->cl_flags & HFCF_CLEARDSCP)
    853   1.1   thorpej 		write_dsfield(m, cl->cl_pktattr, 0);
    854   1.1   thorpej 
    855   1.1   thorpej 	_addq(cl->cl_q, m);
    856   1.1   thorpej 
    857  1.31       joe 	return 0;
    858   1.1   thorpej }
    859   1.1   thorpej 
    860   1.1   thorpej static struct mbuf *
    861  1.19     peter hfsc_getq(struct hfsc_class *cl)
    862   1.1   thorpej {
    863   1.1   thorpej #ifdef ALTQ_RIO
    864   1.1   thorpej 	if (q_is_rio(cl->cl_q))
    865   1.1   thorpej 		return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
    866   1.1   thorpej #endif
    867   1.1   thorpej #ifdef ALTQ_RED
    868   1.1   thorpej 	if (q_is_red(cl->cl_q))
    869   1.1   thorpej 		return red_getq(cl->cl_red, cl->cl_q);
    870   1.1   thorpej #endif
    871   1.1   thorpej 	return _getq(cl->cl_q);
    872   1.1   thorpej }
    873   1.1   thorpej 
    874   1.1   thorpej static struct mbuf *
    875  1.19     peter hfsc_pollq(struct hfsc_class *cl)
    876   1.1   thorpej {
    877   1.1   thorpej 	return qhead(cl->cl_q);
    878   1.1   thorpej }
    879   1.1   thorpej 
    880   1.1   thorpej static void
    881  1.19     peter hfsc_purgeq(struct hfsc_class *cl)
    882   1.1   thorpej {
    883   1.1   thorpej 	struct mbuf *m;
    884   1.1   thorpej 
    885   1.1   thorpej 	if (qempty(cl->cl_q))
    886   1.1   thorpej 		return;
    887   1.1   thorpej 
    888   1.1   thorpej 	while ((m = _getq(cl->cl_q)) != NULL) {
    889   1.1   thorpej 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
    890   1.1   thorpej 		m_freem(m);
    891  1.19     peter 		cl->cl_hif->hif_packets--;
    892  1.19     peter 		IFQ_DEC_LEN(cl->cl_hif->hif_ifq);
    893   1.1   thorpej 	}
    894   1.1   thorpej 	ASSERT(qlen(cl->cl_q) == 0);
    895  1.10     perry 
    896  1.19     peter 	update_vf(cl, 0, 0);	/* remove cl from the actlist */
    897   1.1   thorpej 	set_passive(cl);
    898   1.1   thorpej }
    899   1.1   thorpej 
    900  1.10     perry static void
    901  1.19     peter set_active(struct hfsc_class *cl, int len)
    902   1.1   thorpej {
    903   1.1   thorpej 	if (cl->cl_rsc != NULL)
    904   1.1   thorpej 		init_ed(cl, len);
    905   1.1   thorpej 	if (cl->cl_fsc != NULL)
    906  1.19     peter 		init_vf(cl, len);
    907   1.1   thorpej 
    908   1.1   thorpej 	cl->cl_stats.period++;
    909   1.1   thorpej }
    910   1.1   thorpej 
    911  1.10     perry static void
    912  1.19     peter set_passive(struct hfsc_class *cl)
    913   1.1   thorpej {
    914   1.1   thorpej 	if (cl->cl_rsc != NULL)
    915   1.1   thorpej 		ellist_remove(cl);
    916   1.1   thorpej 
    917  1.19     peter 	/*
    918  1.19     peter 	 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
    919  1.19     peter 	 * needs to be called explicitly to remove a class from actlist
    920  1.19     peter 	 */
    921   1.1   thorpej }
    922   1.1   thorpej 
    923  1.10     perry static void
    924  1.19     peter init_ed(struct hfsc_class *cl, int next_len)
    925   1.1   thorpej {
    926   1.1   thorpej 	u_int64_t cur_time;
    927   1.1   thorpej 
    928   1.1   thorpej 	cur_time = read_machclk();
    929   1.1   thorpej 
    930   1.1   thorpej 	/* update the deadline curve */
    931   1.1   thorpej 	rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
    932   1.1   thorpej 
    933   1.1   thorpej 	/*
    934   1.1   thorpej 	 * update the eligible curve.
    935   1.1   thorpej 	 * for concave, it is equal to the deadline curve.
    936   1.1   thorpej 	 * for convex, it is a linear curve with slope m2.
    937   1.1   thorpej 	 */
    938   1.1   thorpej 	cl->cl_eligible = cl->cl_deadline;
    939   1.1   thorpej 	if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
    940   1.1   thorpej 		cl->cl_eligible.dx = 0;
    941   1.1   thorpej 		cl->cl_eligible.dy = 0;
    942   1.1   thorpej 	}
    943   1.1   thorpej 
    944   1.1   thorpej 	/* compute e and d */
    945   1.1   thorpej 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
    946   1.1   thorpej 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
    947   1.1   thorpej 
    948   1.1   thorpej 	ellist_insert(cl);
    949   1.1   thorpej }
    950   1.1   thorpej 
    951  1.10     perry static void
    952  1.19     peter update_ed(struct hfsc_class *cl, int next_len)
    953   1.1   thorpej {
    954   1.1   thorpej 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
    955   1.1   thorpej 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
    956   1.1   thorpej 
    957   1.1   thorpej 	ellist_update(cl);
    958   1.1   thorpej }
    959   1.1   thorpej 
    960  1.10     perry static void
    961  1.19     peter update_d(struct hfsc_class *cl, int next_len)
    962   1.1   thorpej {
    963   1.1   thorpej 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
    964   1.1   thorpej }
    965   1.1   thorpej 
    966  1.10     perry static void
    967  1.22  christos init_vf(struct hfsc_class *cl, int len)
    968   1.1   thorpej {
    969  1.19     peter 	struct hfsc_class *max_cl, *p;
    970  1.19     peter 	u_int64_t vt, f, cur_time;
    971  1.19     peter 	int go_active;
    972  1.19     peter 
    973  1.19     peter 	cur_time = 0;
    974  1.19     peter 	go_active = 1;
    975  1.19     peter 	for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
    976   1.1   thorpej 
    977  1.19     peter 		if (go_active && cl->cl_nactive++ == 0)
    978  1.19     peter 			go_active = 1;
    979  1.19     peter 		else
    980  1.19     peter 			go_active = 0;
    981  1.10     perry 
    982  1.19     peter 		if (go_active) {
    983  1.19     peter 			max_cl = actlist_last(cl->cl_parent->cl_actc);
    984  1.19     peter 			if (max_cl != NULL) {
    985  1.19     peter 				/*
    986  1.19     peter 				 * set vt to the average of the min and max
    987  1.19     peter 				 * classes.  if the parent's period didn't
    988  1.19     peter 				 * change, don't decrease vt of the class.
    989  1.19     peter 				 */
    990  1.19     peter 				vt = max_cl->cl_vt;
    991  1.19     peter 				if (cl->cl_parent->cl_cvtmin != 0)
    992  1.19     peter 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
    993  1.19     peter 
    994  1.19     peter 				if (cl->cl_parent->cl_vtperiod !=
    995  1.19     peter 				    cl->cl_parentperiod || vt > cl->cl_vt)
    996  1.19     peter 					cl->cl_vt = vt;
    997  1.19     peter 			} else {
    998  1.19     peter 				/*
    999  1.19     peter 				 * first child for a new parent backlog period.
   1000  1.19     peter 				 * add parent's cvtmax to vtoff of children
   1001  1.19     peter 				 * to make a new vt (vtoff + vt) larger than
   1002  1.19     peter 				 * the vt in the last period for all children.
   1003  1.19     peter 				 */
   1004  1.19     peter 				vt = cl->cl_parent->cl_cvtmax;
   1005  1.19     peter 				for (p = cl->cl_parent->cl_children; p != NULL;
   1006  1.19     peter 				     p = p->cl_siblings)
   1007  1.19     peter 					p->cl_vtoff += vt;
   1008  1.19     peter 				cl->cl_vt = 0;
   1009  1.19     peter 				cl->cl_parent->cl_cvtmax = 0;
   1010  1.19     peter 				cl->cl_parent->cl_cvtmin = 0;
   1011  1.19     peter 			}
   1012  1.19     peter 			cl->cl_initvt = cl->cl_vt;
   1013   1.1   thorpej 
   1014  1.19     peter 			/* update the virtual curve */
   1015  1.19     peter 			vt = cl->cl_vt + cl->cl_vtoff;
   1016  1.19     peter 			rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
   1017  1.19     peter 			if (cl->cl_virtual.x == vt) {
   1018  1.19     peter 				cl->cl_virtual.x -= cl->cl_vtoff;
   1019  1.19     peter 				cl->cl_vtoff = 0;
   1020  1.19     peter 			}
   1021  1.19     peter 			cl->cl_vtadj = 0;
   1022   1.1   thorpej 
   1023  1.19     peter 			cl->cl_vtperiod++;  /* increment vt period */
   1024  1.19     peter 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
   1025  1.19     peter 			if (cl->cl_parent->cl_nactive == 0)
   1026  1.19     peter 				cl->cl_parentperiod++;
   1027  1.19     peter 			cl->cl_f = 0;
   1028  1.19     peter 
   1029  1.19     peter 			actlist_insert(cl);
   1030  1.19     peter 
   1031  1.19     peter 			if (cl->cl_usc != NULL) {
   1032  1.19     peter 				/* class has upper limit curve */
   1033  1.19     peter 				if (cur_time == 0)
   1034  1.19     peter 					cur_time = read_machclk();
   1035  1.19     peter 
   1036  1.19     peter 				/* update the ulimit curve */
   1037  1.19     peter 				rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
   1038  1.19     peter 				    cl->cl_total);
   1039  1.19     peter 				/* compute myf */
   1040  1.19     peter 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
   1041  1.19     peter 				    cl->cl_total);
   1042  1.19     peter 				cl->cl_myfadj = 0;
   1043  1.19     peter 			}
   1044   1.1   thorpej 		}
   1045   1.1   thorpej 
   1046  1.19     peter 		if (cl->cl_myf > cl->cl_cfmin)
   1047  1.19     peter 			f = cl->cl_myf;
   1048  1.19     peter 		else
   1049  1.19     peter 			f = cl->cl_cfmin;
   1050  1.19     peter 		if (f != cl->cl_f) {
   1051  1.19     peter 			cl->cl_f = f;
   1052  1.19     peter 			update_cfmin(cl->cl_parent);
   1053  1.19     peter 		}
   1054   1.1   thorpej 	}
   1055   1.1   thorpej }
   1056   1.1   thorpej 
   1057  1.10     perry static void
   1058  1.19     peter update_vf(struct hfsc_class *cl, int len, u_int64_t cur_time)
   1059   1.1   thorpej {
   1060  1.19     peter 	u_int64_t f, myf_bound, delta;
   1061  1.19     peter 	int go_passive;
   1062  1.19     peter 
   1063  1.19     peter 	go_passive = qempty(cl->cl_q);
   1064  1.19     peter 
   1065  1.19     peter 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
   1066   1.1   thorpej 
   1067   1.1   thorpej 		cl->cl_total += len;
   1068   1.1   thorpej 
   1069  1.19     peter 		if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
   1070  1.19     peter 			continue;
   1071  1.19     peter 
   1072  1.19     peter 		if (go_passive && --cl->cl_nactive == 0)
   1073  1.19     peter 			go_passive = 1;
   1074  1.19     peter 		else
   1075  1.19     peter 			go_passive = 0;
   1076  1.19     peter 
   1077  1.19     peter 		if (go_passive) {
   1078  1.19     peter 			/* no more active child, going passive */
   1079  1.19     peter 
   1080  1.19     peter 			/* update cvtmax of the parent class */
   1081  1.19     peter 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
   1082  1.19     peter 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
   1083  1.19     peter 
   1084  1.19     peter 			/* remove this class from the vt list */
   1085  1.19     peter 			actlist_remove(cl);
   1086  1.19     peter 
   1087  1.19     peter 			update_cfmin(cl->cl_parent);
   1088  1.19     peter 
   1089  1.19     peter 			continue;
   1090  1.19     peter 		}
   1091  1.19     peter 
   1092  1.19     peter 		/*
   1093  1.19     peter 		 * update vt and f
   1094  1.19     peter 		 */
   1095  1.19     peter 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
   1096  1.19     peter 		    - cl->cl_vtoff + cl->cl_vtadj;
   1097  1.19     peter 
   1098  1.19     peter 		/*
   1099  1.19     peter 		 * if vt of the class is smaller than cvtmin,
   1100  1.19     peter 		 * the class was skipped in the past due to non-fit.
   1101  1.19     peter 		 * if so, we need to adjust vtadj.
   1102  1.19     peter 		 */
   1103  1.19     peter 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
   1104  1.19     peter 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
   1105  1.19     peter 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
   1106  1.19     peter 		}
   1107  1.19     peter 
   1108  1.19     peter 		/* update the vt list */
   1109  1.19     peter 		actlist_update(cl);
   1110  1.19     peter 
   1111  1.19     peter 		if (cl->cl_usc != NULL) {
   1112  1.19     peter 			cl->cl_myf = cl->cl_myfadj
   1113  1.19     peter 			    + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
   1114  1.19     peter 
   1115  1.19     peter 			/*
   1116  1.19     peter 			 * if myf lags behind by more than one clock tick
   1117  1.19     peter 			 * from the current time, adjust myfadj to prevent
   1118  1.19     peter 			 * a rate-limited class from going greedy.
   1119  1.19     peter 			 * in a steady state under rate-limiting, myf
   1120  1.19     peter 			 * fluctuates within one clock tick.
   1121  1.19     peter 			 */
   1122  1.19     peter 			myf_bound = cur_time - machclk_per_tick;
   1123  1.19     peter 			if (cl->cl_myf < myf_bound) {
   1124  1.19     peter 				delta = cur_time - cl->cl_myf;
   1125  1.19     peter 				cl->cl_myfadj += delta;
   1126  1.19     peter 				cl->cl_myf += delta;
   1127  1.19     peter 			}
   1128  1.19     peter 		}
   1129   1.1   thorpej 
   1130  1.19     peter 		/* cl_f is max(cl_myf, cl_cfmin) */
   1131  1.19     peter 		if (cl->cl_myf > cl->cl_cfmin)
   1132  1.19     peter 			f = cl->cl_myf;
   1133  1.19     peter 		else
   1134  1.19     peter 			f = cl->cl_cfmin;
   1135  1.19     peter 		if (f != cl->cl_f) {
   1136  1.19     peter 			cl->cl_f = f;
   1137  1.19     peter 			update_cfmin(cl->cl_parent);
   1138   1.1   thorpej 		}
   1139  1.19     peter 	}
   1140  1.19     peter }
   1141  1.19     peter 
   1142  1.19     peter static void
   1143  1.19     peter update_cfmin(struct hfsc_class *cl)
   1144  1.19     peter {
   1145  1.19     peter 	struct hfsc_class *p;
   1146  1.19     peter 	u_int64_t cfmin;
   1147   1.1   thorpej 
   1148  1.19     peter 	if (TAILQ_EMPTY(cl->cl_actc)) {
   1149  1.19     peter 		cl->cl_cfmin = 0;
   1150  1.19     peter 		return;
   1151  1.19     peter 	}
   1152  1.19     peter 	cfmin = HT_INFINITY;
   1153  1.19     peter 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
   1154  1.19     peter 		if (p->cl_f == 0) {
   1155  1.19     peter 			cl->cl_cfmin = 0;
   1156  1.19     peter 			return;
   1157  1.19     peter 		}
   1158  1.19     peter 		if (p->cl_f < cfmin)
   1159  1.19     peter 			cfmin = p->cl_f;
   1160   1.1   thorpej 	}
   1161  1.19     peter 	cl->cl_cfmin = cfmin;
   1162   1.1   thorpej }
   1163   1.1   thorpej 
   1164   1.1   thorpej /*
   1165   1.1   thorpej  * TAILQ based ellist and actlist implementation
   1166   1.1   thorpej  * (ion wanted to make a calendar queue based implementation)
   1167   1.1   thorpej  */
   1168   1.1   thorpej /*
   1169   1.1   thorpej  * eligible list holds backlogged classes being sorted by their eligible times.
   1170   1.1   thorpej  * there is one eligible list per interface.
   1171   1.1   thorpej  */
   1172   1.1   thorpej 
   1173   1.1   thorpej static ellist_t *
   1174  1.19     peter ellist_alloc(void)
   1175   1.1   thorpej {
   1176   1.1   thorpej 	ellist_t *head;
   1177  1.10     perry 
   1178  1.13  christos 	head = malloc(sizeof(ellist_t), M_DEVBUF, M_WAITOK);
   1179  1.19     peter 	TAILQ_INIT(head);
   1180  1.31       joe 	return head;
   1181   1.1   thorpej }
   1182   1.1   thorpej 
   1183   1.1   thorpej static void
   1184  1.19     peter ellist_destroy(ellist_t *head)
   1185   1.1   thorpej {
   1186  1.13  christos 	free(head, M_DEVBUF);
   1187   1.1   thorpej }
   1188   1.1   thorpej 
   1189  1.10     perry static void
   1190  1.19     peter ellist_insert(struct hfsc_class *cl)
   1191   1.1   thorpej {
   1192   1.1   thorpej 	struct hfsc_if	*hif = cl->cl_hif;
   1193   1.1   thorpej 	struct hfsc_class *p;
   1194   1.1   thorpej 
   1195   1.1   thorpej 	/* check the last entry first */
   1196   1.1   thorpej 	if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
   1197   1.1   thorpej 	    p->cl_e <= cl->cl_e) {
   1198   1.1   thorpej 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
   1199   1.1   thorpej 		return;
   1200   1.1   thorpej 	}
   1201   1.1   thorpej 
   1202   1.1   thorpej 	TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
   1203   1.1   thorpej 		if (cl->cl_e < p->cl_e) {
   1204   1.1   thorpej 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
   1205   1.1   thorpej 			return;
   1206   1.1   thorpej 		}
   1207   1.1   thorpej 	}
   1208   1.1   thorpej 	ASSERT(0); /* should not reach here */
   1209   1.1   thorpej }
   1210   1.1   thorpej 
   1211  1.10     perry static void
   1212  1.19     peter ellist_remove(struct hfsc_class *cl)
   1213   1.1   thorpej {
   1214   1.1   thorpej 	struct hfsc_if	*hif = cl->cl_hif;
   1215  1.10     perry 
   1216   1.1   thorpej 	TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
   1217   1.1   thorpej }
   1218   1.1   thorpej 
   1219  1.10     perry static void
   1220  1.19     peter ellist_update(struct hfsc_class *cl)
   1221   1.1   thorpej {
   1222   1.1   thorpej 	struct hfsc_if	*hif = cl->cl_hif;
   1223   1.1   thorpej 	struct hfsc_class *p, *last;
   1224   1.1   thorpej 
   1225   1.1   thorpej 	/*
   1226   1.1   thorpej 	 * the eligible time of a class increases monotonically.
   1227   1.1   thorpej 	 * if the next entry has a larger eligible time, nothing to do.
   1228   1.1   thorpej 	 */
   1229   1.1   thorpej 	p = TAILQ_NEXT(cl, cl_ellist);
   1230   1.1   thorpej 	if (p == NULL || cl->cl_e <= p->cl_e)
   1231   1.1   thorpej 		return;
   1232   1.1   thorpej 
   1233   1.1   thorpej 	/* check the last entry */
   1234   1.1   thorpej 	last = TAILQ_LAST(hif->hif_eligible, _eligible);
   1235   1.1   thorpej 	ASSERT(last != NULL);
   1236   1.1   thorpej 	if (last->cl_e <= cl->cl_e) {
   1237   1.1   thorpej 		TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
   1238   1.1   thorpej 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
   1239   1.1   thorpej 		return;
   1240   1.1   thorpej 	}
   1241   1.1   thorpej 
   1242   1.1   thorpej 	/*
   1243   1.1   thorpej 	 * the new position must be between the next entry
   1244   1.1   thorpej 	 * and the last entry
   1245   1.1   thorpej 	 */
   1246   1.1   thorpej 	while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
   1247   1.1   thorpej 		if (cl->cl_e < p->cl_e) {
   1248   1.1   thorpej 			TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
   1249   1.1   thorpej 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
   1250   1.1   thorpej 			return;
   1251   1.1   thorpej 		}
   1252   1.1   thorpej 	}
   1253   1.1   thorpej 	ASSERT(0); /* should not reach here */
   1254   1.1   thorpej }
   1255   1.1   thorpej 
   1256   1.1   thorpej /* find the class with the minimum deadline among the eligible classes */
   1257   1.1   thorpej struct hfsc_class *
   1258  1.19     peter ellist_get_mindl(ellist_t *head, u_int64_t cur_time)
   1259   1.1   thorpej {
   1260   1.1   thorpej 	struct hfsc_class *p, *cl = NULL;
   1261   1.1   thorpej 
   1262   1.1   thorpej 	TAILQ_FOREACH(p, head, cl_ellist) {
   1263   1.1   thorpej 		if (p->cl_e > cur_time)
   1264   1.1   thorpej 			break;
   1265   1.1   thorpej 		if (cl == NULL || p->cl_d < cl->cl_d)
   1266   1.1   thorpej 			cl = p;
   1267   1.1   thorpej 	}
   1268  1.31       joe 	return cl;
   1269   1.1   thorpej }
   1270   1.1   thorpej 
   1271   1.1   thorpej /*
   1272   1.1   thorpej  * active children list holds backlogged child classes being sorted
   1273   1.1   thorpej  * by their virtual time.
   1274   1.1   thorpej  * each intermediate class has one active children list.
   1275   1.1   thorpej  */
   1276   1.1   thorpej static actlist_t *
   1277  1.19     peter actlist_alloc(void)
   1278   1.1   thorpej {
   1279   1.1   thorpej 	actlist_t *head;
   1280  1.10     perry 
   1281  1.13  christos 	head = malloc(sizeof(actlist_t), M_DEVBUF, M_WAITOK);
   1282  1.19     peter 	TAILQ_INIT(head);
   1283  1.31       joe 	return head;
   1284   1.1   thorpej }
   1285   1.1   thorpej 
   1286   1.1   thorpej static void
   1287  1.19     peter actlist_destroy(actlist_t *head)
   1288   1.1   thorpej {
   1289  1.13  christos 	free(head, M_DEVBUF);
   1290   1.1   thorpej }
   1291  1.10     perry static void
   1292  1.19     peter actlist_insert(struct hfsc_class *cl)
   1293   1.1   thorpej {
   1294   1.1   thorpej 	struct hfsc_class *p;
   1295   1.1   thorpej 
   1296   1.1   thorpej 	/* check the last entry first */
   1297   1.1   thorpej 	if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
   1298   1.1   thorpej 	    || p->cl_vt <= cl->cl_vt) {
   1299   1.1   thorpej 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
   1300   1.1   thorpej 		return;
   1301   1.1   thorpej 	}
   1302   1.1   thorpej 
   1303   1.1   thorpej 	TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
   1304   1.1   thorpej 		if (cl->cl_vt < p->cl_vt) {
   1305   1.1   thorpej 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
   1306   1.1   thorpej 			return;
   1307   1.1   thorpej 		}
   1308   1.1   thorpej 	}
   1309   1.1   thorpej 	ASSERT(0); /* should not reach here */
   1310   1.1   thorpej }
   1311   1.1   thorpej 
   1312  1.10     perry static void
   1313  1.19     peter actlist_remove(struct hfsc_class *cl)
   1314   1.1   thorpej {
   1315   1.1   thorpej 	TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
   1316   1.1   thorpej }
   1317   1.1   thorpej 
   1318   1.1   thorpej static void
   1319  1.19     peter actlist_update(struct hfsc_class *cl)
   1320   1.1   thorpej {
   1321   1.1   thorpej 	struct hfsc_class *p, *last;
   1322   1.1   thorpej 
   1323   1.1   thorpej 	/*
   1324   1.1   thorpej 	 * the virtual time of a class increases monotonically during its
   1325   1.1   thorpej 	 * backlogged period.
   1326   1.1   thorpej 	 * if the next entry has a larger virtual time, nothing to do.
   1327   1.1   thorpej 	 */
   1328   1.1   thorpej 	p = TAILQ_NEXT(cl, cl_actlist);
   1329  1.19     peter 	if (p == NULL || cl->cl_vt < p->cl_vt)
   1330   1.1   thorpej 		return;
   1331   1.1   thorpej 
   1332   1.1   thorpej 	/* check the last entry */
   1333   1.1   thorpej 	last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
   1334   1.1   thorpej 	ASSERT(last != NULL);
   1335   1.1   thorpej 	if (last->cl_vt <= cl->cl_vt) {
   1336   1.1   thorpej 		TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
   1337   1.1   thorpej 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
   1338   1.1   thorpej 		return;
   1339   1.1   thorpej 	}
   1340   1.1   thorpej 
   1341   1.1   thorpej 	/*
   1342   1.1   thorpej 	 * the new position must be between the next entry
   1343   1.1   thorpej 	 * and the last entry
   1344   1.1   thorpej 	 */
   1345   1.1   thorpej 	while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
   1346   1.1   thorpej 		if (cl->cl_vt < p->cl_vt) {
   1347   1.1   thorpej 			TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
   1348   1.1   thorpej 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
   1349   1.1   thorpej 			return;
   1350   1.1   thorpej 		}
   1351   1.1   thorpej 	}
   1352   1.1   thorpej 	ASSERT(0); /* should not reach here */
   1353   1.1   thorpej }
   1354   1.1   thorpej 
   1355  1.19     peter static struct hfsc_class *
   1356  1.19     peter actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time)
   1357  1.19     peter {
   1358  1.19     peter 	struct hfsc_class *p;
   1359  1.19     peter 
   1360  1.19     peter 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
   1361  1.19     peter 		if (p->cl_f <= cur_time)
   1362  1.31       joe 			return p;
   1363  1.19     peter 	}
   1364  1.31       joe 	return NULL;
   1365  1.19     peter }
   1366  1.19     peter 
   1367   1.1   thorpej /*
   1368   1.1   thorpej  * service curve support functions
   1369   1.1   thorpej  *
   1370   1.1   thorpej  *  external service curve parameters
   1371   1.1   thorpej  *	m: bits/sec
   1372   1.1   thorpej  *	d: msec
   1373   1.1   thorpej  *  internal service curve parameters
   1374   1.1   thorpej  *	sm: (bytes/tsc_interval) << SM_SHIFT
   1375   1.1   thorpej  *	ism: (tsc_count/byte) << ISM_SHIFT
   1376   1.1   thorpej  *	dx: tsc_count
   1377   1.1   thorpej  *
   1378   1.1   thorpej  * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
   1379   1.1   thorpej  * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
   1380   1.1   thorpej  * speed.  SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
   1381   1.1   thorpej  * digits in decimal using the following table.
   1382   1.1   thorpej  *
   1383  1.19     peter  *  bits/sec    100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
   1384   1.1   thorpej  *  ----------+-------------------------------------------------------
   1385   1.1   thorpej  *  bytes/nsec  12.5e-6    125e-6     1250e-6    12500e-6   125000e-6
   1386   1.1   thorpej  *  sm(500MHz)  25.0e-6    250e-6     2500e-6    25000e-6   250000e-6
   1387   1.1   thorpej  *  sm(200MHz)  62.5e-6    625e-6     6250e-6    62500e-6   625000e-6
   1388  1.10     perry  *
   1389   1.1   thorpej  *  nsec/byte   80000      8000       800        80         8
   1390   1.1   thorpej  *  ism(500MHz) 40000      4000       400        40         4
   1391   1.1   thorpej  *  ism(200MHz) 16000      1600       160        16         1.6
   1392   1.1   thorpej  */
   1393   1.1   thorpej #define	SM_SHIFT	24
   1394   1.1   thorpej #define	ISM_SHIFT	10
   1395   1.1   thorpej 
   1396  1.19     peter #define	SM_MASK		((1LL << SM_SHIFT) - 1)
   1397  1.19     peter #define	ISM_MASK	((1LL << ISM_SHIFT) - 1)
   1398   1.1   thorpej 
   1399  1.12     perry static inline u_int64_t
   1400  1.19     peter seg_x2y(u_int64_t x, u_int64_t sm)
   1401   1.1   thorpej {
   1402   1.1   thorpej 	u_int64_t y;
   1403   1.1   thorpej 
   1404  1.19     peter 	/*
   1405  1.19     peter 	 * compute
   1406  1.19     peter 	 *	y = x * sm >> SM_SHIFT
   1407  1.19     peter 	 * but divide it for the upper and lower bits to avoid overflow
   1408  1.19     peter 	 */
   1409  1.19     peter 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
   1410  1.31       joe 	return y;
   1411   1.1   thorpej }
   1412   1.1   thorpej 
   1413  1.12     perry static inline u_int64_t
   1414  1.19     peter seg_y2x(u_int64_t y, u_int64_t ism)
   1415   1.1   thorpej {
   1416   1.1   thorpej 	u_int64_t x;
   1417   1.1   thorpej 
   1418   1.1   thorpej 	if (y == 0)
   1419   1.1   thorpej 		x = 0;
   1420  1.19     peter 	else if (ism == HT_INFINITY)
   1421  1.19     peter 		x = HT_INFINITY;
   1422  1.19     peter 	else {
   1423  1.19     peter 		x = (y >> ISM_SHIFT) * ism
   1424  1.19     peter 		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
   1425  1.19     peter 	}
   1426  1.31       joe 	return x;
   1427   1.1   thorpej }
   1428   1.1   thorpej 
   1429  1.12     perry static inline u_int64_t
   1430  1.19     peter m2sm(u_int m)
   1431   1.1   thorpej {
   1432   1.1   thorpej 	u_int64_t sm;
   1433   1.1   thorpej 
   1434   1.1   thorpej 	sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
   1435  1.31       joe 	return sm;
   1436   1.1   thorpej }
   1437   1.1   thorpej 
   1438  1.12     perry static inline u_int64_t
   1439  1.19     peter m2ism(u_int m)
   1440   1.1   thorpej {
   1441   1.1   thorpej 	u_int64_t ism;
   1442   1.1   thorpej 
   1443   1.1   thorpej 	if (m == 0)
   1444  1.19     peter 		ism = HT_INFINITY;
   1445   1.1   thorpej 	else
   1446   1.1   thorpej 		ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
   1447  1.31       joe 	return ism;
   1448   1.1   thorpej }
   1449   1.1   thorpej 
   1450  1.12     perry static inline u_int64_t
   1451  1.19     peter d2dx(u_int d)
   1452   1.1   thorpej {
   1453   1.1   thorpej 	u_int64_t dx;
   1454  1.10     perry 
   1455   1.1   thorpej 	dx = ((u_int64_t)d * machclk_freq) / 1000;
   1456  1.31       joe 	return dx;
   1457   1.1   thorpej }
   1458   1.1   thorpej 
   1459  1.10     perry static u_int
   1460  1.19     peter sm2m(u_int64_t sm)
   1461   1.1   thorpej {
   1462   1.1   thorpej 	u_int64_t m;
   1463   1.1   thorpej 
   1464   1.1   thorpej 	m = (sm * 8 * machclk_freq) >> SM_SHIFT;
   1465   1.1   thorpej 	return ((u_int)m);
   1466   1.1   thorpej }
   1467   1.1   thorpej 
   1468  1.10     perry static u_int
   1469  1.19     peter dx2d(u_int64_t dx)
   1470   1.1   thorpej {
   1471   1.1   thorpej 	u_int64_t d;
   1472   1.1   thorpej 
   1473   1.1   thorpej 	d = dx * 1000 / machclk_freq;
   1474   1.1   thorpej 	return ((u_int)d);
   1475   1.1   thorpej }
   1476   1.1   thorpej 
   1477  1.10     perry static void
   1478  1.19     peter sc2isc(struct service_curve *sc, struct internal_sc *isc)
   1479   1.1   thorpej {
   1480   1.1   thorpej 	isc->sm1 = m2sm(sc->m1);
   1481   1.1   thorpej 	isc->ism1 = m2ism(sc->m1);
   1482   1.1   thorpej 	isc->dx = d2dx(sc->d);
   1483   1.1   thorpej 	isc->dy = seg_x2y(isc->dx, isc->sm1);
   1484   1.1   thorpej 	isc->sm2 = m2sm(sc->m2);
   1485   1.1   thorpej 	isc->ism2 = m2ism(sc->m2);
   1486   1.1   thorpej }
   1487   1.1   thorpej 
   1488   1.1   thorpej /*
   1489   1.1   thorpej  * initialize the runtime service curve with the given internal
   1490   1.1   thorpej  * service curve starting at (x, y).
   1491   1.1   thorpej  */
   1492  1.10     perry static void
   1493  1.19     peter rtsc_init(struct runtime_sc *rtsc, struct internal_sc * isc, u_int64_t x,
   1494  1.19     peter     u_int64_t y)
   1495   1.1   thorpej {
   1496   1.1   thorpej 	rtsc->x =	x;
   1497   1.1   thorpej 	rtsc->y =	y;
   1498   1.1   thorpej 	rtsc->sm1 =	isc->sm1;
   1499   1.1   thorpej 	rtsc->ism1 =	isc->ism1;
   1500   1.1   thorpej 	rtsc->dx =	isc->dx;
   1501   1.1   thorpej 	rtsc->dy =	isc->dy;
   1502   1.1   thorpej 	rtsc->sm2 =	isc->sm2;
   1503   1.1   thorpej 	rtsc->ism2 =	isc->ism2;
   1504   1.1   thorpej }
   1505   1.1   thorpej 
   1506   1.1   thorpej /*
   1507   1.1   thorpej  * calculate the y-projection of the runtime service curve by the
   1508   1.1   thorpej  * given x-projection value
   1509   1.1   thorpej  */
   1510  1.10     perry static u_int64_t
   1511  1.19     peter rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y)
   1512   1.1   thorpej {
   1513   1.1   thorpej 	u_int64_t	x;
   1514   1.1   thorpej 
   1515   1.1   thorpej 	if (y < rtsc->y)
   1516   1.1   thorpej 		x = rtsc->x;
   1517   1.1   thorpej 	else if (y <= rtsc->y + rtsc->dy) {
   1518   1.1   thorpej 		/* x belongs to the 1st segment */
   1519   1.1   thorpej 		if (rtsc->dy == 0)
   1520   1.1   thorpej 			x = rtsc->x + rtsc->dx;
   1521   1.1   thorpej 		else
   1522   1.1   thorpej 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
   1523   1.1   thorpej 	} else {
   1524   1.1   thorpej 		/* x belongs to the 2nd segment */
   1525   1.1   thorpej 		x = rtsc->x + rtsc->dx
   1526   1.1   thorpej 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
   1527   1.1   thorpej 	}
   1528  1.31       joe 	return x;
   1529   1.1   thorpej }
   1530   1.1   thorpej 
   1531  1.10     perry static u_int64_t
   1532  1.19     peter rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x)
   1533   1.1   thorpej {
   1534   1.1   thorpej 	u_int64_t	y;
   1535   1.1   thorpej 
   1536   1.1   thorpej 	if (x <= rtsc->x)
   1537   1.1   thorpej 		y = rtsc->y;
   1538   1.1   thorpej 	else if (x <= rtsc->x + rtsc->dx)
   1539   1.1   thorpej 		/* y belongs to the 1st segment */
   1540   1.1   thorpej 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
   1541   1.1   thorpej 	else
   1542   1.1   thorpej 		/* y belongs to the 2nd segment */
   1543   1.1   thorpej 		y = rtsc->y + rtsc->dy
   1544   1.1   thorpej 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
   1545  1.31       joe 	return y;
   1546   1.1   thorpej }
   1547   1.1   thorpej 
   1548   1.1   thorpej /*
   1549   1.1   thorpej  * update the runtime service curve by taking the minimum of the current
   1550   1.1   thorpej  * runtime service curve and the service curve starting at (x, y).
   1551   1.1   thorpej  */
   1552  1.10     perry static void
   1553  1.19     peter rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x,
   1554  1.19     peter     u_int64_t y)
   1555   1.1   thorpej {
   1556   1.1   thorpej 	u_int64_t	y1, y2, dx, dy;
   1557   1.1   thorpej 
   1558   1.1   thorpej 	if (isc->sm1 <= isc->sm2) {
   1559   1.1   thorpej 		/* service curve is convex */
   1560   1.1   thorpej 		y1 = rtsc_x2y(rtsc, x);
   1561   1.1   thorpej 		if (y1 < y)
   1562   1.1   thorpej 			/* the current rtsc is smaller */
   1563   1.1   thorpej 			return;
   1564   1.1   thorpej 		rtsc->x = x;
   1565   1.1   thorpej 		rtsc->y = y;
   1566   1.1   thorpej 		return;
   1567   1.1   thorpej 	}
   1568   1.1   thorpej 
   1569   1.1   thorpej 	/*
   1570   1.1   thorpej 	 * service curve is concave
   1571   1.1   thorpej 	 * compute the two y values of the current rtsc
   1572   1.1   thorpej 	 *	y1: at x
   1573   1.1   thorpej 	 *	y2: at (x + dx)
   1574   1.1   thorpej 	 */
   1575   1.1   thorpej 	y1 = rtsc_x2y(rtsc, x);
   1576   1.1   thorpej 	if (y1 <= y) {
   1577   1.1   thorpej 		/* rtsc is below isc, no change to rtsc */
   1578   1.1   thorpej 		return;
   1579   1.1   thorpej 	}
   1580   1.1   thorpej 
   1581   1.1   thorpej 	y2 = rtsc_x2y(rtsc, x + isc->dx);
   1582   1.1   thorpej 	if (y2 >= y + isc->dy) {
   1583   1.1   thorpej 		/* rtsc is above isc, replace rtsc by isc */
   1584   1.1   thorpej 		rtsc->x = x;
   1585   1.1   thorpej 		rtsc->y = y;
   1586   1.1   thorpej 		rtsc->dx = isc->dx;
   1587   1.1   thorpej 		rtsc->dy = isc->dy;
   1588   1.1   thorpej 		return;
   1589   1.1   thorpej 	}
   1590   1.1   thorpej 
   1591   1.1   thorpej 	/*
   1592   1.1   thorpej 	 * the two curves intersect
   1593   1.1   thorpej 	 * compute the offsets (dx, dy) using the reverse
   1594   1.1   thorpej 	 * function of seg_x2y()
   1595   1.1   thorpej 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
   1596   1.1   thorpej 	 */
   1597   1.1   thorpej 	dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
   1598   1.1   thorpej 	/*
   1599   1.1   thorpej 	 * check if (x, y1) belongs to the 1st segment of rtsc.
   1600   1.1   thorpej 	 * if so, add the offset.
   1601  1.10     perry 	 */
   1602   1.1   thorpej 	if (rtsc->x + rtsc->dx > x)
   1603   1.1   thorpej 		dx += rtsc->x + rtsc->dx - x;
   1604   1.1   thorpej 	dy = seg_x2y(dx, isc->sm1);
   1605   1.1   thorpej 
   1606   1.1   thorpej 	rtsc->x = x;
   1607   1.1   thorpej 	rtsc->y = y;
   1608   1.1   thorpej 	rtsc->dx = dx;
   1609   1.1   thorpej 	rtsc->dy = dy;
   1610   1.1   thorpej 	return;
   1611   1.1   thorpej }
   1612   1.1   thorpej 
   1613  1.19     peter static void
   1614  1.19     peter get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
   1615  1.19     peter {
   1616  1.19     peter 	sp->class_id = cl->cl_id;
   1617  1.19     peter 	sp->class_handle = cl->cl_handle;
   1618  1.19     peter 
   1619  1.19     peter 	if (cl->cl_rsc != NULL) {
   1620  1.19     peter 		sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
   1621  1.19     peter 		sp->rsc.d = dx2d(cl->cl_rsc->dx);
   1622  1.19     peter 		sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
   1623  1.19     peter 	} else {
   1624  1.19     peter 		sp->rsc.m1 = 0;
   1625  1.19     peter 		sp->rsc.d = 0;
   1626  1.19     peter 		sp->rsc.m2 = 0;
   1627  1.19     peter 	}
   1628  1.19     peter 	if (cl->cl_fsc != NULL) {
   1629  1.19     peter 		sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
   1630  1.19     peter 		sp->fsc.d = dx2d(cl->cl_fsc->dx);
   1631  1.19     peter 		sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
   1632  1.19     peter 	} else {
   1633  1.19     peter 		sp->fsc.m1 = 0;
   1634  1.19     peter 		sp->fsc.d = 0;
   1635  1.19     peter 		sp->fsc.m2 = 0;
   1636  1.19     peter 	}
   1637  1.19     peter 	if (cl->cl_usc != NULL) {
   1638  1.19     peter 		sp->usc.m1 = sm2m(cl->cl_usc->sm1);
   1639  1.19     peter 		sp->usc.d = dx2d(cl->cl_usc->dx);
   1640  1.19     peter 		sp->usc.m2 = sm2m(cl->cl_usc->sm2);
   1641  1.19     peter 	} else {
   1642  1.19     peter 		sp->usc.m1 = 0;
   1643  1.19     peter 		sp->usc.d = 0;
   1644  1.19     peter 		sp->usc.m2 = 0;
   1645  1.19     peter 	}
   1646  1.19     peter 
   1647  1.19     peter 	sp->total = cl->cl_total;
   1648  1.19     peter 	sp->cumul = cl->cl_cumul;
   1649  1.19     peter 
   1650  1.19     peter 	sp->d = cl->cl_d;
   1651  1.19     peter 	sp->e = cl->cl_e;
   1652  1.19     peter 	sp->vt = cl->cl_vt;
   1653  1.19     peter 	sp->f = cl->cl_f;
   1654  1.19     peter 
   1655  1.19     peter 	sp->initvt = cl->cl_initvt;
   1656  1.19     peter 	sp->vtperiod = cl->cl_vtperiod;
   1657  1.19     peter 	sp->parentperiod = cl->cl_parentperiod;
   1658  1.19     peter 	sp->nactive = cl->cl_nactive;
   1659  1.19     peter 	sp->vtoff = cl->cl_vtoff;
   1660  1.19     peter 	sp->cvtmax = cl->cl_cvtmax;
   1661  1.19     peter 	sp->myf = cl->cl_myf;
   1662  1.19     peter 	sp->cfmin = cl->cl_cfmin;
   1663  1.19     peter 	sp->cvtmin = cl->cl_cvtmin;
   1664  1.19     peter 	sp->myfadj = cl->cl_myfadj;
   1665  1.19     peter 	sp->vtadj = cl->cl_vtadj;
   1666  1.19     peter 
   1667  1.19     peter 	sp->cur_time = read_machclk();
   1668  1.19     peter 	sp->machclk_freq = machclk_freq;
   1669  1.19     peter 
   1670  1.19     peter 	sp->qlength = qlen(cl->cl_q);
   1671  1.19     peter 	sp->qlimit = qlimit(cl->cl_q);
   1672  1.19     peter 	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
   1673  1.19     peter 	sp->drop_cnt = cl->cl_stats.drop_cnt;
   1674  1.19     peter 	sp->period = cl->cl_stats.period;
   1675  1.19     peter 
   1676  1.19     peter 	sp->qtype = qtype(cl->cl_q);
   1677  1.19     peter #ifdef ALTQ_RED
   1678  1.19     peter 	if (q_is_red(cl->cl_q))
   1679  1.19     peter 		red_getstats(cl->cl_red, &sp->red[0]);
   1680  1.19     peter #endif
   1681  1.19     peter #ifdef ALTQ_RIO
   1682  1.19     peter 	if (q_is_rio(cl->cl_q))
   1683  1.19     peter 		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
   1684  1.19     peter #endif
   1685  1.19     peter }
   1686  1.19     peter 
   1687  1.19     peter /* convert a class handle to the corresponding class pointer */
   1688  1.19     peter static struct hfsc_class *
   1689  1.19     peter clh_to_clp(struct hfsc_if *hif, u_int32_t chandle)
   1690  1.19     peter {
   1691  1.19     peter 	int i;
   1692  1.19     peter 	struct hfsc_class *cl;
   1693  1.19     peter 
   1694  1.19     peter 	if (chandle == 0)
   1695  1.31       joe 		return NULL;
   1696  1.19     peter 	/*
   1697  1.19     peter 	 * first, try optimistically the slot matching the lower bits of
   1698  1.19     peter 	 * the handle.  if it fails, do the linear table search.
   1699  1.19     peter 	 */
   1700  1.19     peter 	i = chandle % HFSC_MAX_CLASSES;
   1701  1.19     peter 	if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
   1702  1.31       joe 		return cl;
   1703  1.19     peter 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
   1704  1.19     peter 		if ((cl = hif->hif_class_tbl[i]) != NULL &&
   1705  1.19     peter 		    cl->cl_handle == chandle)
   1706  1.31       joe 			return cl;
   1707  1.31       joe 	return NULL;
   1708  1.19     peter }
   1709  1.19     peter 
   1710  1.19     peter #ifdef ALTQ3_COMPAT
   1711  1.19     peter static struct hfsc_if *
   1712  1.22  christos hfsc_attach(struct ifaltq *ifq, u_int bandwidth)
   1713  1.19     peter {
   1714  1.19     peter 	struct hfsc_if *hif;
   1715  1.19     peter 
   1716  1.19     peter 	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
   1717  1.19     peter 	if (hif == NULL)
   1718  1.31       joe 		return NULL;
   1719  1.19     peter 
   1720  1.19     peter 	hif->hif_eligible = ellist_alloc();
   1721  1.19     peter 	if (hif->hif_eligible == NULL) {
   1722  1.19     peter 		free(hif, M_DEVBUF);
   1723  1.19     peter 		return NULL;
   1724  1.19     peter 	}
   1725  1.19     peter 
   1726  1.19     peter 	hif->hif_ifq = ifq;
   1727  1.19     peter 
   1728  1.19     peter 	/* add this state to the hfsc list */
   1729  1.19     peter 	hif->hif_next = hif_list;
   1730  1.19     peter 	hif_list = hif;
   1731  1.19     peter 
   1732  1.31       joe 	return hif;
   1733  1.19     peter }
   1734  1.19     peter 
   1735  1.25  christos static void
   1736  1.19     peter hfsc_detach(struct hfsc_if *hif)
   1737  1.19     peter {
   1738  1.19     peter 	(void)hfsc_clear_interface(hif);
   1739  1.19     peter 	(void)hfsc_class_destroy(hif->hif_rootclass);
   1740  1.19     peter 
   1741  1.19     peter 	/* remove this interface from the hif list */
   1742  1.19     peter 	if (hif_list == hif)
   1743  1.19     peter 		hif_list = hif->hif_next;
   1744  1.19     peter 	else {
   1745  1.19     peter 		struct hfsc_if *h;
   1746  1.19     peter 
   1747  1.19     peter 		for (h = hif_list; h != NULL; h = h->hif_next)
   1748  1.19     peter 			if (h->hif_next == hif) {
   1749  1.19     peter 				h->hif_next = hif->hif_next;
   1750  1.19     peter 				break;
   1751  1.19     peter 			}
   1752  1.19     peter 		ASSERT(h != NULL);
   1753  1.19     peter 	}
   1754  1.19     peter 
   1755  1.19     peter 	ellist_destroy(hif->hif_eligible);
   1756  1.19     peter 
   1757  1.19     peter 	free(hif, M_DEVBUF);
   1758  1.19     peter }
   1759  1.19     peter 
   1760  1.19     peter static int
   1761  1.19     peter hfsc_class_modify(struct hfsc_class *cl, struct service_curve *rsc,
   1762  1.19     peter     struct service_curve *fsc, struct service_curve *usc)
   1763  1.19     peter {
   1764  1.19     peter 	struct internal_sc *rsc_tmp, *fsc_tmp, *usc_tmp;
   1765  1.19     peter 	u_int64_t cur_time;
   1766  1.19     peter 	int s;
   1767  1.19     peter 
   1768  1.19     peter 	rsc_tmp = fsc_tmp = usc_tmp = NULL;
   1769  1.19     peter 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
   1770  1.19     peter 	    cl->cl_rsc == NULL) {
   1771  1.19     peter 		rsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
   1772  1.19     peter 		    M_WAITOK);
   1773  1.19     peter 		if (rsc_tmp == NULL)
   1774  1.31       joe 			return ENOMEM;
   1775  1.19     peter 	}
   1776  1.19     peter 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
   1777  1.19     peter 	    cl->cl_fsc == NULL) {
   1778  1.19     peter 		fsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
   1779  1.19     peter 		    M_WAITOK);
   1780  1.19     peter 		if (fsc_tmp == NULL)
   1781  1.31       joe 			return ENOMEM;
   1782  1.19     peter 	}
   1783  1.19     peter 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0) &&
   1784  1.19     peter 	    cl->cl_usc == NULL) {
   1785  1.19     peter 		usc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
   1786  1.19     peter 		    M_WAITOK);
   1787  1.19     peter 		if (usc_tmp == NULL)
   1788  1.31       joe 			return ENOMEM;
   1789  1.19     peter 	}
   1790  1.19     peter 
   1791  1.19     peter 	cur_time = read_machclk();
   1792  1.19     peter 	s = splnet();
   1793  1.19     peter 
   1794  1.19     peter 	if (rsc != NULL) {
   1795  1.19     peter 		if (rsc->m1 == 0 && rsc->m2 == 0) {
   1796  1.19     peter 			if (cl->cl_rsc != NULL) {
   1797  1.19     peter 				if (!qempty(cl->cl_q))
   1798  1.19     peter 					hfsc_purgeq(cl);
   1799  1.19     peter 				free(cl->cl_rsc, M_DEVBUF);
   1800  1.19     peter 				cl->cl_rsc = NULL;
   1801  1.19     peter 			}
   1802  1.19     peter 		} else {
   1803  1.19     peter 			if (cl->cl_rsc == NULL)
   1804  1.19     peter 				cl->cl_rsc = rsc_tmp;
   1805  1.19     peter 			sc2isc(rsc, cl->cl_rsc);
   1806  1.19     peter 			rtsc_init(&cl->cl_deadline, cl->cl_rsc, cur_time,
   1807  1.19     peter 			    cl->cl_cumul);
   1808  1.19     peter 			cl->cl_eligible = cl->cl_deadline;
   1809  1.19     peter 			if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
   1810  1.19     peter 				cl->cl_eligible.dx = 0;
   1811  1.19     peter 				cl->cl_eligible.dy = 0;
   1812  1.19     peter 			}
   1813  1.19     peter 		}
   1814  1.19     peter 	}
   1815  1.19     peter 
   1816  1.19     peter 	if (fsc != NULL) {
   1817  1.19     peter 		if (fsc->m1 == 0 && fsc->m2 == 0) {
   1818  1.19     peter 			if (cl->cl_fsc != NULL) {
   1819  1.19     peter 				if (!qempty(cl->cl_q))
   1820  1.19     peter 					hfsc_purgeq(cl);
   1821  1.19     peter 				free(cl->cl_fsc, M_DEVBUF);
   1822  1.19     peter 				cl->cl_fsc = NULL;
   1823  1.19     peter 			}
   1824  1.19     peter 		} else {
   1825  1.19     peter 			if (cl->cl_fsc == NULL)
   1826  1.19     peter 				cl->cl_fsc = fsc_tmp;
   1827  1.19     peter 			sc2isc(fsc, cl->cl_fsc);
   1828  1.19     peter 			rtsc_init(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt,
   1829  1.19     peter 			    cl->cl_total);
   1830  1.19     peter 		}
   1831  1.19     peter 	}
   1832  1.19     peter 
   1833  1.19     peter 	if (usc != NULL) {
   1834  1.19     peter 		if (usc->m1 == 0 && usc->m2 == 0) {
   1835  1.19     peter 			if (cl->cl_usc != NULL) {
   1836  1.19     peter 				free(cl->cl_usc, M_DEVBUF);
   1837  1.19     peter 				cl->cl_usc = NULL;
   1838  1.19     peter 				cl->cl_myf = 0;
   1839  1.19     peter 			}
   1840  1.19     peter 		} else {
   1841  1.19     peter 			if (cl->cl_usc == NULL)
   1842  1.19     peter 				cl->cl_usc = usc_tmp;
   1843  1.19     peter 			sc2isc(usc, cl->cl_usc);
   1844  1.19     peter 			rtsc_init(&cl->cl_ulimit, cl->cl_usc, cur_time,
   1845  1.19     peter 			    cl->cl_total);
   1846  1.19     peter 		}
   1847  1.19     peter 	}
   1848  1.19     peter 
   1849  1.19     peter 	if (!qempty(cl->cl_q)) {
   1850  1.19     peter 		if (cl->cl_rsc != NULL)
   1851  1.19     peter 			update_ed(cl, m_pktlen(qhead(cl->cl_q)));
   1852  1.19     peter 		if (cl->cl_fsc != NULL)
   1853  1.19     peter 			update_vf(cl, 0, cur_time);
   1854  1.19     peter 		/* is this enough? */
   1855  1.19     peter 	}
   1856  1.19     peter 
   1857  1.19     peter 	splx(s);
   1858  1.19     peter 
   1859  1.31       joe 	return 0;
   1860  1.19     peter }
   1861  1.19     peter 
   1862   1.1   thorpej /*
   1863   1.1   thorpej  * hfsc device interface
   1864   1.1   thorpej  */
   1865   1.1   thorpej int
   1866  1.22  christos hfscopen(dev_t dev, int flag, int fmt,
   1867  1.22  christos     struct lwp *l)
   1868   1.1   thorpej {
   1869   1.1   thorpej 	if (machclk_freq == 0)
   1870   1.1   thorpej 		init_machclk();
   1871   1.1   thorpej 
   1872   1.1   thorpej 	if (machclk_freq == 0) {
   1873   1.9       wiz 		printf("hfsc: no CPU clock available!\n");
   1874  1.31       joe 		return ENXIO;
   1875   1.1   thorpej 	}
   1876   1.1   thorpej 
   1877   1.1   thorpej 	/* everything will be done when the queueing scheme is attached. */
   1878   1.1   thorpej 	return 0;
   1879   1.1   thorpej }
   1880   1.1   thorpej 
   1881   1.1   thorpej int
   1882  1.22  christos hfscclose(dev_t dev, int flag, int fmt,
   1883  1.22  christos     struct lwp *l)
   1884   1.1   thorpej {
   1885   1.1   thorpej 	struct hfsc_if *hif;
   1886   1.1   thorpej 
   1887   1.1   thorpej 	while ((hif = hif_list) != NULL) {
   1888   1.1   thorpej 		/* destroy all */
   1889   1.1   thorpej 		if (ALTQ_IS_ENABLED(hif->hif_ifq))
   1890   1.1   thorpej 			altq_disable(hif->hif_ifq);
   1891   1.1   thorpej 
   1892  1.25  christos 		int error = altq_detach(hif->hif_ifq);
   1893  1.25  christos 		switch (error) {
   1894  1.25  christos 		case 0:
   1895  1.25  christos 		case ENXIO:	/* already disabled */
   1896  1.25  christos 			break;
   1897  1.25  christos 		default:
   1898  1.25  christos 			return error;
   1899  1.25  christos 		}
   1900  1.25  christos 		hfsc_detach(hif);
   1901   1.1   thorpej 	}
   1902   1.1   thorpej 
   1903  1.25  christos 	return 0;
   1904   1.1   thorpej }
   1905   1.1   thorpej 
   1906   1.1   thorpej int
   1907  1.23  christos hfscioctl(dev_t dev, ioctlcmd_t cmd, void *addr, int flag,
   1908  1.18  christos     struct lwp *l)
   1909   1.1   thorpej {
   1910   1.1   thorpej 	struct hfsc_if *hif;
   1911   1.1   thorpej 	struct hfsc_interface *ifacep;
   1912   1.1   thorpej 	int	error = 0;
   1913   1.1   thorpej 
   1914   1.1   thorpej 	/* check super-user privilege */
   1915   1.1   thorpej 	switch (cmd) {
   1916   1.1   thorpej 	case HFSC_GETSTATS:
   1917   1.1   thorpej 		break;
   1918   1.1   thorpej 	default:
   1919  1.21      elad 		if ((error = kauth_authorize_network(l->l_cred,
   1920  1.21      elad 		    KAUTH_NETWORK_ALTQ, KAUTH_REQ_NETWORK_ALTQ_HFSC, NULL,
   1921  1.21      elad 		    NULL, NULL)) != 0)
   1922  1.31       joe 			return error;
   1923   1.1   thorpej 		break;
   1924   1.1   thorpej 	}
   1925  1.10     perry 
   1926   1.1   thorpej 	switch (cmd) {
   1927   1.1   thorpej 
   1928   1.1   thorpej 	case HFSC_IF_ATTACH:
   1929   1.1   thorpej 		error = hfsccmd_if_attach((struct hfsc_attach *)addr);
   1930   1.1   thorpej 		break;
   1931   1.1   thorpej 
   1932   1.1   thorpej 	case HFSC_IF_DETACH:
   1933   1.1   thorpej 		error = hfsccmd_if_detach((struct hfsc_interface *)addr);
   1934   1.1   thorpej 		break;
   1935   1.1   thorpej 
   1936   1.1   thorpej 	case HFSC_ENABLE:
   1937   1.1   thorpej 	case HFSC_DISABLE:
   1938   1.1   thorpej 	case HFSC_CLEAR_HIERARCHY:
   1939   1.1   thorpej 		ifacep = (struct hfsc_interface *)addr;
   1940   1.1   thorpej 		if ((hif = altq_lookup(ifacep->hfsc_ifname,
   1941   1.1   thorpej 				       ALTQT_HFSC)) == NULL) {
   1942   1.1   thorpej 			error = EBADF;
   1943   1.1   thorpej 			break;
   1944   1.1   thorpej 		}
   1945   1.1   thorpej 
   1946   1.1   thorpej 		switch (cmd) {
   1947   1.1   thorpej 
   1948   1.1   thorpej 		case HFSC_ENABLE:
   1949   1.1   thorpej 			if (hif->hif_defaultclass == NULL) {
   1950  1.19     peter #ifdef ALTQ_DEBUG
   1951   1.1   thorpej 				printf("hfsc: no default class\n");
   1952   1.1   thorpej #endif
   1953   1.1   thorpej 				error = EINVAL;
   1954   1.1   thorpej 				break;
   1955   1.1   thorpej 			}
   1956   1.1   thorpej 			error = altq_enable(hif->hif_ifq);
   1957   1.1   thorpej 			break;
   1958   1.1   thorpej 
   1959   1.1   thorpej 		case HFSC_DISABLE:
   1960   1.1   thorpej 			error = altq_disable(hif->hif_ifq);
   1961   1.1   thorpej 			break;
   1962   1.1   thorpej 
   1963   1.1   thorpej 		case HFSC_CLEAR_HIERARCHY:
   1964   1.1   thorpej 			hfsc_clear_interface(hif);
   1965   1.1   thorpej 			break;
   1966   1.1   thorpej 		}
   1967   1.1   thorpej 		break;
   1968   1.1   thorpej 
   1969   1.1   thorpej 	case HFSC_ADD_CLASS:
   1970   1.1   thorpej 		error = hfsccmd_add_class((struct hfsc_add_class *)addr);
   1971   1.1   thorpej 		break;
   1972   1.1   thorpej 
   1973   1.1   thorpej 	case HFSC_DEL_CLASS:
   1974   1.1   thorpej 		error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
   1975   1.1   thorpej 		break;
   1976   1.1   thorpej 
   1977   1.1   thorpej 	case HFSC_MOD_CLASS:
   1978   1.1   thorpej 		error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
   1979   1.1   thorpej 		break;
   1980   1.1   thorpej 
   1981   1.1   thorpej 	case HFSC_ADD_FILTER:
   1982   1.1   thorpej 		error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
   1983   1.1   thorpej 		break;
   1984   1.1   thorpej 
   1985   1.1   thorpej 	case HFSC_DEL_FILTER:
   1986   1.1   thorpej 		error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
   1987   1.1   thorpej 		break;
   1988   1.1   thorpej 
   1989   1.1   thorpej 	case HFSC_GETSTATS:
   1990   1.1   thorpej 		error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
   1991   1.1   thorpej 		break;
   1992   1.1   thorpej 
   1993   1.1   thorpej 	default:
   1994   1.1   thorpej 		error = EINVAL;
   1995   1.1   thorpej 		break;
   1996   1.1   thorpej 	}
   1997   1.1   thorpej 	return error;
   1998   1.1   thorpej }
   1999   1.1   thorpej 
   2000   1.1   thorpej static int
   2001  1.19     peter hfsccmd_if_attach(struct hfsc_attach *ap)
   2002   1.1   thorpej {
   2003   1.1   thorpej 	struct hfsc_if *hif;
   2004   1.1   thorpej 	struct ifnet *ifp;
   2005   1.1   thorpej 	int error;
   2006  1.10     perry 
   2007   1.1   thorpej 	if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
   2008  1.31       joe 		return ENXIO;
   2009   1.1   thorpej 
   2010   1.1   thorpej 	if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
   2011  1.31       joe 		return ENOMEM;
   2012  1.10     perry 
   2013   1.1   thorpej 	/*
   2014   1.1   thorpej 	 * set HFSC to this ifnet structure.
   2015   1.1   thorpej 	 */
   2016   1.1   thorpej 	if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
   2017   1.1   thorpej 				 hfsc_enqueue, hfsc_dequeue, hfsc_request,
   2018   1.1   thorpej 				 &hif->hif_classifier, acc_classify)) != 0)
   2019  1.25  christos 		hfsc_detach(hif);
   2020   1.1   thorpej 
   2021  1.31       joe 	return error;
   2022   1.1   thorpej }
   2023   1.1   thorpej 
   2024   1.1   thorpej static int
   2025  1.19     peter hfsccmd_if_detach(struct hfsc_interface *ap)
   2026   1.1   thorpej {
   2027   1.1   thorpej 	struct hfsc_if *hif;
   2028   1.1   thorpej 	int error;
   2029   1.1   thorpej 
   2030   1.1   thorpej 	if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
   2031  1.31       joe 		return EBADF;
   2032  1.10     perry 
   2033   1.1   thorpej 	if (ALTQ_IS_ENABLED(hif->hif_ifq))
   2034   1.1   thorpej 		altq_disable(hif->hif_ifq);
   2035   1.1   thorpej 
   2036   1.1   thorpej 	if ((error = altq_detach(hif->hif_ifq)))
   2037  1.31       joe 		return error;
   2038   1.1   thorpej 
   2039  1.25  christos 	hfsc_detach(hif);
   2040  1.25  christos 	return 0;
   2041   1.1   thorpej }
   2042   1.1   thorpej 
   2043   1.1   thorpej static int
   2044  1.19     peter hfsccmd_add_class(struct hfsc_add_class *ap)
   2045   1.1   thorpej {
   2046   1.1   thorpej 	struct hfsc_if *hif;
   2047   1.1   thorpej 	struct hfsc_class *cl, *parent;
   2048  1.19     peter 	int	i;
   2049   1.1   thorpej 
   2050   1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2051  1.31       joe 		return EBADF;
   2052   1.1   thorpej 
   2053  1.19     peter 	if (ap->parent_handle == HFSC_NULLCLASS_HANDLE &&
   2054  1.19     peter 	    hif->hif_rootclass == NULL)
   2055  1.19     peter 		parent = NULL;
   2056  1.19     peter 	else if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL)
   2057  1.31       joe 		return EINVAL;
   2058  1.19     peter 
   2059  1.19     peter 	/* assign a class handle (use a free slot number for now) */
   2060  1.19     peter 	for (i = 1; i < HFSC_MAX_CLASSES; i++)
   2061  1.19     peter 		if (hif->hif_class_tbl[i] == NULL)
   2062  1.19     peter 			break;
   2063  1.19     peter 	if (i == HFSC_MAX_CLASSES)
   2064  1.31       joe 		return EBUSY;
   2065  1.10     perry 
   2066  1.19     peter 	if ((cl = hfsc_class_create(hif, &ap->service_curve, NULL, NULL,
   2067  1.19     peter 	    parent, ap->qlimit, ap->flags, i)) == NULL)
   2068  1.31       joe 		return ENOMEM;
   2069  1.10     perry 
   2070   1.1   thorpej 	/* return a class handle to the user */
   2071  1.19     peter 	ap->class_handle = i;
   2072  1.19     peter 
   2073  1.31       joe 	return 0;
   2074   1.1   thorpej }
   2075   1.1   thorpej 
   2076   1.1   thorpej static int
   2077  1.19     peter hfsccmd_delete_class(struct hfsc_delete_class *ap)
   2078   1.1   thorpej {
   2079   1.1   thorpej 	struct hfsc_if *hif;
   2080   1.1   thorpej 	struct hfsc_class *cl;
   2081   1.1   thorpej 
   2082   1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2083  1.31       joe 		return EBADF;
   2084   1.1   thorpej 
   2085   1.1   thorpej 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
   2086  1.31       joe 		return EINVAL;
   2087  1.10     perry 
   2088   1.1   thorpej 	return hfsc_class_destroy(cl);
   2089   1.1   thorpej }
   2090   1.1   thorpej 
   2091   1.1   thorpej static int
   2092  1.19     peter hfsccmd_modify_class(struct hfsc_modify_class *ap)
   2093   1.1   thorpej {
   2094   1.1   thorpej 	struct hfsc_if *hif;
   2095   1.1   thorpej 	struct hfsc_class *cl;
   2096   1.1   thorpej 	struct service_curve *rsc = NULL;
   2097   1.1   thorpej 	struct service_curve *fsc = NULL;
   2098  1.19     peter 	struct service_curve *usc = NULL;
   2099   1.1   thorpej 
   2100   1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2101  1.31       joe 		return EBADF;
   2102   1.1   thorpej 
   2103   1.1   thorpej 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
   2104  1.31       joe 		return EINVAL;
   2105   1.1   thorpej 
   2106   1.1   thorpej 	if (ap->sctype & HFSC_REALTIMESC)
   2107   1.1   thorpej 		rsc = &ap->service_curve;
   2108   1.1   thorpej 	if (ap->sctype & HFSC_LINKSHARINGSC)
   2109   1.1   thorpej 		fsc = &ap->service_curve;
   2110  1.19     peter 	if (ap->sctype & HFSC_UPPERLIMITSC)
   2111  1.19     peter 		usc = &ap->service_curve;
   2112   1.1   thorpej 
   2113  1.19     peter 	return hfsc_class_modify(cl, rsc, fsc, usc);
   2114   1.1   thorpej }
   2115   1.1   thorpej 
   2116   1.1   thorpej static int
   2117  1.19     peter hfsccmd_add_filter(struct hfsc_add_filter *ap)
   2118   1.1   thorpej {
   2119   1.1   thorpej 	struct hfsc_if *hif;
   2120   1.1   thorpej 	struct hfsc_class *cl;
   2121   1.1   thorpej 
   2122   1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2123  1.31       joe 		return EBADF;
   2124   1.1   thorpej 
   2125   1.1   thorpej 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
   2126  1.31       joe 		return EINVAL;
   2127   1.1   thorpej 
   2128   1.1   thorpej 	if (is_a_parent_class(cl)) {
   2129  1.19     peter #ifdef ALTQ_DEBUG
   2130   1.1   thorpej 		printf("hfsccmd_add_filter: not a leaf class!\n");
   2131   1.1   thorpej #endif
   2132  1.31       joe 		return EINVAL;
   2133   1.1   thorpej 	}
   2134   1.1   thorpej 
   2135   1.1   thorpej 	return acc_add_filter(&hif->hif_classifier, &ap->filter,
   2136   1.1   thorpej 			      cl, &ap->filter_handle);
   2137   1.1   thorpej }
   2138   1.1   thorpej 
   2139   1.1   thorpej static int
   2140  1.19     peter hfsccmd_delete_filter(struct hfsc_delete_filter *ap)
   2141   1.1   thorpej {
   2142   1.1   thorpej 	struct hfsc_if *hif;
   2143   1.1   thorpej 
   2144   1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2145  1.31       joe 		return EBADF;
   2146   1.1   thorpej 
   2147   1.1   thorpej 	return acc_delete_filter(&hif->hif_classifier,
   2148   1.1   thorpej 				 ap->filter_handle);
   2149   1.1   thorpej }
   2150   1.1   thorpej 
   2151   1.1   thorpej static int
   2152  1.19     peter hfsccmd_class_stats(struct hfsc_class_stats *ap)
   2153   1.1   thorpej {
   2154   1.1   thorpej 	struct hfsc_if *hif;
   2155   1.1   thorpej 	struct hfsc_class *cl;
   2156  1.19     peter 	struct hfsc_classstats stats, *usp;
   2157   1.1   thorpej 	int	n, nclasses, error;
   2158  1.10     perry 
   2159   1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2160  1.31       joe 		return EBADF;
   2161   1.1   thorpej 
   2162   1.1   thorpej 	ap->cur_time = read_machclk();
   2163  1.19     peter 	ap->machclk_freq = machclk_freq;
   2164   1.1   thorpej 	ap->hif_classes = hif->hif_classes;
   2165   1.1   thorpej 	ap->hif_packets = hif->hif_packets;
   2166   1.1   thorpej 
   2167   1.1   thorpej 	/* skip the first N classes in the tree */
   2168   1.1   thorpej 	nclasses = ap->nskip;
   2169   1.1   thorpej 	for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
   2170   1.1   thorpej 	     cl = hfsc_nextclass(cl), n++)
   2171   1.1   thorpej 		;
   2172   1.1   thorpej 	if (n != nclasses)
   2173  1.31       joe 		return EINVAL;
   2174   1.1   thorpej 
   2175   1.1   thorpej 	/* then, read the next N classes in the tree */
   2176   1.1   thorpej 	nclasses = ap->nclasses;
   2177   1.1   thorpej 	usp = ap->stats;
   2178   1.1   thorpej 	for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
   2179   1.1   thorpej 
   2180  1.29  riastrad 		memset(&stats, 0, sizeof(stats));
   2181   1.1   thorpej 		get_class_stats(&stats, cl);
   2182  1.10     perry 
   2183  1.23  christos 		if ((error = copyout((void *)&stats, (void *)usp++,
   2184   1.1   thorpej 				     sizeof(stats))) != 0)
   2185  1.31       joe 			return error;
   2186   1.1   thorpej 	}
   2187   1.1   thorpej 
   2188   1.1   thorpej 	ap->nclasses = n;
   2189   1.1   thorpej 
   2190  1.31       joe 	return 0;
   2191   1.1   thorpej }
   2192   1.1   thorpej 
   2193   1.1   thorpej #ifdef KLD_MODULE
   2194   1.1   thorpej 
   2195   1.1   thorpej static struct altqsw hfsc_sw =
   2196   1.1   thorpej 	{"hfsc", hfscopen, hfscclose, hfscioctl};
   2197   1.1   thorpej 
   2198   1.1   thorpej ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
   2199  1.19     peter MODULE_DEPEND(altq_hfsc, altq_red, 1, 1, 1);
   2200  1.19     peter MODULE_DEPEND(altq_hfsc, altq_rio, 1, 1, 1);
   2201   1.1   thorpej 
   2202   1.1   thorpej #endif /* KLD_MODULE */
   2203  1.19     peter #endif /* ALTQ3_COMPAT */
   2204   1.1   thorpej 
   2205   1.1   thorpej #endif /* ALTQ_HFSC */
   2206