Home | History | Annotate | Line # | Download | only in altq
altq_hfsc.c revision 1.22.4.1
      1  1.22.4.1     rmind /*	$NetBSD: altq_hfsc.c,v 1.22.4.1 2007/03/12 05:45:02 rmind Exp $	*/
      2      1.19     peter /*	$KAME: altq_hfsc.c,v 1.26 2005/04/13 03:44:24 suz Exp $	*/
      3       1.1   thorpej 
      4       1.1   thorpej /*
      5       1.1   thorpej  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
      6       1.1   thorpej  *
      7       1.1   thorpej  * Permission to use, copy, modify, and distribute this software and
      8       1.1   thorpej  * its documentation is hereby granted (including for commercial or
      9       1.1   thorpej  * for-profit use), provided that both the copyright notice and this
     10       1.1   thorpej  * permission notice appear in all copies of the software, derivative
     11      1.19     peter  * works, or modified versions, and any portions thereof.
     12       1.1   thorpej  *
     13       1.1   thorpej  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
     14       1.1   thorpej  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
     15       1.1   thorpej  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
     16       1.1   thorpej  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     17       1.1   thorpej  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     18       1.1   thorpej  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
     19       1.1   thorpej  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     20       1.1   thorpej  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
     21       1.1   thorpej  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     22       1.1   thorpej  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     23       1.1   thorpej  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     24       1.1   thorpej  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
     25       1.1   thorpej  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
     26       1.1   thorpej  * DAMAGE.
     27       1.1   thorpej  *
     28       1.1   thorpej  * Carnegie Mellon encourages (but does not require) users of this
     29       1.1   thorpej  * software to return any improvements or extensions that they make,
     30       1.1   thorpej  * and to grant Carnegie Mellon the rights to redistribute these
     31       1.1   thorpej  * changes without encumbrance.
     32       1.1   thorpej  */
     33       1.1   thorpej /*
     34       1.1   thorpej  * H-FSC is described in Proceedings of SIGCOMM'97,
     35      1.10     perry  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
     36       1.1   thorpej  * Real-Time and Priority Service"
     37       1.1   thorpej  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
     38      1.19     peter  *
     39      1.19     peter  * Oleg Cherevko <olwi (at) aq.ml.com.ua> added the upperlimit for link-sharing.
     40      1.19     peter  * when a class has an upperlimit, the fit-time is computed from the
     41      1.19     peter  * upperlimit service curve.  the link-sharing scheduler does not schedule
     42      1.19     peter  * a class whose fit-time exceeds the current time.
     43       1.1   thorpej  */
     44       1.5     lukem 
     45       1.5     lukem #include <sys/cdefs.h>
     46  1.22.4.1     rmind __KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.22.4.1 2007/03/12 05:45:02 rmind Exp $");
     47       1.1   thorpej 
     48      1.19     peter #ifdef _KERNEL_OPT
     49       1.1   thorpej #include "opt_altq.h"
     50       1.1   thorpej #include "opt_inet.h"
     51      1.20     peter #include "pf.h"
     52       1.1   thorpej #endif
     53       1.1   thorpej 
     54       1.1   thorpej #ifdef ALTQ_HFSC  /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
     55       1.1   thorpej 
     56       1.1   thorpej #include <sys/param.h>
     57       1.1   thorpej #include <sys/malloc.h>
     58       1.1   thorpej #include <sys/mbuf.h>
     59       1.1   thorpej #include <sys/socket.h>
     60      1.19     peter #include <sys/systm.h>
     61      1.19     peter #include <sys/errno.h>
     62      1.19     peter #include <sys/queue.h>
     63      1.19     peter #if 1 /* ALTQ3_COMPAT */
     64       1.1   thorpej #include <sys/sockio.h>
     65       1.1   thorpej #include <sys/proc.h>
     66       1.1   thorpej #include <sys/kernel.h>
     67      1.19     peter #endif /* ALTQ3_COMPAT */
     68      1.16  christos #include <sys/kauth.h>
     69       1.1   thorpej 
     70       1.1   thorpej #include <net/if.h>
     71      1.19     peter #include <netinet/in.h>
     72       1.1   thorpej 
     73      1.20     peter #if NPF > 0
     74      1.19     peter #include <net/pfvar.h>
     75      1.20     peter #endif
     76       1.1   thorpej #include <altq/altq.h>
     77      1.19     peter #include <altq/altq_hfsc.h>
     78      1.19     peter #ifdef ALTQ3_COMPAT
     79       1.1   thorpej #include <altq/altq_conf.h>
     80      1.19     peter #endif
     81       1.1   thorpej 
     82       1.1   thorpej /*
     83       1.1   thorpej  * function prototypes
     84       1.1   thorpej  */
     85      1.19     peter static int			 hfsc_clear_interface(struct hfsc_if *);
     86      1.19     peter static int			 hfsc_request(struct ifaltq *, int, void *);
     87      1.19     peter static void			 hfsc_purge(struct hfsc_if *);
     88      1.19     peter static struct hfsc_class	*hfsc_class_create(struct hfsc_if *,
     89      1.19     peter     struct service_curve *, struct service_curve *, struct service_curve *,
     90      1.19     peter     struct hfsc_class *, int, int, int);
     91      1.19     peter static int			 hfsc_class_destroy(struct hfsc_class *);
     92      1.19     peter static struct hfsc_class	*hfsc_nextclass(struct hfsc_class *);
     93      1.19     peter static int			 hfsc_enqueue(struct ifaltq *, struct mbuf *,
     94      1.19     peter 				    struct altq_pktattr *);
     95      1.19     peter static struct mbuf		*hfsc_dequeue(struct ifaltq *, int);
     96      1.19     peter 
     97      1.19     peter static int		 hfsc_addq(struct hfsc_class *, struct mbuf *);
     98      1.19     peter static struct mbuf	*hfsc_getq(struct hfsc_class *);
     99      1.19     peter static struct mbuf	*hfsc_pollq(struct hfsc_class *);
    100      1.19     peter static void		 hfsc_purgeq(struct hfsc_class *);
    101      1.19     peter 
    102      1.19     peter static void		 update_cfmin(struct hfsc_class *);
    103      1.19     peter static void		 set_active(struct hfsc_class *, int);
    104      1.19     peter static void		 set_passive(struct hfsc_class *);
    105      1.19     peter 
    106      1.19     peter static void		 init_ed(struct hfsc_class *, int);
    107      1.19     peter static void		 update_ed(struct hfsc_class *, int);
    108      1.19     peter static void		 update_d(struct hfsc_class *, int);
    109      1.19     peter static void		 init_vf(struct hfsc_class *, int);
    110      1.19     peter static void		 update_vf(struct hfsc_class *, int, u_int64_t);
    111      1.19     peter static ellist_t		*ellist_alloc(void);
    112      1.19     peter static void		 ellist_destroy(ellist_t *);
    113      1.19     peter static void		 ellist_insert(struct hfsc_class *);
    114      1.19     peter static void		 ellist_remove(struct hfsc_class *);
    115      1.19     peter static void		 ellist_update(struct hfsc_class *);
    116      1.19     peter struct hfsc_class	*ellist_get_mindl(ellist_t *, u_int64_t);
    117      1.19     peter static actlist_t	*actlist_alloc(void);
    118      1.19     peter static void		 actlist_destroy(actlist_t *);
    119      1.19     peter static void		 actlist_insert(struct hfsc_class *);
    120      1.19     peter static void		 actlist_remove(struct hfsc_class *);
    121      1.19     peter static void		 actlist_update(struct hfsc_class *);
    122      1.19     peter 
    123      1.19     peter static struct hfsc_class	*actlist_firstfit(struct hfsc_class *,
    124      1.19     peter 				    u_int64_t);
    125      1.19     peter 
    126      1.19     peter static inline u_int64_t	seg_x2y(u_int64_t, u_int64_t);
    127      1.19     peter static inline u_int64_t	seg_y2x(u_int64_t, u_int64_t);
    128      1.19     peter static inline u_int64_t	m2sm(u_int);
    129      1.19     peter static inline u_int64_t	m2ism(u_int);
    130      1.19     peter static inline u_int64_t	d2dx(u_int);
    131      1.19     peter static u_int			sm2m(u_int64_t);
    132      1.19     peter static u_int			dx2d(u_int64_t);
    133      1.19     peter 
    134      1.19     peter static void		sc2isc(struct service_curve *, struct internal_sc *);
    135      1.19     peter static void		rtsc_init(struct runtime_sc *, struct internal_sc *,
    136      1.19     peter 			    u_int64_t, u_int64_t);
    137      1.19     peter static u_int64_t	rtsc_y2x(struct runtime_sc *, u_int64_t);
    138      1.19     peter static u_int64_t	rtsc_x2y(struct runtime_sc *, u_int64_t);
    139      1.19     peter static void		rtsc_min(struct runtime_sc *, struct internal_sc *,
    140      1.19     peter 			    u_int64_t, u_int64_t);
    141      1.19     peter 
    142      1.19     peter static void			 get_class_stats(struct hfsc_classstats *,
    143      1.19     peter 				    struct hfsc_class *);
    144      1.19     peter static struct hfsc_class	*clh_to_clp(struct hfsc_if *, u_int32_t);
    145      1.19     peter 
    146      1.19     peter 
    147      1.19     peter #ifdef ALTQ3_COMPAT
    148      1.19     peter static struct hfsc_if *hfsc_attach(struct ifaltq *, u_int);
    149      1.19     peter static int hfsc_detach(struct hfsc_if *);
    150      1.19     peter static int hfsc_class_modify(struct hfsc_class *, struct service_curve *,
    151      1.19     peter     struct service_curve *, struct service_curve *);
    152      1.19     peter 
    153      1.19     peter static int hfsccmd_if_attach(struct hfsc_attach *);
    154      1.19     peter static int hfsccmd_if_detach(struct hfsc_interface *);
    155      1.19     peter static int hfsccmd_add_class(struct hfsc_add_class *);
    156      1.19     peter static int hfsccmd_delete_class(struct hfsc_delete_class *);
    157      1.19     peter static int hfsccmd_modify_class(struct hfsc_modify_class *);
    158      1.19     peter static int hfsccmd_add_filter(struct hfsc_add_filter *);
    159      1.19     peter static int hfsccmd_delete_filter(struct hfsc_delete_filter *);
    160      1.19     peter static int hfsccmd_class_stats(struct hfsc_class_stats *);
    161      1.19     peter 
    162      1.19     peter altqdev_decl(hfsc);
    163      1.19     peter #endif /* ALTQ3_COMPAT */
    164       1.1   thorpej 
    165       1.1   thorpej /*
    166       1.1   thorpej  * macros
    167       1.1   thorpej  */
    168       1.1   thorpej #define	is_a_parent_class(cl)	((cl)->cl_children != NULL)
    169       1.1   thorpej 
    170      1.19     peter #define	HT_INFINITY	0xffffffffffffffffLL	/* infinite time value */
    171      1.19     peter 
    172      1.19     peter #ifdef ALTQ3_COMPAT
    173       1.1   thorpej /* hif_list keeps all hfsc_if's allocated. */
    174       1.1   thorpej static struct hfsc_if *hif_list = NULL;
    175      1.19     peter #endif /* ALTQ3_COMPAT */
    176      1.19     peter 
    177      1.20     peter #if NPF > 0
    178      1.19     peter int
    179      1.19     peter hfsc_pfattach(struct pf_altq *a)
    180      1.19     peter {
    181      1.19     peter 	struct ifnet *ifp;
    182      1.19     peter 	int s, error;
    183      1.19     peter 
    184      1.19     peter 	if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
    185      1.19     peter 		return (EINVAL);
    186      1.19     peter 	s = splnet();
    187      1.19     peter 	error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
    188      1.19     peter 	    hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
    189      1.19     peter 	splx(s);
    190      1.19     peter 	return (error);
    191      1.19     peter }
    192       1.1   thorpej 
    193      1.19     peter int
    194      1.19     peter hfsc_add_altq(struct pf_altq *a)
    195       1.1   thorpej {
    196       1.1   thorpej 	struct hfsc_if *hif;
    197      1.19     peter 	struct ifnet *ifp;
    198      1.19     peter 
    199      1.19     peter 	if ((ifp = ifunit(a->ifname)) == NULL)
    200      1.19     peter 		return (EINVAL);
    201      1.19     peter 	if (!ALTQ_IS_READY(&ifp->if_snd))
    202      1.19     peter 		return (ENODEV);
    203       1.1   thorpej 
    204      1.13  christos 	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
    205       1.1   thorpej 	if (hif == NULL)
    206      1.19     peter 		return (ENOMEM);
    207       1.1   thorpej 
    208       1.1   thorpej 	hif->hif_eligible = ellist_alloc();
    209       1.1   thorpej 	if (hif->hif_eligible == NULL) {
    210      1.13  christos 		free(hif, M_DEVBUF);
    211      1.19     peter 		return (ENOMEM);
    212       1.1   thorpej 	}
    213       1.1   thorpej 
    214      1.19     peter 	hif->hif_ifq = &ifp->if_snd;
    215      1.19     peter 
    216      1.19     peter 	/* keep the state in pf_altq */
    217      1.19     peter 	a->altq_disc = hif;
    218      1.19     peter 
    219      1.19     peter 	return (0);
    220      1.19     peter }
    221      1.19     peter 
    222      1.19     peter int
    223      1.19     peter hfsc_remove_altq(struct pf_altq *a)
    224      1.19     peter {
    225      1.19     peter 	struct hfsc_if *hif;
    226      1.19     peter 
    227      1.19     peter 	if ((hif = a->altq_disc) == NULL)
    228      1.19     peter 		return (EINVAL);
    229      1.19     peter 	a->altq_disc = NULL;
    230      1.19     peter 
    231      1.19     peter 	(void)hfsc_clear_interface(hif);
    232      1.19     peter 	(void)hfsc_class_destroy(hif->hif_rootclass);
    233      1.19     peter 
    234      1.19     peter 	ellist_destroy(hif->hif_eligible);
    235      1.19     peter 
    236      1.19     peter 	free(hif, M_DEVBUF);
    237      1.19     peter 
    238      1.19     peter 	return (0);
    239      1.19     peter }
    240      1.19     peter 
    241      1.19     peter int
    242      1.19     peter hfsc_add_queue(struct pf_altq *a)
    243      1.19     peter {
    244      1.19     peter 	struct hfsc_if *hif;
    245      1.19     peter 	struct hfsc_class *cl, *parent;
    246      1.19     peter 	struct hfsc_opts *opts;
    247      1.19     peter 	struct service_curve rtsc, lssc, ulsc;
    248      1.19     peter 
    249      1.19     peter 	if ((hif = a->altq_disc) == NULL)
    250      1.19     peter 		return (EINVAL);
    251      1.19     peter 
    252      1.19     peter 	opts = &a->pq_u.hfsc_opts;
    253      1.19     peter 
    254      1.19     peter 	if (a->parent_qid == HFSC_NULLCLASS_HANDLE &&
    255      1.19     peter 	    hif->hif_rootclass == NULL)
    256      1.19     peter 		parent = NULL;
    257      1.19     peter 	else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
    258      1.19     peter 		return (EINVAL);
    259      1.19     peter 
    260      1.19     peter 	if (a->qid == 0)
    261      1.19     peter 		return (EINVAL);
    262      1.19     peter 
    263      1.19     peter 	if (clh_to_clp(hif, a->qid) != NULL)
    264      1.19     peter 		return (EBUSY);
    265       1.1   thorpej 
    266      1.19     peter 	rtsc.m1 = opts->rtsc_m1;
    267      1.19     peter 	rtsc.d  = opts->rtsc_d;
    268      1.19     peter 	rtsc.m2 = opts->rtsc_m2;
    269      1.19     peter 	lssc.m1 = opts->lssc_m1;
    270      1.19     peter 	lssc.d  = opts->lssc_d;
    271      1.19     peter 	lssc.m2 = opts->lssc_m2;
    272      1.19     peter 	ulsc.m1 = opts->ulsc_m1;
    273      1.19     peter 	ulsc.d  = opts->ulsc_d;
    274      1.19     peter 	ulsc.m2 = opts->ulsc_m2;
    275       1.1   thorpej 
    276      1.19     peter 	cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc,
    277      1.19     peter 	    parent, a->qlimit, opts->flags, a->qid);
    278      1.19     peter 	if (cl == NULL)
    279      1.19     peter 		return (ENOMEM);
    280       1.1   thorpej 
    281      1.19     peter 	return (0);
    282       1.1   thorpej }
    283       1.1   thorpej 
    284      1.19     peter int
    285      1.19     peter hfsc_remove_queue(struct pf_altq *a)
    286      1.19     peter {
    287       1.1   thorpej 	struct hfsc_if *hif;
    288      1.19     peter 	struct hfsc_class *cl;
    289      1.19     peter 
    290      1.19     peter 	if ((hif = a->altq_disc) == NULL)
    291      1.19     peter 		return (EINVAL);
    292      1.19     peter 
    293      1.19     peter 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
    294      1.19     peter 		return (EINVAL);
    295      1.19     peter 
    296      1.19     peter 	return (hfsc_class_destroy(cl));
    297      1.19     peter }
    298      1.19     peter 
    299      1.19     peter int
    300      1.19     peter hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
    301       1.1   thorpej {
    302      1.19     peter 	struct hfsc_if *hif;
    303      1.19     peter 	struct hfsc_class *cl;
    304      1.19     peter 	struct hfsc_classstats stats;
    305      1.19     peter 	int error = 0;
    306       1.1   thorpej 
    307      1.19     peter 	if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
    308      1.19     peter 		return (EBADF);
    309      1.10     perry 
    310      1.19     peter 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
    311      1.19     peter 		return (EINVAL);
    312       1.1   thorpej 
    313      1.19     peter 	if (*nbytes < sizeof(stats))
    314      1.19     peter 		return (EINVAL);
    315       1.1   thorpej 
    316      1.19     peter 	get_class_stats(&stats, cl);
    317       1.1   thorpej 
    318  1.22.4.1     rmind 	if ((error = copyout((void *)&stats, ubuf, sizeof(stats))) != 0)
    319      1.19     peter 		return (error);
    320      1.19     peter 	*nbytes = sizeof(stats);
    321       1.1   thorpej 	return (0);
    322       1.1   thorpej }
    323      1.20     peter #endif /* NPF > 0 */
    324       1.1   thorpej 
    325       1.1   thorpej /*
    326       1.1   thorpej  * bring the interface back to the initial state by discarding
    327       1.1   thorpej  * all the filters and classes except the root class.
    328       1.1   thorpej  */
    329       1.1   thorpej static int
    330      1.19     peter hfsc_clear_interface(struct hfsc_if *hif)
    331       1.1   thorpej {
    332       1.1   thorpej 	struct hfsc_class	*cl;
    333       1.1   thorpej 
    334      1.19     peter #ifdef ALTQ3_COMPAT
    335       1.1   thorpej 	/* free the filters for this interface */
    336       1.1   thorpej 	acc_discard_filters(&hif->hif_classifier, NULL, 1);
    337      1.19     peter #endif
    338       1.1   thorpej 
    339       1.1   thorpej 	/* clear out the classes */
    340      1.19     peter 	while (hif->hif_rootclass != NULL &&
    341      1.19     peter 	    (cl = hif->hif_rootclass->cl_children) != NULL) {
    342       1.1   thorpej 		/*
    343       1.1   thorpej 		 * remove the first leaf class found in the hierarchy
    344       1.1   thorpej 		 * then start over
    345       1.1   thorpej 		 */
    346       1.1   thorpej 		for (; cl != NULL; cl = hfsc_nextclass(cl)) {
    347       1.1   thorpej 			if (!is_a_parent_class(cl)) {
    348       1.1   thorpej 				(void)hfsc_class_destroy(cl);
    349       1.1   thorpej 				break;
    350       1.1   thorpej 			}
    351       1.1   thorpej 		}
    352       1.1   thorpej 	}
    353      1.10     perry 
    354       1.1   thorpej 	return (0);
    355       1.1   thorpej }
    356       1.1   thorpej 
    357       1.1   thorpej static int
    358      1.22  christos hfsc_request(struct ifaltq *ifq, int req, void *arg)
    359       1.1   thorpej {
    360       1.1   thorpej 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
    361       1.1   thorpej 
    362       1.1   thorpej 	switch (req) {
    363       1.1   thorpej 	case ALTRQ_PURGE:
    364       1.1   thorpej 		hfsc_purge(hif);
    365       1.1   thorpej 		break;
    366       1.1   thorpej 	}
    367       1.1   thorpej 	return (0);
    368       1.1   thorpej }
    369       1.1   thorpej 
    370       1.1   thorpej /* discard all the queued packets on the interface */
    371       1.1   thorpej static void
    372      1.19     peter hfsc_purge(struct hfsc_if *hif)
    373       1.1   thorpej {
    374       1.1   thorpej 	struct hfsc_class *cl;
    375       1.1   thorpej 
    376       1.1   thorpej 	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
    377       1.1   thorpej 		if (!qempty(cl->cl_q))
    378       1.1   thorpej 			hfsc_purgeq(cl);
    379       1.1   thorpej 	if (ALTQ_IS_ENABLED(hif->hif_ifq))
    380       1.1   thorpej 		hif->hif_ifq->ifq_len = 0;
    381       1.1   thorpej }
    382       1.1   thorpej 
    383       1.1   thorpej struct hfsc_class *
    384      1.19     peter hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
    385      1.19     peter     struct service_curve *fsc, struct service_curve *usc,
    386      1.19     peter     struct hfsc_class *parent, int qlimit, int flags, int qid)
    387       1.1   thorpej {
    388       1.1   thorpej 	struct hfsc_class *cl, *p;
    389      1.19     peter 	int i, s;
    390      1.19     peter 
    391      1.19     peter 	if (hif->hif_classes >= HFSC_MAX_CLASSES)
    392      1.19     peter 		return (NULL);
    393       1.1   thorpej 
    394       1.1   thorpej #ifndef ALTQ_RED
    395       1.1   thorpej 	if (flags & HFCF_RED) {
    396      1.19     peter #ifdef ALTQ_DEBUG
    397       1.1   thorpej 		printf("hfsc_class_create: RED not configured for HFSC!\n");
    398      1.19     peter #endif
    399       1.1   thorpej 		return (NULL);
    400       1.1   thorpej 	}
    401       1.1   thorpej #endif
    402       1.1   thorpej 
    403      1.13  christos 	cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_WAITOK|M_ZERO);
    404       1.1   thorpej 	if (cl == NULL)
    405       1.1   thorpej 		return (NULL);
    406       1.1   thorpej 
    407      1.13  christos 	cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_WAITOK|M_ZERO);
    408       1.1   thorpej 	if (cl->cl_q == NULL)
    409       1.1   thorpej 		goto err_ret;
    410       1.1   thorpej 
    411       1.1   thorpej 	cl->cl_actc = actlist_alloc();
    412       1.1   thorpej 	if (cl->cl_actc == NULL)
    413       1.1   thorpej 		goto err_ret;
    414       1.1   thorpej 
    415       1.1   thorpej 	if (qlimit == 0)
    416       1.1   thorpej 		qlimit = 50;  /* use default */
    417       1.1   thorpej 	qlimit(cl->cl_q) = qlimit;
    418       1.1   thorpej 	qtype(cl->cl_q) = Q_DROPTAIL;
    419       1.1   thorpej 	qlen(cl->cl_q) = 0;
    420       1.1   thorpej 	cl->cl_flags = flags;
    421       1.1   thorpej #ifdef ALTQ_RED
    422       1.1   thorpej 	if (flags & (HFCF_RED|HFCF_RIO)) {
    423       1.1   thorpej 		int red_flags, red_pkttime;
    424      1.19     peter 		u_int m2;
    425      1.19     peter 
    426      1.19     peter 		m2 = 0;
    427      1.19     peter 		if (rsc != NULL && rsc->m2 > m2)
    428      1.19     peter 			m2 = rsc->m2;
    429      1.19     peter 		if (fsc != NULL && fsc->m2 > m2)
    430      1.19     peter 			m2 = fsc->m2;
    431      1.19     peter 		if (usc != NULL && usc->m2 > m2)
    432      1.19     peter 			m2 = usc->m2;
    433       1.1   thorpej 
    434       1.1   thorpej 		red_flags = 0;
    435       1.1   thorpej 		if (flags & HFCF_ECN)
    436       1.1   thorpej 			red_flags |= REDF_ECN;
    437       1.1   thorpej #ifdef ALTQ_RIO
    438       1.1   thorpej 		if (flags & HFCF_CLEARDSCP)
    439       1.1   thorpej 			red_flags |= RIOF_CLEARDSCP;
    440       1.1   thorpej #endif
    441      1.19     peter 		if (m2 < 8)
    442       1.1   thorpej 			red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
    443       1.1   thorpej 		else
    444       1.1   thorpej 			red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
    445      1.19     peter 				* 1000 * 1000 * 1000 / (m2 / 8);
    446       1.1   thorpej 		if (flags & HFCF_RED) {
    447      1.19     peter 			cl->cl_red = red_alloc(0, 0,
    448      1.19     peter 			    qlimit(cl->cl_q) * 10/100,
    449      1.19     peter 			    qlimit(cl->cl_q) * 30/100,
    450      1.19     peter 			    red_flags, red_pkttime);
    451       1.1   thorpej 			if (cl->cl_red != NULL)
    452       1.1   thorpej 				qtype(cl->cl_q) = Q_RED;
    453       1.1   thorpej 		}
    454       1.1   thorpej #ifdef ALTQ_RIO
    455       1.1   thorpej 		else {
    456       1.1   thorpej 			cl->cl_red = (red_t *)rio_alloc(0, NULL,
    457      1.19     peter 			    red_flags, red_pkttime);
    458       1.1   thorpej 			if (cl->cl_red != NULL)
    459       1.1   thorpej 				qtype(cl->cl_q) = Q_RIO;
    460       1.1   thorpej 		}
    461       1.1   thorpej #endif
    462       1.1   thorpej 	}
    463       1.1   thorpej #endif /* ALTQ_RED */
    464       1.1   thorpej 
    465      1.19     peter 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
    466      1.13  christos 		cl->cl_rsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
    467      1.13  christos 		    M_WAITOK|M_ZERO);
    468       1.1   thorpej 		if (cl->cl_rsc == NULL)
    469       1.1   thorpej 			goto err_ret;
    470      1.19     peter 		sc2isc(rsc, cl->cl_rsc);
    471       1.1   thorpej 		rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
    472       1.1   thorpej 		rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
    473      1.19     peter 	}
    474      1.19     peter 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
    475      1.13  christos 		cl->cl_fsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
    476      1.13  christos 		    M_WAITOK|M_ZERO);
    477       1.1   thorpej 		if (cl->cl_fsc == NULL)
    478       1.1   thorpej 			goto err_ret;
    479      1.19     peter 		sc2isc(fsc, cl->cl_fsc);
    480       1.1   thorpej 		rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
    481       1.1   thorpej 	}
    482      1.19     peter 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
    483      1.19     peter 		cl->cl_usc = malloc(sizeof(struct internal_sc), M_DEVBUF,
    484      1.19     peter 		    M_WAITOK|M_ZERO);
    485      1.19     peter 		if (cl->cl_usc == NULL)
    486      1.19     peter 			goto err_ret;
    487      1.19     peter 		sc2isc(usc, cl->cl_usc);
    488      1.19     peter 		rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
    489      1.19     peter 	}
    490       1.1   thorpej 
    491       1.1   thorpej 	cl->cl_id = hif->hif_classid++;
    492      1.19     peter 	cl->cl_handle = qid;
    493       1.1   thorpej 	cl->cl_hif = hif;
    494       1.1   thorpej 	cl->cl_parent = parent;
    495       1.1   thorpej 
    496       1.3   thorpej 	s = splnet();
    497       1.1   thorpej 	hif->hif_classes++;
    498      1.19     peter 
    499      1.19     peter 	/*
    500      1.19     peter 	 * find a free slot in the class table.  if the slot matching
    501      1.19     peter 	 * the lower bits of qid is free, use this slot.  otherwise,
    502      1.19     peter 	 * use the first free slot.
    503      1.19     peter 	 */
    504      1.19     peter 	i = qid % HFSC_MAX_CLASSES;
    505      1.19     peter 	if (hif->hif_class_tbl[i] == NULL)
    506      1.19     peter 		hif->hif_class_tbl[i] = cl;
    507      1.19     peter 	else {
    508      1.19     peter 		for (i = 0; i < HFSC_MAX_CLASSES; i++)
    509      1.19     peter 			if (hif->hif_class_tbl[i] == NULL) {
    510      1.19     peter 				hif->hif_class_tbl[i] = cl;
    511      1.19     peter 				break;
    512      1.19     peter 			}
    513      1.19     peter 		if (i == HFSC_MAX_CLASSES) {
    514      1.19     peter 			splx(s);
    515      1.19     peter 			goto err_ret;
    516      1.19     peter 		}
    517      1.19     peter 	}
    518      1.19     peter 
    519       1.1   thorpej 	if (flags & HFCF_DEFAULTCLASS)
    520       1.1   thorpej 		hif->hif_defaultclass = cl;
    521       1.1   thorpej 
    522       1.1   thorpej 	if (parent == NULL) {
    523       1.1   thorpej 		/* this is root class */
    524      1.19     peter 		hif->hif_rootclass = cl;
    525      1.19     peter 	} else {
    526      1.19     peter 		/* add this class to the children list of the parent */
    527      1.19     peter 		if ((p = parent->cl_children) == NULL)
    528      1.19     peter 			parent->cl_children = cl;
    529      1.19     peter 		else {
    530      1.19     peter 			while (p->cl_siblings != NULL)
    531      1.19     peter 				p = p->cl_siblings;
    532      1.19     peter 			p->cl_siblings = cl;
    533      1.19     peter 		}
    534       1.1   thorpej 	}
    535       1.1   thorpej 	splx(s);
    536       1.1   thorpej 
    537       1.1   thorpej 	return (cl);
    538       1.1   thorpej 
    539       1.1   thorpej  err_ret:
    540       1.1   thorpej 	if (cl->cl_actc != NULL)
    541       1.1   thorpej 		actlist_destroy(cl->cl_actc);
    542       1.1   thorpej 	if (cl->cl_red != NULL) {
    543       1.1   thorpej #ifdef ALTQ_RIO
    544       1.1   thorpej 		if (q_is_rio(cl->cl_q))
    545       1.1   thorpej 			rio_destroy((rio_t *)cl->cl_red);
    546       1.1   thorpej #endif
    547       1.1   thorpej #ifdef ALTQ_RED
    548       1.1   thorpej 		if (q_is_red(cl->cl_q))
    549       1.1   thorpej 			red_destroy(cl->cl_red);
    550       1.1   thorpej #endif
    551       1.1   thorpej 	}
    552       1.1   thorpej 	if (cl->cl_fsc != NULL)
    553      1.13  christos 		free(cl->cl_fsc, M_DEVBUF);
    554       1.1   thorpej 	if (cl->cl_rsc != NULL)
    555      1.13  christos 		free(cl->cl_rsc, M_DEVBUF);
    556      1.19     peter 	if (cl->cl_usc != NULL)
    557      1.19     peter 		free(cl->cl_usc, M_DEVBUF);
    558       1.1   thorpej 	if (cl->cl_q != NULL)
    559      1.13  christos 		free(cl->cl_q, M_DEVBUF);
    560      1.13  christos 	free(cl, M_DEVBUF);
    561       1.1   thorpej 	return (NULL);
    562       1.1   thorpej }
    563       1.1   thorpej 
    564       1.1   thorpej static int
    565      1.19     peter hfsc_class_destroy(struct hfsc_class *cl)
    566       1.1   thorpej {
    567      1.19     peter 	int i, s;
    568      1.19     peter 
    569      1.19     peter 	if (cl == NULL)
    570      1.19     peter 		return (0);
    571       1.1   thorpej 
    572       1.1   thorpej 	if (is_a_parent_class(cl))
    573       1.1   thorpej 		return (EBUSY);
    574       1.1   thorpej 
    575       1.3   thorpej 	s = splnet();
    576       1.1   thorpej 
    577      1.19     peter #ifdef ALTQ3_COMPAT
    578       1.1   thorpej 	/* delete filters referencing to this class */
    579       1.1   thorpej 	acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
    580      1.19     peter #endif /* ALTQ3_COMPAT */
    581       1.1   thorpej 
    582       1.1   thorpej 	if (!qempty(cl->cl_q))
    583       1.1   thorpej 		hfsc_purgeq(cl);
    584       1.1   thorpej 
    585       1.1   thorpej 	if (cl->cl_parent == NULL) {
    586       1.1   thorpej 		/* this is root class */
    587       1.1   thorpej 	} else {
    588       1.1   thorpej 		struct hfsc_class *p = cl->cl_parent->cl_children;
    589       1.1   thorpej 
    590       1.1   thorpej 		if (p == cl)
    591       1.1   thorpej 			cl->cl_parent->cl_children = cl->cl_siblings;
    592       1.1   thorpej 		else do {
    593       1.1   thorpej 			if (p->cl_siblings == cl) {
    594       1.1   thorpej 				p->cl_siblings = cl->cl_siblings;
    595       1.1   thorpej 				break;
    596       1.1   thorpej 			}
    597       1.1   thorpej 		} while ((p = p->cl_siblings) != NULL);
    598       1.1   thorpej 		ASSERT(p != NULL);
    599       1.1   thorpej 	}
    600      1.19     peter 
    601      1.19     peter 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
    602      1.19     peter 		if (cl->cl_hif->hif_class_tbl[i] == cl) {
    603      1.19     peter 			cl->cl_hif->hif_class_tbl[i] = NULL;
    604      1.19     peter 			break;
    605      1.19     peter 		}
    606      1.19     peter 
    607       1.1   thorpej 	cl->cl_hif->hif_classes--;
    608       1.1   thorpej 	splx(s);
    609       1.1   thorpej 
    610       1.1   thorpej 	actlist_destroy(cl->cl_actc);
    611       1.1   thorpej 
    612       1.1   thorpej 	if (cl->cl_red != NULL) {
    613       1.1   thorpej #ifdef ALTQ_RIO
    614       1.1   thorpej 		if (q_is_rio(cl->cl_q))
    615       1.1   thorpej 			rio_destroy((rio_t *)cl->cl_red);
    616       1.1   thorpej #endif
    617       1.1   thorpej #ifdef ALTQ_RED
    618       1.1   thorpej 		if (q_is_red(cl->cl_q))
    619       1.1   thorpej 			red_destroy(cl->cl_red);
    620       1.1   thorpej #endif
    621       1.1   thorpej 	}
    622      1.19     peter 
    623      1.19     peter 	if (cl == cl->cl_hif->hif_rootclass)
    624      1.19     peter 		cl->cl_hif->hif_rootclass = NULL;
    625      1.19     peter 	if (cl == cl->cl_hif->hif_defaultclass)
    626      1.19     peter 		cl->cl_hif->hif_defaultclass = NULL;
    627      1.19     peter 
    628      1.19     peter 	if (cl->cl_usc != NULL)
    629      1.19     peter 		free(cl->cl_usc, M_DEVBUF);
    630       1.1   thorpej 	if (cl->cl_fsc != NULL)
    631      1.13  christos 		free(cl->cl_fsc, M_DEVBUF);
    632       1.1   thorpej 	if (cl->cl_rsc != NULL)
    633      1.13  christos 		free(cl->cl_rsc, M_DEVBUF);
    634      1.13  christos 	free(cl->cl_q, M_DEVBUF);
    635      1.13  christos 	free(cl, M_DEVBUF);
    636       1.1   thorpej 
    637       1.1   thorpej 	return (0);
    638       1.1   thorpej }
    639       1.1   thorpej 
    640       1.1   thorpej /*
    641       1.1   thorpej  * hfsc_nextclass returns the next class in the tree.
    642       1.1   thorpej  *   usage:
    643      1.19     peter  *	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
    644       1.1   thorpej  *		do_something;
    645       1.1   thorpej  */
    646       1.1   thorpej static struct hfsc_class *
    647      1.19     peter hfsc_nextclass(struct hfsc_class *cl)
    648       1.1   thorpej {
    649       1.1   thorpej 	if (cl->cl_children != NULL)
    650       1.1   thorpej 		cl = cl->cl_children;
    651       1.1   thorpej 	else if (cl->cl_siblings != NULL)
    652       1.1   thorpej 		cl = cl->cl_siblings;
    653       1.1   thorpej 	else {
    654       1.1   thorpej 		while ((cl = cl->cl_parent) != NULL)
    655       1.1   thorpej 			if (cl->cl_siblings) {
    656       1.1   thorpej 				cl = cl->cl_siblings;
    657       1.1   thorpej 				break;
    658       1.1   thorpej 			}
    659       1.1   thorpej 	}
    660       1.1   thorpej 
    661       1.1   thorpej 	return (cl);
    662       1.1   thorpej }
    663       1.1   thorpej 
    664       1.1   thorpej /*
    665       1.1   thorpej  * hfsc_enqueue is an enqueue function to be registered to
    666       1.1   thorpej  * (*altq_enqueue) in struct ifaltq.
    667       1.1   thorpej  */
    668      1.10     perry static int
    669      1.19     peter hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m, struct altq_pktattr *pktattr)
    670       1.1   thorpej {
    671       1.1   thorpej 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
    672       1.1   thorpej 	struct hfsc_class *cl;
    673      1.19     peter 	struct m_tag *t;
    674       1.1   thorpej 	int len;
    675       1.1   thorpej 
    676       1.1   thorpej 	/* grab class set by classifier */
    677      1.19     peter 	if ((m->m_flags & M_PKTHDR) == 0) {
    678      1.19     peter 		/* should not happen */
    679      1.19     peter 		printf("altq: packet for %s does not have pkthdr\n",
    680      1.19     peter 		    ifq->altq_ifp->if_xname);
    681      1.19     peter 		m_freem(m);
    682      1.19     peter 		return (ENOBUFS);
    683      1.19     peter 	}
    684      1.19     peter 	cl = NULL;
    685      1.19     peter 	if ((t = m_tag_find(m, PACKET_TAG_PF_QID, NULL)) != NULL)
    686      1.19     peter 		cl = clh_to_clp(hif, ((struct altq_tag *)(t+1))->qid);
    687      1.19     peter #ifdef ALTQ3_COMPAT
    688      1.19     peter 	else if ((ifq->altq_flags & ALTQF_CLASSIFY) && pktattr != NULL)
    689      1.19     peter 		cl = pktattr->pattr_class;
    690      1.19     peter #endif
    691      1.19     peter 	if (cl == NULL || is_a_parent_class(cl)) {
    692       1.1   thorpej 		cl = hif->hif_defaultclass;
    693      1.19     peter 		if (cl == NULL) {
    694      1.19     peter 			m_freem(m);
    695      1.19     peter 			return (ENOBUFS);
    696      1.19     peter 		}
    697      1.19     peter 	}
    698      1.19     peter #ifdef ALTQ3_COMPAT
    699      1.19     peter 	if (pktattr != NULL)
    700      1.19     peter 		cl->cl_pktattr = pktattr;  /* save proto hdr used by ECN */
    701      1.19     peter 	else
    702      1.19     peter #endif
    703      1.19     peter 		cl->cl_pktattr = NULL;
    704       1.1   thorpej 	len = m_pktlen(m);
    705       1.1   thorpej 	if (hfsc_addq(cl, m) != 0) {
    706       1.1   thorpej 		/* drop occurred.  mbuf was freed in hfsc_addq. */
    707       1.1   thorpej 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
    708       1.1   thorpej 		return (ENOBUFS);
    709       1.1   thorpej 	}
    710       1.1   thorpej 	IFQ_INC_LEN(ifq);
    711       1.1   thorpej 	cl->cl_hif->hif_packets++;
    712       1.1   thorpej 
    713       1.1   thorpej 	/* successfully queued. */
    714       1.1   thorpej 	if (qlen(cl->cl_q) == 1)
    715       1.1   thorpej 		set_active(cl, m_pktlen(m));
    716       1.1   thorpej 
    717       1.1   thorpej 	return (0);
    718       1.1   thorpej }
    719       1.1   thorpej 
    720       1.1   thorpej /*
    721       1.1   thorpej  * hfsc_dequeue is a dequeue function to be registered to
    722       1.1   thorpej  * (*altq_dequeue) in struct ifaltq.
    723       1.1   thorpej  *
    724       1.1   thorpej  * note: ALTDQ_POLL returns the next packet without removing the packet
    725       1.1   thorpej  *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
    726       1.1   thorpej  *	ALTDQ_REMOVE must return the same packet if called immediately
    727       1.1   thorpej  *	after ALTDQ_POLL.
    728       1.1   thorpej  */
    729       1.1   thorpej static struct mbuf *
    730      1.19     peter hfsc_dequeue(struct ifaltq *ifq, int op)
    731       1.1   thorpej {
    732       1.1   thorpej 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
    733       1.1   thorpej 	struct hfsc_class *cl;
    734       1.1   thorpej 	struct mbuf *m;
    735       1.1   thorpej 	int len, next_len;
    736       1.1   thorpej 	int realtime = 0;
    737      1.19     peter 	u_int64_t cur_time;
    738       1.1   thorpej 
    739       1.1   thorpej 	if (hif->hif_packets == 0)
    740       1.1   thorpej 		/* no packet in the tree */
    741       1.1   thorpej 		return (NULL);
    742       1.1   thorpej 
    743      1.19     peter 	cur_time = read_machclk();
    744      1.19     peter 
    745       1.1   thorpej 	if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
    746      1.10     perry 
    747       1.1   thorpej 		cl = hif->hif_pollcache;
    748       1.1   thorpej 		hif->hif_pollcache = NULL;
    749       1.1   thorpej 		/* check if the class was scheduled by real-time criteria */
    750      1.19     peter 		if (cl->cl_rsc != NULL)
    751       1.1   thorpej 			realtime = (cl->cl_e <= cur_time);
    752       1.1   thorpej 	} else {
    753       1.1   thorpej 		/*
    754       1.1   thorpej 		 * if there are eligible classes, use real-time criteria.
    755       1.1   thorpej 		 * find the class with the minimum deadline among
    756       1.1   thorpej 		 * the eligible classes.
    757       1.1   thorpej 		 */
    758      1.19     peter 		if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time))
    759      1.19     peter 		    != NULL) {
    760       1.1   thorpej 			realtime = 1;
    761       1.1   thorpej 		} else {
    762      1.19     peter #ifdef ALTQ_DEBUG
    763      1.19     peter 			int fits = 0;
    764      1.19     peter #endif
    765       1.1   thorpej 			/*
    766       1.1   thorpej 			 * use link-sharing criteria
    767       1.1   thorpej 			 * get the class with the minimum vt in the hierarchy
    768       1.1   thorpej 			 */
    769       1.1   thorpej 			cl = hif->hif_rootclass;
    770       1.1   thorpej 			while (is_a_parent_class(cl)) {
    771      1.19     peter 
    772      1.19     peter 				cl = actlist_firstfit(cl, cur_time);
    773      1.19     peter 				if (cl == NULL) {
    774      1.19     peter #ifdef ALTQ_DEBUG
    775      1.19     peter 					if (fits > 0)
    776      1.19     peter 						printf("%d fit but none found\n",fits);
    777      1.19     peter #endif
    778       1.1   thorpej 					return (NULL);
    779      1.19     peter 				}
    780      1.19     peter 				/*
    781      1.19     peter 				 * update parent's cl_cvtmin.
    782      1.19     peter 				 * don't update if the new vt is smaller.
    783      1.19     peter 				 */
    784      1.19     peter 				if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
    785      1.19     peter 					cl->cl_parent->cl_cvtmin = cl->cl_vt;
    786      1.19     peter #ifdef ALTQ_DEBUG
    787      1.19     peter 				fits++;
    788      1.19     peter #endif
    789       1.1   thorpej 			}
    790       1.1   thorpej 		}
    791       1.1   thorpej 
    792       1.1   thorpej 		if (op == ALTDQ_POLL) {
    793       1.1   thorpej 			hif->hif_pollcache = cl;
    794       1.1   thorpej 			m = hfsc_pollq(cl);
    795       1.1   thorpej 			return (m);
    796       1.1   thorpej 		}
    797       1.1   thorpej 	}
    798       1.1   thorpej 
    799       1.1   thorpej 	m = hfsc_getq(cl);
    800      1.19     peter 	if (m == NULL)
    801      1.19     peter 		panic("hfsc_dequeue:");
    802       1.1   thorpej 	len = m_pktlen(m);
    803       1.1   thorpej 	cl->cl_hif->hif_packets--;
    804       1.1   thorpej 	IFQ_DEC_LEN(ifq);
    805       1.1   thorpej 	PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
    806       1.1   thorpej 
    807      1.19     peter 	update_vf(cl, len, cur_time);
    808       1.1   thorpej 	if (realtime)
    809       1.1   thorpej 		cl->cl_cumul += len;
    810       1.1   thorpej 
    811       1.1   thorpej 	if (!qempty(cl->cl_q)) {
    812       1.1   thorpej 		if (cl->cl_rsc != NULL) {
    813       1.1   thorpej 			/* update ed */
    814       1.1   thorpej 			next_len = m_pktlen(qhead(cl->cl_q));
    815      1.10     perry 
    816       1.1   thorpej 			if (realtime)
    817       1.1   thorpej 				update_ed(cl, next_len);
    818       1.1   thorpej 			else
    819       1.1   thorpej 				update_d(cl, next_len);
    820       1.1   thorpej 		}
    821       1.1   thorpej 	} else {
    822       1.1   thorpej 		/* the class becomes passive */
    823       1.1   thorpej 		set_passive(cl);
    824       1.1   thorpej 	}
    825       1.1   thorpej 
    826       1.1   thorpej 	return (m);
    827       1.1   thorpej }
    828       1.1   thorpej 
    829       1.1   thorpej static int
    830      1.19     peter hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
    831       1.1   thorpej {
    832       1.1   thorpej 
    833       1.1   thorpej #ifdef ALTQ_RIO
    834       1.1   thorpej 	if (q_is_rio(cl->cl_q))
    835       1.1   thorpej 		return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
    836       1.1   thorpej 				m, cl->cl_pktattr);
    837       1.1   thorpej #endif
    838       1.1   thorpej #ifdef ALTQ_RED
    839       1.1   thorpej 	if (q_is_red(cl->cl_q))
    840       1.1   thorpej 		return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
    841       1.1   thorpej #endif
    842       1.1   thorpej 	if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
    843       1.1   thorpej 		m_freem(m);
    844       1.1   thorpej 		return (-1);
    845       1.1   thorpej 	}
    846       1.1   thorpej 
    847       1.1   thorpej 	if (cl->cl_flags & HFCF_CLEARDSCP)
    848       1.1   thorpej 		write_dsfield(m, cl->cl_pktattr, 0);
    849       1.1   thorpej 
    850       1.1   thorpej 	_addq(cl->cl_q, m);
    851       1.1   thorpej 
    852       1.1   thorpej 	return (0);
    853       1.1   thorpej }
    854       1.1   thorpej 
    855       1.1   thorpej static struct mbuf *
    856      1.19     peter hfsc_getq(struct hfsc_class *cl)
    857       1.1   thorpej {
    858       1.1   thorpej #ifdef ALTQ_RIO
    859       1.1   thorpej 	if (q_is_rio(cl->cl_q))
    860       1.1   thorpej 		return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
    861       1.1   thorpej #endif
    862       1.1   thorpej #ifdef ALTQ_RED
    863       1.1   thorpej 	if (q_is_red(cl->cl_q))
    864       1.1   thorpej 		return red_getq(cl->cl_red, cl->cl_q);
    865       1.1   thorpej #endif
    866       1.1   thorpej 	return _getq(cl->cl_q);
    867       1.1   thorpej }
    868       1.1   thorpej 
    869       1.1   thorpej static struct mbuf *
    870      1.19     peter hfsc_pollq(struct hfsc_class *cl)
    871       1.1   thorpej {
    872       1.1   thorpej 	return qhead(cl->cl_q);
    873       1.1   thorpej }
    874       1.1   thorpej 
    875       1.1   thorpej static void
    876      1.19     peter hfsc_purgeq(struct hfsc_class *cl)
    877       1.1   thorpej {
    878       1.1   thorpej 	struct mbuf *m;
    879       1.1   thorpej 
    880       1.1   thorpej 	if (qempty(cl->cl_q))
    881       1.1   thorpej 		return;
    882       1.1   thorpej 
    883       1.1   thorpej 	while ((m = _getq(cl->cl_q)) != NULL) {
    884       1.1   thorpej 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
    885       1.1   thorpej 		m_freem(m);
    886      1.19     peter 		cl->cl_hif->hif_packets--;
    887      1.19     peter 		IFQ_DEC_LEN(cl->cl_hif->hif_ifq);
    888       1.1   thorpej 	}
    889       1.1   thorpej 	ASSERT(qlen(cl->cl_q) == 0);
    890      1.10     perry 
    891      1.19     peter 	update_vf(cl, 0, 0);	/* remove cl from the actlist */
    892       1.1   thorpej 	set_passive(cl);
    893       1.1   thorpej }
    894       1.1   thorpej 
    895      1.10     perry static void
    896      1.19     peter set_active(struct hfsc_class *cl, int len)
    897       1.1   thorpej {
    898       1.1   thorpej 	if (cl->cl_rsc != NULL)
    899       1.1   thorpej 		init_ed(cl, len);
    900       1.1   thorpej 	if (cl->cl_fsc != NULL)
    901      1.19     peter 		init_vf(cl, len);
    902       1.1   thorpej 
    903       1.1   thorpej 	cl->cl_stats.period++;
    904       1.1   thorpej }
    905       1.1   thorpej 
    906      1.10     perry static void
    907      1.19     peter set_passive(struct hfsc_class *cl)
    908       1.1   thorpej {
    909       1.1   thorpej 	if (cl->cl_rsc != NULL)
    910       1.1   thorpej 		ellist_remove(cl);
    911       1.1   thorpej 
    912      1.19     peter 	/*
    913      1.19     peter 	 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
    914      1.19     peter 	 * needs to be called explicitly to remove a class from actlist
    915      1.19     peter 	 */
    916       1.1   thorpej }
    917       1.1   thorpej 
    918      1.10     perry static void
    919      1.19     peter init_ed(struct hfsc_class *cl, int next_len)
    920       1.1   thorpej {
    921       1.1   thorpej 	u_int64_t cur_time;
    922       1.1   thorpej 
    923       1.1   thorpej 	cur_time = read_machclk();
    924       1.1   thorpej 
    925       1.1   thorpej 	/* update the deadline curve */
    926       1.1   thorpej 	rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
    927       1.1   thorpej 
    928       1.1   thorpej 	/*
    929       1.1   thorpej 	 * update the eligible curve.
    930       1.1   thorpej 	 * for concave, it is equal to the deadline curve.
    931       1.1   thorpej 	 * for convex, it is a linear curve with slope m2.
    932       1.1   thorpej 	 */
    933       1.1   thorpej 	cl->cl_eligible = cl->cl_deadline;
    934       1.1   thorpej 	if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
    935       1.1   thorpej 		cl->cl_eligible.dx = 0;
    936       1.1   thorpej 		cl->cl_eligible.dy = 0;
    937       1.1   thorpej 	}
    938       1.1   thorpej 
    939       1.1   thorpej 	/* compute e and d */
    940       1.1   thorpej 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
    941       1.1   thorpej 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
    942       1.1   thorpej 
    943       1.1   thorpej 	ellist_insert(cl);
    944       1.1   thorpej }
    945       1.1   thorpej 
    946      1.10     perry static void
    947      1.19     peter update_ed(struct hfsc_class *cl, int next_len)
    948       1.1   thorpej {
    949       1.1   thorpej 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
    950       1.1   thorpej 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
    951       1.1   thorpej 
    952       1.1   thorpej 	ellist_update(cl);
    953       1.1   thorpej }
    954       1.1   thorpej 
    955      1.10     perry static void
    956      1.19     peter update_d(struct hfsc_class *cl, int next_len)
    957       1.1   thorpej {
    958       1.1   thorpej 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
    959       1.1   thorpej }
    960       1.1   thorpej 
    961      1.10     perry static void
    962      1.22  christos init_vf(struct hfsc_class *cl, int len)
    963       1.1   thorpej {
    964      1.19     peter 	struct hfsc_class *max_cl, *p;
    965      1.19     peter 	u_int64_t vt, f, cur_time;
    966      1.19     peter 	int go_active;
    967      1.19     peter 
    968      1.19     peter 	cur_time = 0;
    969      1.19     peter 	go_active = 1;
    970      1.19     peter 	for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
    971       1.1   thorpej 
    972      1.19     peter 		if (go_active && cl->cl_nactive++ == 0)
    973      1.19     peter 			go_active = 1;
    974      1.19     peter 		else
    975      1.19     peter 			go_active = 0;
    976      1.10     perry 
    977      1.19     peter 		if (go_active) {
    978      1.19     peter 			max_cl = actlist_last(cl->cl_parent->cl_actc);
    979      1.19     peter 			if (max_cl != NULL) {
    980      1.19     peter 				/*
    981      1.19     peter 				 * set vt to the average of the min and max
    982      1.19     peter 				 * classes.  if the parent's period didn't
    983      1.19     peter 				 * change, don't decrease vt of the class.
    984      1.19     peter 				 */
    985      1.19     peter 				vt = max_cl->cl_vt;
    986      1.19     peter 				if (cl->cl_parent->cl_cvtmin != 0)
    987      1.19     peter 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
    988      1.19     peter 
    989      1.19     peter 				if (cl->cl_parent->cl_vtperiod !=
    990      1.19     peter 				    cl->cl_parentperiod || vt > cl->cl_vt)
    991      1.19     peter 					cl->cl_vt = vt;
    992      1.19     peter 			} else {
    993      1.19     peter 				/*
    994      1.19     peter 				 * first child for a new parent backlog period.
    995      1.19     peter 				 * add parent's cvtmax to vtoff of children
    996      1.19     peter 				 * to make a new vt (vtoff + vt) larger than
    997      1.19     peter 				 * the vt in the last period for all children.
    998      1.19     peter 				 */
    999      1.19     peter 				vt = cl->cl_parent->cl_cvtmax;
   1000      1.19     peter 				for (p = cl->cl_parent->cl_children; p != NULL;
   1001      1.19     peter 				     p = p->cl_siblings)
   1002      1.19     peter 					p->cl_vtoff += vt;
   1003      1.19     peter 				cl->cl_vt = 0;
   1004      1.19     peter 				cl->cl_parent->cl_cvtmax = 0;
   1005      1.19     peter 				cl->cl_parent->cl_cvtmin = 0;
   1006      1.19     peter 			}
   1007      1.19     peter 			cl->cl_initvt = cl->cl_vt;
   1008       1.1   thorpej 
   1009      1.19     peter 			/* update the virtual curve */
   1010      1.19     peter 			vt = cl->cl_vt + cl->cl_vtoff;
   1011      1.19     peter 			rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
   1012      1.19     peter 			if (cl->cl_virtual.x == vt) {
   1013      1.19     peter 				cl->cl_virtual.x -= cl->cl_vtoff;
   1014      1.19     peter 				cl->cl_vtoff = 0;
   1015      1.19     peter 			}
   1016      1.19     peter 			cl->cl_vtadj = 0;
   1017       1.1   thorpej 
   1018      1.19     peter 			cl->cl_vtperiod++;  /* increment vt period */
   1019      1.19     peter 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
   1020      1.19     peter 			if (cl->cl_parent->cl_nactive == 0)
   1021      1.19     peter 				cl->cl_parentperiod++;
   1022      1.19     peter 			cl->cl_f = 0;
   1023      1.19     peter 
   1024      1.19     peter 			actlist_insert(cl);
   1025      1.19     peter 
   1026      1.19     peter 			if (cl->cl_usc != NULL) {
   1027      1.19     peter 				/* class has upper limit curve */
   1028      1.19     peter 				if (cur_time == 0)
   1029      1.19     peter 					cur_time = read_machclk();
   1030      1.19     peter 
   1031      1.19     peter 				/* update the ulimit curve */
   1032      1.19     peter 				rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
   1033      1.19     peter 				    cl->cl_total);
   1034      1.19     peter 				/* compute myf */
   1035      1.19     peter 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
   1036      1.19     peter 				    cl->cl_total);
   1037      1.19     peter 				cl->cl_myfadj = 0;
   1038      1.19     peter 			}
   1039       1.1   thorpej 		}
   1040       1.1   thorpej 
   1041      1.19     peter 		if (cl->cl_myf > cl->cl_cfmin)
   1042      1.19     peter 			f = cl->cl_myf;
   1043      1.19     peter 		else
   1044      1.19     peter 			f = cl->cl_cfmin;
   1045      1.19     peter 		if (f != cl->cl_f) {
   1046      1.19     peter 			cl->cl_f = f;
   1047      1.19     peter 			update_cfmin(cl->cl_parent);
   1048      1.19     peter 		}
   1049       1.1   thorpej 	}
   1050       1.1   thorpej }
   1051       1.1   thorpej 
   1052      1.10     perry static void
   1053      1.19     peter update_vf(struct hfsc_class *cl, int len, u_int64_t cur_time)
   1054       1.1   thorpej {
   1055      1.19     peter 	u_int64_t f, myf_bound, delta;
   1056      1.19     peter 	int go_passive;
   1057      1.19     peter 
   1058      1.19     peter 	go_passive = qempty(cl->cl_q);
   1059      1.19     peter 
   1060      1.19     peter 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
   1061       1.1   thorpej 
   1062       1.1   thorpej 		cl->cl_total += len;
   1063       1.1   thorpej 
   1064      1.19     peter 		if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
   1065      1.19     peter 			continue;
   1066      1.19     peter 
   1067      1.19     peter 		if (go_passive && --cl->cl_nactive == 0)
   1068      1.19     peter 			go_passive = 1;
   1069      1.19     peter 		else
   1070      1.19     peter 			go_passive = 0;
   1071      1.19     peter 
   1072      1.19     peter 		if (go_passive) {
   1073      1.19     peter 			/* no more active child, going passive */
   1074      1.19     peter 
   1075      1.19     peter 			/* update cvtmax of the parent class */
   1076      1.19     peter 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
   1077      1.19     peter 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
   1078      1.19     peter 
   1079      1.19     peter 			/* remove this class from the vt list */
   1080      1.19     peter 			actlist_remove(cl);
   1081      1.19     peter 
   1082      1.19     peter 			update_cfmin(cl->cl_parent);
   1083      1.19     peter 
   1084      1.19     peter 			continue;
   1085      1.19     peter 		}
   1086      1.19     peter 
   1087      1.19     peter 		/*
   1088      1.19     peter 		 * update vt and f
   1089      1.19     peter 		 */
   1090      1.19     peter 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
   1091      1.19     peter 		    - cl->cl_vtoff + cl->cl_vtadj;
   1092      1.19     peter 
   1093      1.19     peter 		/*
   1094      1.19     peter 		 * if vt of the class is smaller than cvtmin,
   1095      1.19     peter 		 * the class was skipped in the past due to non-fit.
   1096      1.19     peter 		 * if so, we need to adjust vtadj.
   1097      1.19     peter 		 */
   1098      1.19     peter 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
   1099      1.19     peter 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
   1100      1.19     peter 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
   1101      1.19     peter 		}
   1102      1.19     peter 
   1103      1.19     peter 		/* update the vt list */
   1104      1.19     peter 		actlist_update(cl);
   1105      1.19     peter 
   1106      1.19     peter 		if (cl->cl_usc != NULL) {
   1107      1.19     peter 			cl->cl_myf = cl->cl_myfadj
   1108      1.19     peter 			    + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
   1109      1.19     peter 
   1110      1.19     peter 			/*
   1111      1.19     peter 			 * if myf lags behind by more than one clock tick
   1112      1.19     peter 			 * from the current time, adjust myfadj to prevent
   1113      1.19     peter 			 * a rate-limited class from going greedy.
   1114      1.19     peter 			 * in a steady state under rate-limiting, myf
   1115      1.19     peter 			 * fluctuates within one clock tick.
   1116      1.19     peter 			 */
   1117      1.19     peter 			myf_bound = cur_time - machclk_per_tick;
   1118      1.19     peter 			if (cl->cl_myf < myf_bound) {
   1119      1.19     peter 				delta = cur_time - cl->cl_myf;
   1120      1.19     peter 				cl->cl_myfadj += delta;
   1121      1.19     peter 				cl->cl_myf += delta;
   1122      1.19     peter 			}
   1123      1.19     peter 		}
   1124       1.1   thorpej 
   1125      1.19     peter 		/* cl_f is max(cl_myf, cl_cfmin) */
   1126      1.19     peter 		if (cl->cl_myf > cl->cl_cfmin)
   1127      1.19     peter 			f = cl->cl_myf;
   1128      1.19     peter 		else
   1129      1.19     peter 			f = cl->cl_cfmin;
   1130      1.19     peter 		if (f != cl->cl_f) {
   1131      1.19     peter 			cl->cl_f = f;
   1132      1.19     peter 			update_cfmin(cl->cl_parent);
   1133       1.1   thorpej 		}
   1134      1.19     peter 	}
   1135      1.19     peter }
   1136      1.19     peter 
   1137      1.19     peter static void
   1138      1.19     peter update_cfmin(struct hfsc_class *cl)
   1139      1.19     peter {
   1140      1.19     peter 	struct hfsc_class *p;
   1141      1.19     peter 	u_int64_t cfmin;
   1142       1.1   thorpej 
   1143      1.19     peter 	if (TAILQ_EMPTY(cl->cl_actc)) {
   1144      1.19     peter 		cl->cl_cfmin = 0;
   1145      1.19     peter 		return;
   1146      1.19     peter 	}
   1147      1.19     peter 	cfmin = HT_INFINITY;
   1148      1.19     peter 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
   1149      1.19     peter 		if (p->cl_f == 0) {
   1150      1.19     peter 			cl->cl_cfmin = 0;
   1151      1.19     peter 			return;
   1152      1.19     peter 		}
   1153      1.19     peter 		if (p->cl_f < cfmin)
   1154      1.19     peter 			cfmin = p->cl_f;
   1155       1.1   thorpej 	}
   1156      1.19     peter 	cl->cl_cfmin = cfmin;
   1157       1.1   thorpej }
   1158       1.1   thorpej 
   1159       1.1   thorpej /*
   1160       1.1   thorpej  * TAILQ based ellist and actlist implementation
   1161       1.1   thorpej  * (ion wanted to make a calendar queue based implementation)
   1162       1.1   thorpej  */
   1163       1.1   thorpej /*
   1164       1.1   thorpej  * eligible list holds backlogged classes being sorted by their eligible times.
   1165       1.1   thorpej  * there is one eligible list per interface.
   1166       1.1   thorpej  */
   1167       1.1   thorpej 
   1168       1.1   thorpej static ellist_t *
   1169      1.19     peter ellist_alloc(void)
   1170       1.1   thorpej {
   1171       1.1   thorpej 	ellist_t *head;
   1172      1.10     perry 
   1173      1.13  christos 	head = malloc(sizeof(ellist_t), M_DEVBUF, M_WAITOK);
   1174      1.19     peter 	TAILQ_INIT(head);
   1175       1.1   thorpej 	return (head);
   1176       1.1   thorpej }
   1177       1.1   thorpej 
   1178       1.1   thorpej static void
   1179      1.19     peter ellist_destroy(ellist_t *head)
   1180       1.1   thorpej {
   1181      1.13  christos 	free(head, M_DEVBUF);
   1182       1.1   thorpej }
   1183       1.1   thorpej 
   1184      1.10     perry static void
   1185      1.19     peter ellist_insert(struct hfsc_class *cl)
   1186       1.1   thorpej {
   1187       1.1   thorpej 	struct hfsc_if	*hif = cl->cl_hif;
   1188       1.1   thorpej 	struct hfsc_class *p;
   1189       1.1   thorpej 
   1190       1.1   thorpej 	/* check the last entry first */
   1191       1.1   thorpej 	if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
   1192       1.1   thorpej 	    p->cl_e <= cl->cl_e) {
   1193       1.1   thorpej 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
   1194       1.1   thorpej 		return;
   1195       1.1   thorpej 	}
   1196       1.1   thorpej 
   1197       1.1   thorpej 	TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
   1198       1.1   thorpej 		if (cl->cl_e < p->cl_e) {
   1199       1.1   thorpej 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
   1200       1.1   thorpej 			return;
   1201       1.1   thorpej 		}
   1202       1.1   thorpej 	}
   1203       1.1   thorpej 	ASSERT(0); /* should not reach here */
   1204       1.1   thorpej }
   1205       1.1   thorpej 
   1206      1.10     perry static void
   1207      1.19     peter ellist_remove(struct hfsc_class *cl)
   1208       1.1   thorpej {
   1209       1.1   thorpej 	struct hfsc_if	*hif = cl->cl_hif;
   1210      1.10     perry 
   1211       1.1   thorpej 	TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
   1212       1.1   thorpej }
   1213       1.1   thorpej 
   1214      1.10     perry static void
   1215      1.19     peter ellist_update(struct hfsc_class *cl)
   1216       1.1   thorpej {
   1217       1.1   thorpej 	struct hfsc_if	*hif = cl->cl_hif;
   1218       1.1   thorpej 	struct hfsc_class *p, *last;
   1219       1.1   thorpej 
   1220       1.1   thorpej 	/*
   1221       1.1   thorpej 	 * the eligible time of a class increases monotonically.
   1222       1.1   thorpej 	 * if the next entry has a larger eligible time, nothing to do.
   1223       1.1   thorpej 	 */
   1224       1.1   thorpej 	p = TAILQ_NEXT(cl, cl_ellist);
   1225       1.1   thorpej 	if (p == NULL || cl->cl_e <= p->cl_e)
   1226       1.1   thorpej 		return;
   1227       1.1   thorpej 
   1228       1.1   thorpej 	/* check the last entry */
   1229       1.1   thorpej 	last = TAILQ_LAST(hif->hif_eligible, _eligible);
   1230       1.1   thorpej 	ASSERT(last != NULL);
   1231       1.1   thorpej 	if (last->cl_e <= cl->cl_e) {
   1232       1.1   thorpej 		TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
   1233       1.1   thorpej 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
   1234       1.1   thorpej 		return;
   1235       1.1   thorpej 	}
   1236       1.1   thorpej 
   1237       1.1   thorpej 	/*
   1238       1.1   thorpej 	 * the new position must be between the next entry
   1239       1.1   thorpej 	 * and the last entry
   1240       1.1   thorpej 	 */
   1241       1.1   thorpej 	while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
   1242       1.1   thorpej 		if (cl->cl_e < p->cl_e) {
   1243       1.1   thorpej 			TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
   1244       1.1   thorpej 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
   1245       1.1   thorpej 			return;
   1246       1.1   thorpej 		}
   1247       1.1   thorpej 	}
   1248       1.1   thorpej 	ASSERT(0); /* should not reach here */
   1249       1.1   thorpej }
   1250       1.1   thorpej 
   1251       1.1   thorpej /* find the class with the minimum deadline among the eligible classes */
   1252       1.1   thorpej struct hfsc_class *
   1253      1.19     peter ellist_get_mindl(ellist_t *head, u_int64_t cur_time)
   1254       1.1   thorpej {
   1255       1.1   thorpej 	struct hfsc_class *p, *cl = NULL;
   1256       1.1   thorpej 
   1257       1.1   thorpej 	TAILQ_FOREACH(p, head, cl_ellist) {
   1258       1.1   thorpej 		if (p->cl_e > cur_time)
   1259       1.1   thorpej 			break;
   1260       1.1   thorpej 		if (cl == NULL || p->cl_d < cl->cl_d)
   1261       1.1   thorpej 			cl = p;
   1262       1.1   thorpej 	}
   1263       1.1   thorpej 	return (cl);
   1264       1.1   thorpej }
   1265       1.1   thorpej 
   1266       1.1   thorpej /*
   1267       1.1   thorpej  * active children list holds backlogged child classes being sorted
   1268       1.1   thorpej  * by their virtual time.
   1269       1.1   thorpej  * each intermediate class has one active children list.
   1270       1.1   thorpej  */
   1271       1.1   thorpej static actlist_t *
   1272      1.19     peter actlist_alloc(void)
   1273       1.1   thorpej {
   1274       1.1   thorpej 	actlist_t *head;
   1275      1.10     perry 
   1276      1.13  christos 	head = malloc(sizeof(actlist_t), M_DEVBUF, M_WAITOK);
   1277      1.19     peter 	TAILQ_INIT(head);
   1278       1.1   thorpej 	return (head);
   1279       1.1   thorpej }
   1280       1.1   thorpej 
   1281       1.1   thorpej static void
   1282      1.19     peter actlist_destroy(actlist_t *head)
   1283       1.1   thorpej {
   1284      1.13  christos 	free(head, M_DEVBUF);
   1285       1.1   thorpej }
   1286      1.10     perry static void
   1287      1.19     peter actlist_insert(struct hfsc_class *cl)
   1288       1.1   thorpej {
   1289       1.1   thorpej 	struct hfsc_class *p;
   1290       1.1   thorpej 
   1291       1.1   thorpej 	/* check the last entry first */
   1292       1.1   thorpej 	if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
   1293       1.1   thorpej 	    || p->cl_vt <= cl->cl_vt) {
   1294       1.1   thorpej 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
   1295       1.1   thorpej 		return;
   1296       1.1   thorpej 	}
   1297       1.1   thorpej 
   1298       1.1   thorpej 	TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
   1299       1.1   thorpej 		if (cl->cl_vt < p->cl_vt) {
   1300       1.1   thorpej 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
   1301       1.1   thorpej 			return;
   1302       1.1   thorpej 		}
   1303       1.1   thorpej 	}
   1304       1.1   thorpej 	ASSERT(0); /* should not reach here */
   1305       1.1   thorpej }
   1306       1.1   thorpej 
   1307      1.10     perry static void
   1308      1.19     peter actlist_remove(struct hfsc_class *cl)
   1309       1.1   thorpej {
   1310       1.1   thorpej 	TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
   1311       1.1   thorpej }
   1312       1.1   thorpej 
   1313       1.1   thorpej static void
   1314      1.19     peter actlist_update(struct hfsc_class *cl)
   1315       1.1   thorpej {
   1316       1.1   thorpej 	struct hfsc_class *p, *last;
   1317       1.1   thorpej 
   1318       1.1   thorpej 	/*
   1319       1.1   thorpej 	 * the virtual time of a class increases monotonically during its
   1320       1.1   thorpej 	 * backlogged period.
   1321       1.1   thorpej 	 * if the next entry has a larger virtual time, nothing to do.
   1322       1.1   thorpej 	 */
   1323       1.1   thorpej 	p = TAILQ_NEXT(cl, cl_actlist);
   1324      1.19     peter 	if (p == NULL || cl->cl_vt < p->cl_vt)
   1325       1.1   thorpej 		return;
   1326       1.1   thorpej 
   1327       1.1   thorpej 	/* check the last entry */
   1328       1.1   thorpej 	last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
   1329       1.1   thorpej 	ASSERT(last != NULL);
   1330       1.1   thorpej 	if (last->cl_vt <= cl->cl_vt) {
   1331       1.1   thorpej 		TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
   1332       1.1   thorpej 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
   1333       1.1   thorpej 		return;
   1334       1.1   thorpej 	}
   1335       1.1   thorpej 
   1336       1.1   thorpej 	/*
   1337       1.1   thorpej 	 * the new position must be between the next entry
   1338       1.1   thorpej 	 * and the last entry
   1339       1.1   thorpej 	 */
   1340       1.1   thorpej 	while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
   1341       1.1   thorpej 		if (cl->cl_vt < p->cl_vt) {
   1342       1.1   thorpej 			TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
   1343       1.1   thorpej 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
   1344       1.1   thorpej 			return;
   1345       1.1   thorpej 		}
   1346       1.1   thorpej 	}
   1347       1.1   thorpej 	ASSERT(0); /* should not reach here */
   1348       1.1   thorpej }
   1349       1.1   thorpej 
   1350      1.19     peter static struct hfsc_class *
   1351      1.19     peter actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time)
   1352      1.19     peter {
   1353      1.19     peter 	struct hfsc_class *p;
   1354      1.19     peter 
   1355      1.19     peter 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
   1356      1.19     peter 		if (p->cl_f <= cur_time)
   1357      1.19     peter 			return (p);
   1358      1.19     peter 	}
   1359      1.19     peter 	return (NULL);
   1360      1.19     peter }
   1361      1.19     peter 
   1362       1.1   thorpej /*
   1363       1.1   thorpej  * service curve support functions
   1364       1.1   thorpej  *
   1365       1.1   thorpej  *  external service curve parameters
   1366       1.1   thorpej  *	m: bits/sec
   1367       1.1   thorpej  *	d: msec
   1368       1.1   thorpej  *  internal service curve parameters
   1369       1.1   thorpej  *	sm: (bytes/tsc_interval) << SM_SHIFT
   1370       1.1   thorpej  *	ism: (tsc_count/byte) << ISM_SHIFT
   1371       1.1   thorpej  *	dx: tsc_count
   1372       1.1   thorpej  *
   1373       1.1   thorpej  * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
   1374       1.1   thorpej  * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
   1375       1.1   thorpej  * speed.  SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
   1376       1.1   thorpej  * digits in decimal using the following table.
   1377       1.1   thorpej  *
   1378      1.19     peter  *  bits/sec    100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
   1379       1.1   thorpej  *  ----------+-------------------------------------------------------
   1380       1.1   thorpej  *  bytes/nsec  12.5e-6    125e-6     1250e-6    12500e-6   125000e-6
   1381       1.1   thorpej  *  sm(500MHz)  25.0e-6    250e-6     2500e-6    25000e-6   250000e-6
   1382       1.1   thorpej  *  sm(200MHz)  62.5e-6    625e-6     6250e-6    62500e-6   625000e-6
   1383      1.10     perry  *
   1384       1.1   thorpej  *  nsec/byte   80000      8000       800        80         8
   1385       1.1   thorpej  *  ism(500MHz) 40000      4000       400        40         4
   1386       1.1   thorpej  *  ism(200MHz) 16000      1600       160        16         1.6
   1387       1.1   thorpej  */
   1388       1.1   thorpej #define	SM_SHIFT	24
   1389       1.1   thorpej #define	ISM_SHIFT	10
   1390       1.1   thorpej 
   1391      1.19     peter #define	SM_MASK		((1LL << SM_SHIFT) - 1)
   1392      1.19     peter #define	ISM_MASK	((1LL << ISM_SHIFT) - 1)
   1393       1.1   thorpej 
   1394      1.12     perry static inline u_int64_t
   1395      1.19     peter seg_x2y(u_int64_t x, u_int64_t sm)
   1396       1.1   thorpej {
   1397       1.1   thorpej 	u_int64_t y;
   1398       1.1   thorpej 
   1399      1.19     peter 	/*
   1400      1.19     peter 	 * compute
   1401      1.19     peter 	 *	y = x * sm >> SM_SHIFT
   1402      1.19     peter 	 * but divide it for the upper and lower bits to avoid overflow
   1403      1.19     peter 	 */
   1404      1.19     peter 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
   1405       1.1   thorpej 	return (y);
   1406       1.1   thorpej }
   1407       1.1   thorpej 
   1408      1.12     perry static inline u_int64_t
   1409      1.19     peter seg_y2x(u_int64_t y, u_int64_t ism)
   1410       1.1   thorpej {
   1411       1.1   thorpej 	u_int64_t x;
   1412       1.1   thorpej 
   1413       1.1   thorpej 	if (y == 0)
   1414       1.1   thorpej 		x = 0;
   1415      1.19     peter 	else if (ism == HT_INFINITY)
   1416      1.19     peter 		x = HT_INFINITY;
   1417      1.19     peter 	else {
   1418      1.19     peter 		x = (y >> ISM_SHIFT) * ism
   1419      1.19     peter 		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
   1420      1.19     peter 	}
   1421       1.1   thorpej 	return (x);
   1422       1.1   thorpej }
   1423       1.1   thorpej 
   1424      1.12     perry static inline u_int64_t
   1425      1.19     peter m2sm(u_int m)
   1426       1.1   thorpej {
   1427       1.1   thorpej 	u_int64_t sm;
   1428       1.1   thorpej 
   1429       1.1   thorpej 	sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
   1430       1.1   thorpej 	return (sm);
   1431       1.1   thorpej }
   1432       1.1   thorpej 
   1433      1.12     perry static inline u_int64_t
   1434      1.19     peter m2ism(u_int m)
   1435       1.1   thorpej {
   1436       1.1   thorpej 	u_int64_t ism;
   1437       1.1   thorpej 
   1438       1.1   thorpej 	if (m == 0)
   1439      1.19     peter 		ism = HT_INFINITY;
   1440       1.1   thorpej 	else
   1441       1.1   thorpej 		ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
   1442       1.1   thorpej 	return (ism);
   1443       1.1   thorpej }
   1444       1.1   thorpej 
   1445      1.12     perry static inline u_int64_t
   1446      1.19     peter d2dx(u_int d)
   1447       1.1   thorpej {
   1448       1.1   thorpej 	u_int64_t dx;
   1449      1.10     perry 
   1450       1.1   thorpej 	dx = ((u_int64_t)d * machclk_freq) / 1000;
   1451       1.1   thorpej 	return (dx);
   1452       1.1   thorpej }
   1453       1.1   thorpej 
   1454      1.10     perry static u_int
   1455      1.19     peter sm2m(u_int64_t sm)
   1456       1.1   thorpej {
   1457       1.1   thorpej 	u_int64_t m;
   1458       1.1   thorpej 
   1459       1.1   thorpej 	m = (sm * 8 * machclk_freq) >> SM_SHIFT;
   1460       1.1   thorpej 	return ((u_int)m);
   1461       1.1   thorpej }
   1462       1.1   thorpej 
   1463      1.10     perry static u_int
   1464      1.19     peter dx2d(u_int64_t dx)
   1465       1.1   thorpej {
   1466       1.1   thorpej 	u_int64_t d;
   1467       1.1   thorpej 
   1468       1.1   thorpej 	d = dx * 1000 / machclk_freq;
   1469       1.1   thorpej 	return ((u_int)d);
   1470       1.1   thorpej }
   1471       1.1   thorpej 
   1472      1.10     perry static void
   1473      1.19     peter sc2isc(struct service_curve *sc, struct internal_sc *isc)
   1474       1.1   thorpej {
   1475       1.1   thorpej 	isc->sm1 = m2sm(sc->m1);
   1476       1.1   thorpej 	isc->ism1 = m2ism(sc->m1);
   1477       1.1   thorpej 	isc->dx = d2dx(sc->d);
   1478       1.1   thorpej 	isc->dy = seg_x2y(isc->dx, isc->sm1);
   1479       1.1   thorpej 	isc->sm2 = m2sm(sc->m2);
   1480       1.1   thorpej 	isc->ism2 = m2ism(sc->m2);
   1481       1.1   thorpej }
   1482       1.1   thorpej 
   1483       1.1   thorpej /*
   1484       1.1   thorpej  * initialize the runtime service curve with the given internal
   1485       1.1   thorpej  * service curve starting at (x, y).
   1486       1.1   thorpej  */
   1487      1.10     perry static void
   1488      1.19     peter rtsc_init(struct runtime_sc *rtsc, struct internal_sc * isc, u_int64_t x,
   1489      1.19     peter     u_int64_t y)
   1490       1.1   thorpej {
   1491       1.1   thorpej 	rtsc->x =	x;
   1492       1.1   thorpej 	rtsc->y =	y;
   1493       1.1   thorpej 	rtsc->sm1 =	isc->sm1;
   1494       1.1   thorpej 	rtsc->ism1 =	isc->ism1;
   1495       1.1   thorpej 	rtsc->dx =	isc->dx;
   1496       1.1   thorpej 	rtsc->dy =	isc->dy;
   1497       1.1   thorpej 	rtsc->sm2 =	isc->sm2;
   1498       1.1   thorpej 	rtsc->ism2 =	isc->ism2;
   1499       1.1   thorpej }
   1500       1.1   thorpej 
   1501       1.1   thorpej /*
   1502       1.1   thorpej  * calculate the y-projection of the runtime service curve by the
   1503       1.1   thorpej  * given x-projection value
   1504       1.1   thorpej  */
   1505      1.10     perry static u_int64_t
   1506      1.19     peter rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y)
   1507       1.1   thorpej {
   1508       1.1   thorpej 	u_int64_t	x;
   1509       1.1   thorpej 
   1510       1.1   thorpej 	if (y < rtsc->y)
   1511       1.1   thorpej 		x = rtsc->x;
   1512       1.1   thorpej 	else if (y <= rtsc->y + rtsc->dy) {
   1513       1.1   thorpej 		/* x belongs to the 1st segment */
   1514       1.1   thorpej 		if (rtsc->dy == 0)
   1515       1.1   thorpej 			x = rtsc->x + rtsc->dx;
   1516       1.1   thorpej 		else
   1517       1.1   thorpej 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
   1518       1.1   thorpej 	} else {
   1519       1.1   thorpej 		/* x belongs to the 2nd segment */
   1520       1.1   thorpej 		x = rtsc->x + rtsc->dx
   1521       1.1   thorpej 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
   1522       1.1   thorpej 	}
   1523       1.1   thorpej 	return (x);
   1524       1.1   thorpej }
   1525       1.1   thorpej 
   1526      1.10     perry static u_int64_t
   1527      1.19     peter rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x)
   1528       1.1   thorpej {
   1529       1.1   thorpej 	u_int64_t	y;
   1530       1.1   thorpej 
   1531       1.1   thorpej 	if (x <= rtsc->x)
   1532       1.1   thorpej 		y = rtsc->y;
   1533       1.1   thorpej 	else if (x <= rtsc->x + rtsc->dx)
   1534       1.1   thorpej 		/* y belongs to the 1st segment */
   1535       1.1   thorpej 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
   1536       1.1   thorpej 	else
   1537       1.1   thorpej 		/* y belongs to the 2nd segment */
   1538       1.1   thorpej 		y = rtsc->y + rtsc->dy
   1539       1.1   thorpej 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
   1540       1.1   thorpej 	return (y);
   1541       1.1   thorpej }
   1542       1.1   thorpej 
   1543       1.1   thorpej /*
   1544       1.1   thorpej  * update the runtime service curve by taking the minimum of the current
   1545       1.1   thorpej  * runtime service curve and the service curve starting at (x, y).
   1546       1.1   thorpej  */
   1547      1.10     perry static void
   1548      1.19     peter rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x,
   1549      1.19     peter     u_int64_t y)
   1550       1.1   thorpej {
   1551       1.1   thorpej 	u_int64_t	y1, y2, dx, dy;
   1552       1.1   thorpej 
   1553       1.1   thorpej 	if (isc->sm1 <= isc->sm2) {
   1554       1.1   thorpej 		/* service curve is convex */
   1555       1.1   thorpej 		y1 = rtsc_x2y(rtsc, x);
   1556       1.1   thorpej 		if (y1 < y)
   1557       1.1   thorpej 			/* the current rtsc is smaller */
   1558       1.1   thorpej 			return;
   1559       1.1   thorpej 		rtsc->x = x;
   1560       1.1   thorpej 		rtsc->y = y;
   1561       1.1   thorpej 		return;
   1562       1.1   thorpej 	}
   1563       1.1   thorpej 
   1564       1.1   thorpej 	/*
   1565       1.1   thorpej 	 * service curve is concave
   1566       1.1   thorpej 	 * compute the two y values of the current rtsc
   1567       1.1   thorpej 	 *	y1: at x
   1568       1.1   thorpej 	 *	y2: at (x + dx)
   1569       1.1   thorpej 	 */
   1570       1.1   thorpej 	y1 = rtsc_x2y(rtsc, x);
   1571       1.1   thorpej 	if (y1 <= y) {
   1572       1.1   thorpej 		/* rtsc is below isc, no change to rtsc */
   1573       1.1   thorpej 		return;
   1574       1.1   thorpej 	}
   1575       1.1   thorpej 
   1576       1.1   thorpej 	y2 = rtsc_x2y(rtsc, x + isc->dx);
   1577       1.1   thorpej 	if (y2 >= y + isc->dy) {
   1578       1.1   thorpej 		/* rtsc is above isc, replace rtsc by isc */
   1579       1.1   thorpej 		rtsc->x = x;
   1580       1.1   thorpej 		rtsc->y = y;
   1581       1.1   thorpej 		rtsc->dx = isc->dx;
   1582       1.1   thorpej 		rtsc->dy = isc->dy;
   1583       1.1   thorpej 		return;
   1584       1.1   thorpej 	}
   1585       1.1   thorpej 
   1586       1.1   thorpej 	/*
   1587       1.1   thorpej 	 * the two curves intersect
   1588       1.1   thorpej 	 * compute the offsets (dx, dy) using the reverse
   1589       1.1   thorpej 	 * function of seg_x2y()
   1590       1.1   thorpej 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
   1591       1.1   thorpej 	 */
   1592       1.1   thorpej 	dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
   1593       1.1   thorpej 	/*
   1594       1.1   thorpej 	 * check if (x, y1) belongs to the 1st segment of rtsc.
   1595       1.1   thorpej 	 * if so, add the offset.
   1596      1.10     perry 	 */
   1597       1.1   thorpej 	if (rtsc->x + rtsc->dx > x)
   1598       1.1   thorpej 		dx += rtsc->x + rtsc->dx - x;
   1599       1.1   thorpej 	dy = seg_x2y(dx, isc->sm1);
   1600       1.1   thorpej 
   1601       1.1   thorpej 	rtsc->x = x;
   1602       1.1   thorpej 	rtsc->y = y;
   1603       1.1   thorpej 	rtsc->dx = dx;
   1604       1.1   thorpej 	rtsc->dy = dy;
   1605       1.1   thorpej 	return;
   1606       1.1   thorpej }
   1607       1.1   thorpej 
   1608      1.19     peter static void
   1609      1.19     peter get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
   1610      1.19     peter {
   1611      1.19     peter 	sp->class_id = cl->cl_id;
   1612      1.19     peter 	sp->class_handle = cl->cl_handle;
   1613      1.19     peter 
   1614      1.19     peter 	if (cl->cl_rsc != NULL) {
   1615      1.19     peter 		sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
   1616      1.19     peter 		sp->rsc.d = dx2d(cl->cl_rsc->dx);
   1617      1.19     peter 		sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
   1618      1.19     peter 	} else {
   1619      1.19     peter 		sp->rsc.m1 = 0;
   1620      1.19     peter 		sp->rsc.d = 0;
   1621      1.19     peter 		sp->rsc.m2 = 0;
   1622      1.19     peter 	}
   1623      1.19     peter 	if (cl->cl_fsc != NULL) {
   1624      1.19     peter 		sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
   1625      1.19     peter 		sp->fsc.d = dx2d(cl->cl_fsc->dx);
   1626      1.19     peter 		sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
   1627      1.19     peter 	} else {
   1628      1.19     peter 		sp->fsc.m1 = 0;
   1629      1.19     peter 		sp->fsc.d = 0;
   1630      1.19     peter 		sp->fsc.m2 = 0;
   1631      1.19     peter 	}
   1632      1.19     peter 	if (cl->cl_usc != NULL) {
   1633      1.19     peter 		sp->usc.m1 = sm2m(cl->cl_usc->sm1);
   1634      1.19     peter 		sp->usc.d = dx2d(cl->cl_usc->dx);
   1635      1.19     peter 		sp->usc.m2 = sm2m(cl->cl_usc->sm2);
   1636      1.19     peter 	} else {
   1637      1.19     peter 		sp->usc.m1 = 0;
   1638      1.19     peter 		sp->usc.d = 0;
   1639      1.19     peter 		sp->usc.m2 = 0;
   1640      1.19     peter 	}
   1641      1.19     peter 
   1642      1.19     peter 	sp->total = cl->cl_total;
   1643      1.19     peter 	sp->cumul = cl->cl_cumul;
   1644      1.19     peter 
   1645      1.19     peter 	sp->d = cl->cl_d;
   1646      1.19     peter 	sp->e = cl->cl_e;
   1647      1.19     peter 	sp->vt = cl->cl_vt;
   1648      1.19     peter 	sp->f = cl->cl_f;
   1649      1.19     peter 
   1650      1.19     peter 	sp->initvt = cl->cl_initvt;
   1651      1.19     peter 	sp->vtperiod = cl->cl_vtperiod;
   1652      1.19     peter 	sp->parentperiod = cl->cl_parentperiod;
   1653      1.19     peter 	sp->nactive = cl->cl_nactive;
   1654      1.19     peter 	sp->vtoff = cl->cl_vtoff;
   1655      1.19     peter 	sp->cvtmax = cl->cl_cvtmax;
   1656      1.19     peter 	sp->myf = cl->cl_myf;
   1657      1.19     peter 	sp->cfmin = cl->cl_cfmin;
   1658      1.19     peter 	sp->cvtmin = cl->cl_cvtmin;
   1659      1.19     peter 	sp->myfadj = cl->cl_myfadj;
   1660      1.19     peter 	sp->vtadj = cl->cl_vtadj;
   1661      1.19     peter 
   1662      1.19     peter 	sp->cur_time = read_machclk();
   1663      1.19     peter 	sp->machclk_freq = machclk_freq;
   1664      1.19     peter 
   1665      1.19     peter 	sp->qlength = qlen(cl->cl_q);
   1666      1.19     peter 	sp->qlimit = qlimit(cl->cl_q);
   1667      1.19     peter 	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
   1668      1.19     peter 	sp->drop_cnt = cl->cl_stats.drop_cnt;
   1669      1.19     peter 	sp->period = cl->cl_stats.period;
   1670      1.19     peter 
   1671      1.19     peter 	sp->qtype = qtype(cl->cl_q);
   1672      1.19     peter #ifdef ALTQ_RED
   1673      1.19     peter 	if (q_is_red(cl->cl_q))
   1674      1.19     peter 		red_getstats(cl->cl_red, &sp->red[0]);
   1675      1.19     peter #endif
   1676      1.19     peter #ifdef ALTQ_RIO
   1677      1.19     peter 	if (q_is_rio(cl->cl_q))
   1678      1.19     peter 		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
   1679      1.19     peter #endif
   1680      1.19     peter }
   1681      1.19     peter 
   1682      1.19     peter /* convert a class handle to the corresponding class pointer */
   1683      1.19     peter static struct hfsc_class *
   1684      1.19     peter clh_to_clp(struct hfsc_if *hif, u_int32_t chandle)
   1685      1.19     peter {
   1686      1.19     peter 	int i;
   1687      1.19     peter 	struct hfsc_class *cl;
   1688      1.19     peter 
   1689      1.19     peter 	if (chandle == 0)
   1690      1.19     peter 		return (NULL);
   1691      1.19     peter 	/*
   1692      1.19     peter 	 * first, try optimistically the slot matching the lower bits of
   1693      1.19     peter 	 * the handle.  if it fails, do the linear table search.
   1694      1.19     peter 	 */
   1695      1.19     peter 	i = chandle % HFSC_MAX_CLASSES;
   1696      1.19     peter 	if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
   1697      1.19     peter 		return (cl);
   1698      1.19     peter 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
   1699      1.19     peter 		if ((cl = hif->hif_class_tbl[i]) != NULL &&
   1700      1.19     peter 		    cl->cl_handle == chandle)
   1701      1.19     peter 			return (cl);
   1702      1.19     peter 	return (NULL);
   1703      1.19     peter }
   1704      1.19     peter 
   1705      1.19     peter #ifdef ALTQ3_COMPAT
   1706      1.19     peter static struct hfsc_if *
   1707      1.22  christos hfsc_attach(struct ifaltq *ifq, u_int bandwidth)
   1708      1.19     peter {
   1709      1.19     peter 	struct hfsc_if *hif;
   1710      1.19     peter 
   1711      1.19     peter 	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
   1712      1.19     peter 	if (hif == NULL)
   1713      1.19     peter 		return (NULL);
   1714      1.19     peter 
   1715      1.19     peter 	hif->hif_eligible = ellist_alloc();
   1716      1.19     peter 	if (hif->hif_eligible == NULL) {
   1717      1.19     peter 		free(hif, M_DEVBUF);
   1718      1.19     peter 		return NULL;
   1719      1.19     peter 	}
   1720      1.19     peter 
   1721      1.19     peter 	hif->hif_ifq = ifq;
   1722      1.19     peter 
   1723      1.19     peter 	/* add this state to the hfsc list */
   1724      1.19     peter 	hif->hif_next = hif_list;
   1725      1.19     peter 	hif_list = hif;
   1726      1.19     peter 
   1727      1.19     peter 	return (hif);
   1728      1.19     peter }
   1729      1.19     peter 
   1730      1.19     peter static int
   1731      1.19     peter hfsc_detach(struct hfsc_if *hif)
   1732      1.19     peter {
   1733      1.19     peter 	(void)hfsc_clear_interface(hif);
   1734      1.19     peter 	(void)hfsc_class_destroy(hif->hif_rootclass);
   1735      1.19     peter 
   1736      1.19     peter 	/* remove this interface from the hif list */
   1737      1.19     peter 	if (hif_list == hif)
   1738      1.19     peter 		hif_list = hif->hif_next;
   1739      1.19     peter 	else {
   1740      1.19     peter 		struct hfsc_if *h;
   1741      1.19     peter 
   1742      1.19     peter 		for (h = hif_list; h != NULL; h = h->hif_next)
   1743      1.19     peter 			if (h->hif_next == hif) {
   1744      1.19     peter 				h->hif_next = hif->hif_next;
   1745      1.19     peter 				break;
   1746      1.19     peter 			}
   1747      1.19     peter 		ASSERT(h != NULL);
   1748      1.19     peter 	}
   1749      1.19     peter 
   1750      1.19     peter 	ellist_destroy(hif->hif_eligible);
   1751      1.19     peter 
   1752      1.19     peter 	free(hif, M_DEVBUF);
   1753      1.19     peter 
   1754      1.19     peter 	return (0);
   1755      1.19     peter }
   1756      1.19     peter 
   1757      1.19     peter static int
   1758      1.19     peter hfsc_class_modify(struct hfsc_class *cl, struct service_curve *rsc,
   1759      1.19     peter     struct service_curve *fsc, struct service_curve *usc)
   1760      1.19     peter {
   1761      1.19     peter 	struct internal_sc *rsc_tmp, *fsc_tmp, *usc_tmp;
   1762      1.19     peter 	u_int64_t cur_time;
   1763      1.19     peter 	int s;
   1764      1.19     peter 
   1765      1.19     peter 	rsc_tmp = fsc_tmp = usc_tmp = NULL;
   1766      1.19     peter 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
   1767      1.19     peter 	    cl->cl_rsc == NULL) {
   1768      1.19     peter 		rsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
   1769      1.19     peter 		    M_WAITOK);
   1770      1.19     peter 		if (rsc_tmp == NULL)
   1771      1.19     peter 			return (ENOMEM);
   1772      1.19     peter 	}
   1773      1.19     peter 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
   1774      1.19     peter 	    cl->cl_fsc == NULL) {
   1775      1.19     peter 		fsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
   1776      1.19     peter 		    M_WAITOK);
   1777      1.19     peter 		if (fsc_tmp == NULL)
   1778      1.19     peter 			return (ENOMEM);
   1779      1.19     peter 	}
   1780      1.19     peter 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0) &&
   1781      1.19     peter 	    cl->cl_usc == NULL) {
   1782      1.19     peter 		usc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
   1783      1.19     peter 		    M_WAITOK);
   1784      1.19     peter 		if (usc_tmp == NULL)
   1785      1.19     peter 			return (ENOMEM);
   1786      1.19     peter 	}
   1787      1.19     peter 
   1788      1.19     peter 	cur_time = read_machclk();
   1789      1.19     peter 	s = splnet();
   1790      1.19     peter 
   1791      1.19     peter 	if (rsc != NULL) {
   1792      1.19     peter 		if (rsc->m1 == 0 && rsc->m2 == 0) {
   1793      1.19     peter 			if (cl->cl_rsc != NULL) {
   1794      1.19     peter 				if (!qempty(cl->cl_q))
   1795      1.19     peter 					hfsc_purgeq(cl);
   1796      1.19     peter 				free(cl->cl_rsc, M_DEVBUF);
   1797      1.19     peter 				cl->cl_rsc = NULL;
   1798      1.19     peter 			}
   1799      1.19     peter 		} else {
   1800      1.19     peter 			if (cl->cl_rsc == NULL)
   1801      1.19     peter 				cl->cl_rsc = rsc_tmp;
   1802      1.19     peter 			sc2isc(rsc, cl->cl_rsc);
   1803      1.19     peter 			rtsc_init(&cl->cl_deadline, cl->cl_rsc, cur_time,
   1804      1.19     peter 			    cl->cl_cumul);
   1805      1.19     peter 			cl->cl_eligible = cl->cl_deadline;
   1806      1.19     peter 			if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
   1807      1.19     peter 				cl->cl_eligible.dx = 0;
   1808      1.19     peter 				cl->cl_eligible.dy = 0;
   1809      1.19     peter 			}
   1810      1.19     peter 		}
   1811      1.19     peter 	}
   1812      1.19     peter 
   1813      1.19     peter 	if (fsc != NULL) {
   1814      1.19     peter 		if (fsc->m1 == 0 && fsc->m2 == 0) {
   1815      1.19     peter 			if (cl->cl_fsc != NULL) {
   1816      1.19     peter 				if (!qempty(cl->cl_q))
   1817      1.19     peter 					hfsc_purgeq(cl);
   1818      1.19     peter 				free(cl->cl_fsc, M_DEVBUF);
   1819      1.19     peter 				cl->cl_fsc = NULL;
   1820      1.19     peter 			}
   1821      1.19     peter 		} else {
   1822      1.19     peter 			if (cl->cl_fsc == NULL)
   1823      1.19     peter 				cl->cl_fsc = fsc_tmp;
   1824      1.19     peter 			sc2isc(fsc, cl->cl_fsc);
   1825      1.19     peter 			rtsc_init(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt,
   1826      1.19     peter 			    cl->cl_total);
   1827      1.19     peter 		}
   1828      1.19     peter 	}
   1829      1.19     peter 
   1830      1.19     peter 	if (usc != NULL) {
   1831      1.19     peter 		if (usc->m1 == 0 && usc->m2 == 0) {
   1832      1.19     peter 			if (cl->cl_usc != NULL) {
   1833      1.19     peter 				free(cl->cl_usc, M_DEVBUF);
   1834      1.19     peter 				cl->cl_usc = NULL;
   1835      1.19     peter 				cl->cl_myf = 0;
   1836      1.19     peter 			}
   1837      1.19     peter 		} else {
   1838      1.19     peter 			if (cl->cl_usc == NULL)
   1839      1.19     peter 				cl->cl_usc = usc_tmp;
   1840      1.19     peter 			sc2isc(usc, cl->cl_usc);
   1841      1.19     peter 			rtsc_init(&cl->cl_ulimit, cl->cl_usc, cur_time,
   1842      1.19     peter 			    cl->cl_total);
   1843      1.19     peter 		}
   1844      1.19     peter 	}
   1845      1.19     peter 
   1846      1.19     peter 	if (!qempty(cl->cl_q)) {
   1847      1.19     peter 		if (cl->cl_rsc != NULL)
   1848      1.19     peter 			update_ed(cl, m_pktlen(qhead(cl->cl_q)));
   1849      1.19     peter 		if (cl->cl_fsc != NULL)
   1850      1.19     peter 			update_vf(cl, 0, cur_time);
   1851      1.19     peter 		/* is this enough? */
   1852      1.19     peter 	}
   1853      1.19     peter 
   1854      1.19     peter 	splx(s);
   1855      1.19     peter 
   1856      1.19     peter 	return (0);
   1857      1.19     peter }
   1858      1.19     peter 
   1859       1.1   thorpej /*
   1860       1.1   thorpej  * hfsc device interface
   1861       1.1   thorpej  */
   1862       1.1   thorpej int
   1863      1.22  christos hfscopen(dev_t dev, int flag, int fmt,
   1864      1.22  christos     struct lwp *l)
   1865       1.1   thorpej {
   1866       1.1   thorpej 	if (machclk_freq == 0)
   1867       1.1   thorpej 		init_machclk();
   1868       1.1   thorpej 
   1869       1.1   thorpej 	if (machclk_freq == 0) {
   1870       1.9       wiz 		printf("hfsc: no CPU clock available!\n");
   1871       1.1   thorpej 		return (ENXIO);
   1872       1.1   thorpej 	}
   1873       1.1   thorpej 
   1874       1.1   thorpej 	/* everything will be done when the queueing scheme is attached. */
   1875       1.1   thorpej 	return 0;
   1876       1.1   thorpej }
   1877       1.1   thorpej 
   1878       1.1   thorpej int
   1879      1.22  christos hfscclose(dev_t dev, int flag, int fmt,
   1880      1.22  christos     struct lwp *l)
   1881       1.1   thorpej {
   1882       1.1   thorpej 	struct hfsc_if *hif;
   1883       1.1   thorpej 	int err, error = 0;
   1884       1.1   thorpej 
   1885       1.1   thorpej 	while ((hif = hif_list) != NULL) {
   1886       1.1   thorpej 		/* destroy all */
   1887       1.1   thorpej 		if (ALTQ_IS_ENABLED(hif->hif_ifq))
   1888       1.1   thorpej 			altq_disable(hif->hif_ifq);
   1889       1.1   thorpej 
   1890       1.1   thorpej 		err = altq_detach(hif->hif_ifq);
   1891       1.1   thorpej 		if (err == 0)
   1892       1.1   thorpej 			err = hfsc_detach(hif);
   1893       1.1   thorpej 		if (err != 0 && error == 0)
   1894       1.1   thorpej 			error = err;
   1895       1.1   thorpej 	}
   1896       1.1   thorpej 
   1897       1.1   thorpej 	return error;
   1898       1.1   thorpej }
   1899       1.1   thorpej 
   1900       1.1   thorpej int
   1901  1.22.4.1     rmind hfscioctl(dev_t dev, ioctlcmd_t cmd, void *addr, int flag,
   1902      1.18  christos     struct lwp *l)
   1903       1.1   thorpej {
   1904       1.1   thorpej 	struct hfsc_if *hif;
   1905       1.1   thorpej 	struct hfsc_interface *ifacep;
   1906       1.1   thorpej 	int	error = 0;
   1907       1.1   thorpej 
   1908       1.1   thorpej 	/* check super-user privilege */
   1909       1.1   thorpej 	switch (cmd) {
   1910       1.1   thorpej 	case HFSC_GETSTATS:
   1911       1.1   thorpej 		break;
   1912       1.1   thorpej 	default:
   1913       1.1   thorpej #if (__FreeBSD_version > 400000)
   1914       1.1   thorpej 		if ((error = suser(p)) != 0)
   1915       1.1   thorpej 			return (error);
   1916       1.1   thorpej #else
   1917      1.21      elad 		if ((error = kauth_authorize_network(l->l_cred,
   1918      1.21      elad 		    KAUTH_NETWORK_ALTQ, KAUTH_REQ_NETWORK_ALTQ_HFSC, NULL,
   1919      1.21      elad 		    NULL, NULL)) != 0)
   1920       1.1   thorpej 			return (error);
   1921       1.1   thorpej #endif
   1922       1.1   thorpej 		break;
   1923       1.1   thorpej 	}
   1924      1.10     perry 
   1925       1.1   thorpej 	switch (cmd) {
   1926       1.1   thorpej 
   1927       1.1   thorpej 	case HFSC_IF_ATTACH:
   1928       1.1   thorpej 		error = hfsccmd_if_attach((struct hfsc_attach *)addr);
   1929       1.1   thorpej 		break;
   1930       1.1   thorpej 
   1931       1.1   thorpej 	case HFSC_IF_DETACH:
   1932       1.1   thorpej 		error = hfsccmd_if_detach((struct hfsc_interface *)addr);
   1933       1.1   thorpej 		break;
   1934       1.1   thorpej 
   1935       1.1   thorpej 	case HFSC_ENABLE:
   1936       1.1   thorpej 	case HFSC_DISABLE:
   1937       1.1   thorpej 	case HFSC_CLEAR_HIERARCHY:
   1938       1.1   thorpej 		ifacep = (struct hfsc_interface *)addr;
   1939       1.1   thorpej 		if ((hif = altq_lookup(ifacep->hfsc_ifname,
   1940       1.1   thorpej 				       ALTQT_HFSC)) == NULL) {
   1941       1.1   thorpej 			error = EBADF;
   1942       1.1   thorpej 			break;
   1943       1.1   thorpej 		}
   1944       1.1   thorpej 
   1945       1.1   thorpej 		switch (cmd) {
   1946       1.1   thorpej 
   1947       1.1   thorpej 		case HFSC_ENABLE:
   1948       1.1   thorpej 			if (hif->hif_defaultclass == NULL) {
   1949      1.19     peter #ifdef ALTQ_DEBUG
   1950       1.1   thorpej 				printf("hfsc: no default class\n");
   1951       1.1   thorpej #endif
   1952       1.1   thorpej 				error = EINVAL;
   1953       1.1   thorpej 				break;
   1954       1.1   thorpej 			}
   1955       1.1   thorpej 			error = altq_enable(hif->hif_ifq);
   1956       1.1   thorpej 			break;
   1957       1.1   thorpej 
   1958       1.1   thorpej 		case HFSC_DISABLE:
   1959       1.1   thorpej 			error = altq_disable(hif->hif_ifq);
   1960       1.1   thorpej 			break;
   1961       1.1   thorpej 
   1962       1.1   thorpej 		case HFSC_CLEAR_HIERARCHY:
   1963       1.1   thorpej 			hfsc_clear_interface(hif);
   1964       1.1   thorpej 			break;
   1965       1.1   thorpej 		}
   1966       1.1   thorpej 		break;
   1967       1.1   thorpej 
   1968       1.1   thorpej 	case HFSC_ADD_CLASS:
   1969       1.1   thorpej 		error = hfsccmd_add_class((struct hfsc_add_class *)addr);
   1970       1.1   thorpej 		break;
   1971       1.1   thorpej 
   1972       1.1   thorpej 	case HFSC_DEL_CLASS:
   1973       1.1   thorpej 		error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
   1974       1.1   thorpej 		break;
   1975       1.1   thorpej 
   1976       1.1   thorpej 	case HFSC_MOD_CLASS:
   1977       1.1   thorpej 		error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
   1978       1.1   thorpej 		break;
   1979       1.1   thorpej 
   1980       1.1   thorpej 	case HFSC_ADD_FILTER:
   1981       1.1   thorpej 		error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
   1982       1.1   thorpej 		break;
   1983       1.1   thorpej 
   1984       1.1   thorpej 	case HFSC_DEL_FILTER:
   1985       1.1   thorpej 		error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
   1986       1.1   thorpej 		break;
   1987       1.1   thorpej 
   1988       1.1   thorpej 	case HFSC_GETSTATS:
   1989       1.1   thorpej 		error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
   1990       1.1   thorpej 		break;
   1991       1.1   thorpej 
   1992       1.1   thorpej 	default:
   1993       1.1   thorpej 		error = EINVAL;
   1994       1.1   thorpej 		break;
   1995       1.1   thorpej 	}
   1996       1.1   thorpej 	return error;
   1997       1.1   thorpej }
   1998       1.1   thorpej 
   1999       1.1   thorpej static int
   2000      1.19     peter hfsccmd_if_attach(struct hfsc_attach *ap)
   2001       1.1   thorpej {
   2002       1.1   thorpej 	struct hfsc_if *hif;
   2003       1.1   thorpej 	struct ifnet *ifp;
   2004       1.1   thorpej 	int error;
   2005      1.10     perry 
   2006       1.1   thorpej 	if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
   2007       1.1   thorpej 		return (ENXIO);
   2008       1.1   thorpej 
   2009       1.1   thorpej 	if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
   2010       1.1   thorpej 		return (ENOMEM);
   2011      1.10     perry 
   2012       1.1   thorpej 	/*
   2013       1.1   thorpej 	 * set HFSC to this ifnet structure.
   2014       1.1   thorpej 	 */
   2015       1.1   thorpej 	if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
   2016       1.1   thorpej 				 hfsc_enqueue, hfsc_dequeue, hfsc_request,
   2017       1.1   thorpej 				 &hif->hif_classifier, acc_classify)) != 0)
   2018       1.1   thorpej 		(void)hfsc_detach(hif);
   2019       1.1   thorpej 
   2020       1.1   thorpej 	return (error);
   2021       1.1   thorpej }
   2022       1.1   thorpej 
   2023       1.1   thorpej static int
   2024      1.19     peter hfsccmd_if_detach(struct hfsc_interface *ap)
   2025       1.1   thorpej {
   2026       1.1   thorpej 	struct hfsc_if *hif;
   2027       1.1   thorpej 	int error;
   2028       1.1   thorpej 
   2029       1.1   thorpej 	if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
   2030       1.1   thorpej 		return (EBADF);
   2031      1.10     perry 
   2032       1.1   thorpej 	if (ALTQ_IS_ENABLED(hif->hif_ifq))
   2033       1.1   thorpej 		altq_disable(hif->hif_ifq);
   2034       1.1   thorpej 
   2035       1.1   thorpej 	if ((error = altq_detach(hif->hif_ifq)))
   2036       1.1   thorpej 		return (error);
   2037       1.1   thorpej 
   2038       1.1   thorpej 	return hfsc_detach(hif);
   2039       1.1   thorpej }
   2040       1.1   thorpej 
   2041       1.1   thorpej static int
   2042      1.19     peter hfsccmd_add_class(struct hfsc_add_class *ap)
   2043       1.1   thorpej {
   2044       1.1   thorpej 	struct hfsc_if *hif;
   2045       1.1   thorpej 	struct hfsc_class *cl, *parent;
   2046      1.19     peter 	int	i;
   2047       1.1   thorpej 
   2048       1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2049       1.1   thorpej 		return (EBADF);
   2050       1.1   thorpej 
   2051      1.19     peter 	if (ap->parent_handle == HFSC_NULLCLASS_HANDLE &&
   2052      1.19     peter 	    hif->hif_rootclass == NULL)
   2053      1.19     peter 		parent = NULL;
   2054      1.19     peter 	else if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL)
   2055      1.19     peter 		return (EINVAL);
   2056      1.19     peter 
   2057      1.19     peter 	/* assign a class handle (use a free slot number for now) */
   2058      1.19     peter 	for (i = 1; i < HFSC_MAX_CLASSES; i++)
   2059      1.19     peter 		if (hif->hif_class_tbl[i] == NULL)
   2060      1.19     peter 			break;
   2061      1.19     peter 	if (i == HFSC_MAX_CLASSES)
   2062      1.19     peter 		return (EBUSY);
   2063      1.10     perry 
   2064      1.19     peter 	if ((cl = hfsc_class_create(hif, &ap->service_curve, NULL, NULL,
   2065      1.19     peter 	    parent, ap->qlimit, ap->flags, i)) == NULL)
   2066       1.1   thorpej 		return (ENOMEM);
   2067      1.10     perry 
   2068       1.1   thorpej 	/* return a class handle to the user */
   2069      1.19     peter 	ap->class_handle = i;
   2070      1.19     peter 
   2071       1.1   thorpej 	return (0);
   2072       1.1   thorpej }
   2073       1.1   thorpej 
   2074       1.1   thorpej static int
   2075      1.19     peter hfsccmd_delete_class(struct hfsc_delete_class *ap)
   2076       1.1   thorpej {
   2077       1.1   thorpej 	struct hfsc_if *hif;
   2078       1.1   thorpej 	struct hfsc_class *cl;
   2079       1.1   thorpej 
   2080       1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2081       1.1   thorpej 		return (EBADF);
   2082       1.1   thorpej 
   2083       1.1   thorpej 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
   2084       1.1   thorpej 		return (EINVAL);
   2085      1.10     perry 
   2086       1.1   thorpej 	return hfsc_class_destroy(cl);
   2087       1.1   thorpej }
   2088       1.1   thorpej 
   2089       1.1   thorpej static int
   2090      1.19     peter hfsccmd_modify_class(struct hfsc_modify_class *ap)
   2091       1.1   thorpej {
   2092       1.1   thorpej 	struct hfsc_if *hif;
   2093       1.1   thorpej 	struct hfsc_class *cl;
   2094       1.1   thorpej 	struct service_curve *rsc = NULL;
   2095       1.1   thorpej 	struct service_curve *fsc = NULL;
   2096      1.19     peter 	struct service_curve *usc = NULL;
   2097       1.1   thorpej 
   2098       1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2099       1.1   thorpej 		return (EBADF);
   2100       1.1   thorpej 
   2101       1.1   thorpej 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
   2102       1.1   thorpej 		return (EINVAL);
   2103       1.1   thorpej 
   2104       1.1   thorpej 	if (ap->sctype & HFSC_REALTIMESC)
   2105       1.1   thorpej 		rsc = &ap->service_curve;
   2106       1.1   thorpej 	if (ap->sctype & HFSC_LINKSHARINGSC)
   2107       1.1   thorpej 		fsc = &ap->service_curve;
   2108      1.19     peter 	if (ap->sctype & HFSC_UPPERLIMITSC)
   2109      1.19     peter 		usc = &ap->service_curve;
   2110       1.1   thorpej 
   2111      1.19     peter 	return hfsc_class_modify(cl, rsc, fsc, usc);
   2112       1.1   thorpej }
   2113       1.1   thorpej 
   2114       1.1   thorpej static int
   2115      1.19     peter hfsccmd_add_filter(struct hfsc_add_filter *ap)
   2116       1.1   thorpej {
   2117       1.1   thorpej 	struct hfsc_if *hif;
   2118       1.1   thorpej 	struct hfsc_class *cl;
   2119       1.1   thorpej 
   2120       1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2121       1.1   thorpej 		return (EBADF);
   2122       1.1   thorpej 
   2123       1.1   thorpej 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
   2124       1.1   thorpej 		return (EINVAL);
   2125       1.1   thorpej 
   2126       1.1   thorpej 	if (is_a_parent_class(cl)) {
   2127      1.19     peter #ifdef ALTQ_DEBUG
   2128       1.1   thorpej 		printf("hfsccmd_add_filter: not a leaf class!\n");
   2129       1.1   thorpej #endif
   2130       1.1   thorpej 		return (EINVAL);
   2131       1.1   thorpej 	}
   2132       1.1   thorpej 
   2133       1.1   thorpej 	return acc_add_filter(&hif->hif_classifier, &ap->filter,
   2134       1.1   thorpej 			      cl, &ap->filter_handle);
   2135       1.1   thorpej }
   2136       1.1   thorpej 
   2137       1.1   thorpej static int
   2138      1.19     peter hfsccmd_delete_filter(struct hfsc_delete_filter *ap)
   2139       1.1   thorpej {
   2140       1.1   thorpej 	struct hfsc_if *hif;
   2141       1.1   thorpej 
   2142       1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2143       1.1   thorpej 		return (EBADF);
   2144       1.1   thorpej 
   2145       1.1   thorpej 	return acc_delete_filter(&hif->hif_classifier,
   2146       1.1   thorpej 				 ap->filter_handle);
   2147       1.1   thorpej }
   2148       1.1   thorpej 
   2149       1.1   thorpej static int
   2150      1.19     peter hfsccmd_class_stats(struct hfsc_class_stats *ap)
   2151       1.1   thorpej {
   2152       1.1   thorpej 	struct hfsc_if *hif;
   2153       1.1   thorpej 	struct hfsc_class *cl;
   2154      1.19     peter 	struct hfsc_classstats stats, *usp;
   2155       1.1   thorpej 	int	n, nclasses, error;
   2156      1.10     perry 
   2157       1.1   thorpej 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
   2158       1.1   thorpej 		return (EBADF);
   2159       1.1   thorpej 
   2160       1.1   thorpej 	ap->cur_time = read_machclk();
   2161      1.19     peter 	ap->machclk_freq = machclk_freq;
   2162       1.1   thorpej 	ap->hif_classes = hif->hif_classes;
   2163       1.1   thorpej 	ap->hif_packets = hif->hif_packets;
   2164       1.1   thorpej 
   2165       1.1   thorpej 	/* skip the first N classes in the tree */
   2166       1.1   thorpej 	nclasses = ap->nskip;
   2167       1.1   thorpej 	for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
   2168       1.1   thorpej 	     cl = hfsc_nextclass(cl), n++)
   2169       1.1   thorpej 		;
   2170       1.1   thorpej 	if (n != nclasses)
   2171       1.1   thorpej 		return (EINVAL);
   2172       1.1   thorpej 
   2173       1.1   thorpej 	/* then, read the next N classes in the tree */
   2174       1.1   thorpej 	nclasses = ap->nclasses;
   2175       1.1   thorpej 	usp = ap->stats;
   2176       1.1   thorpej 	for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
   2177       1.1   thorpej 
   2178       1.1   thorpej 		get_class_stats(&stats, cl);
   2179      1.10     perry 
   2180  1.22.4.1     rmind 		if ((error = copyout((void *)&stats, (void *)usp++,
   2181       1.1   thorpej 				     sizeof(stats))) != 0)
   2182       1.1   thorpej 			return (error);
   2183       1.1   thorpej 	}
   2184       1.1   thorpej 
   2185       1.1   thorpej 	ap->nclasses = n;
   2186       1.1   thorpej 
   2187       1.1   thorpej 	return (0);
   2188       1.1   thorpej }
   2189       1.1   thorpej 
   2190       1.1   thorpej #ifdef KLD_MODULE
   2191       1.1   thorpej 
   2192       1.1   thorpej static struct altqsw hfsc_sw =
   2193       1.1   thorpej 	{"hfsc", hfscopen, hfscclose, hfscioctl};
   2194       1.1   thorpej 
   2195       1.1   thorpej ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
   2196      1.19     peter MODULE_DEPEND(altq_hfsc, altq_red, 1, 1, 1);
   2197      1.19     peter MODULE_DEPEND(altq_hfsc, altq_rio, 1, 1, 1);
   2198       1.1   thorpej 
   2199       1.1   thorpej #endif /* KLD_MODULE */
   2200      1.19     peter #endif /* ALTQ3_COMPAT */
   2201       1.1   thorpej 
   2202       1.1   thorpej #endif /* ALTQ_HFSC */
   2203