altq_hfsc.c revision 1.29 1 1.29 riastrad /* $NetBSD: altq_hfsc.c,v 1.29 2021/08/30 08:40:31 riastradh Exp $ */
2 1.19 peter /* $KAME: altq_hfsc.c,v 1.26 2005/04/13 03:44:24 suz Exp $ */
3 1.1 thorpej
4 1.1 thorpej /*
5 1.1 thorpej * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
6 1.1 thorpej *
7 1.1 thorpej * Permission to use, copy, modify, and distribute this software and
8 1.1 thorpej * its documentation is hereby granted (including for commercial or
9 1.1 thorpej * for-profit use), provided that both the copyright notice and this
10 1.1 thorpej * permission notice appear in all copies of the software, derivative
11 1.19 peter * works, or modified versions, and any portions thereof.
12 1.1 thorpej *
13 1.1 thorpej * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
14 1.1 thorpej * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
15 1.1 thorpej * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
16 1.1 thorpej * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 1.1 thorpej * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18 1.1 thorpej * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
19 1.1 thorpej * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 1.1 thorpej * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
21 1.1 thorpej * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 1.1 thorpej * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23 1.1 thorpej * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 1.1 thorpej * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
25 1.1 thorpej * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26 1.1 thorpej * DAMAGE.
27 1.1 thorpej *
28 1.1 thorpej * Carnegie Mellon encourages (but does not require) users of this
29 1.1 thorpej * software to return any improvements or extensions that they make,
30 1.1 thorpej * and to grant Carnegie Mellon the rights to redistribute these
31 1.1 thorpej * changes without encumbrance.
32 1.1 thorpej */
33 1.1 thorpej /*
34 1.1 thorpej * H-FSC is described in Proceedings of SIGCOMM'97,
35 1.10 perry * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
36 1.1 thorpej * Real-Time and Priority Service"
37 1.1 thorpej * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
38 1.19 peter *
39 1.19 peter * Oleg Cherevko <olwi (at) aq.ml.com.ua> added the upperlimit for link-sharing.
40 1.19 peter * when a class has an upperlimit, the fit-time is computed from the
41 1.19 peter * upperlimit service curve. the link-sharing scheduler does not schedule
42 1.19 peter * a class whose fit-time exceeds the current time.
43 1.1 thorpej */
44 1.5 lukem
45 1.5 lukem #include <sys/cdefs.h>
46 1.29 riastrad __KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.29 2021/08/30 08:40:31 riastradh Exp $");
47 1.1 thorpej
48 1.19 peter #ifdef _KERNEL_OPT
49 1.1 thorpej #include "opt_altq.h"
50 1.1 thorpej #include "opt_inet.h"
51 1.20 peter #include "pf.h"
52 1.1 thorpej #endif
53 1.1 thorpej
54 1.1 thorpej #ifdef ALTQ_HFSC /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
55 1.1 thorpej
56 1.1 thorpej #include <sys/param.h>
57 1.1 thorpej #include <sys/malloc.h>
58 1.1 thorpej #include <sys/mbuf.h>
59 1.1 thorpej #include <sys/socket.h>
60 1.19 peter #include <sys/systm.h>
61 1.19 peter #include <sys/errno.h>
62 1.19 peter #include <sys/queue.h>
63 1.19 peter #if 1 /* ALTQ3_COMPAT */
64 1.1 thorpej #include <sys/sockio.h>
65 1.1 thorpej #include <sys/proc.h>
66 1.1 thorpej #include <sys/kernel.h>
67 1.19 peter #endif /* ALTQ3_COMPAT */
68 1.16 christos #include <sys/kauth.h>
69 1.1 thorpej
70 1.1 thorpej #include <net/if.h>
71 1.19 peter #include <netinet/in.h>
72 1.1 thorpej
73 1.20 peter #if NPF > 0
74 1.19 peter #include <net/pfvar.h>
75 1.20 peter #endif
76 1.1 thorpej #include <altq/altq.h>
77 1.19 peter #include <altq/altq_hfsc.h>
78 1.19 peter #ifdef ALTQ3_COMPAT
79 1.1 thorpej #include <altq/altq_conf.h>
80 1.19 peter #endif
81 1.1 thorpej
82 1.1 thorpej /*
83 1.1 thorpej * function prototypes
84 1.1 thorpej */
85 1.19 peter static int hfsc_clear_interface(struct hfsc_if *);
86 1.19 peter static int hfsc_request(struct ifaltq *, int, void *);
87 1.19 peter static void hfsc_purge(struct hfsc_if *);
88 1.19 peter static struct hfsc_class *hfsc_class_create(struct hfsc_if *,
89 1.19 peter struct service_curve *, struct service_curve *, struct service_curve *,
90 1.19 peter struct hfsc_class *, int, int, int);
91 1.19 peter static int hfsc_class_destroy(struct hfsc_class *);
92 1.19 peter static struct hfsc_class *hfsc_nextclass(struct hfsc_class *);
93 1.26 knakahar static int hfsc_enqueue(struct ifaltq *, struct mbuf *);
94 1.19 peter static struct mbuf *hfsc_dequeue(struct ifaltq *, int);
95 1.19 peter
96 1.19 peter static int hfsc_addq(struct hfsc_class *, struct mbuf *);
97 1.19 peter static struct mbuf *hfsc_getq(struct hfsc_class *);
98 1.19 peter static struct mbuf *hfsc_pollq(struct hfsc_class *);
99 1.19 peter static void hfsc_purgeq(struct hfsc_class *);
100 1.19 peter
101 1.19 peter static void update_cfmin(struct hfsc_class *);
102 1.19 peter static void set_active(struct hfsc_class *, int);
103 1.19 peter static void set_passive(struct hfsc_class *);
104 1.19 peter
105 1.19 peter static void init_ed(struct hfsc_class *, int);
106 1.19 peter static void update_ed(struct hfsc_class *, int);
107 1.19 peter static void update_d(struct hfsc_class *, int);
108 1.19 peter static void init_vf(struct hfsc_class *, int);
109 1.19 peter static void update_vf(struct hfsc_class *, int, u_int64_t);
110 1.19 peter static ellist_t *ellist_alloc(void);
111 1.19 peter static void ellist_destroy(ellist_t *);
112 1.19 peter static void ellist_insert(struct hfsc_class *);
113 1.19 peter static void ellist_remove(struct hfsc_class *);
114 1.19 peter static void ellist_update(struct hfsc_class *);
115 1.19 peter struct hfsc_class *ellist_get_mindl(ellist_t *, u_int64_t);
116 1.19 peter static actlist_t *actlist_alloc(void);
117 1.19 peter static void actlist_destroy(actlist_t *);
118 1.19 peter static void actlist_insert(struct hfsc_class *);
119 1.19 peter static void actlist_remove(struct hfsc_class *);
120 1.19 peter static void actlist_update(struct hfsc_class *);
121 1.19 peter
122 1.19 peter static struct hfsc_class *actlist_firstfit(struct hfsc_class *,
123 1.19 peter u_int64_t);
124 1.19 peter
125 1.19 peter static inline u_int64_t seg_x2y(u_int64_t, u_int64_t);
126 1.19 peter static inline u_int64_t seg_y2x(u_int64_t, u_int64_t);
127 1.19 peter static inline u_int64_t m2sm(u_int);
128 1.19 peter static inline u_int64_t m2ism(u_int);
129 1.19 peter static inline u_int64_t d2dx(u_int);
130 1.19 peter static u_int sm2m(u_int64_t);
131 1.19 peter static u_int dx2d(u_int64_t);
132 1.19 peter
133 1.19 peter static void sc2isc(struct service_curve *, struct internal_sc *);
134 1.19 peter static void rtsc_init(struct runtime_sc *, struct internal_sc *,
135 1.19 peter u_int64_t, u_int64_t);
136 1.19 peter static u_int64_t rtsc_y2x(struct runtime_sc *, u_int64_t);
137 1.19 peter static u_int64_t rtsc_x2y(struct runtime_sc *, u_int64_t);
138 1.19 peter static void rtsc_min(struct runtime_sc *, struct internal_sc *,
139 1.19 peter u_int64_t, u_int64_t);
140 1.19 peter
141 1.19 peter static void get_class_stats(struct hfsc_classstats *,
142 1.19 peter struct hfsc_class *);
143 1.19 peter static struct hfsc_class *clh_to_clp(struct hfsc_if *, u_int32_t);
144 1.19 peter
145 1.19 peter
146 1.19 peter #ifdef ALTQ3_COMPAT
147 1.19 peter static struct hfsc_if *hfsc_attach(struct ifaltq *, u_int);
148 1.25 christos static void hfsc_detach(struct hfsc_if *);
149 1.19 peter static int hfsc_class_modify(struct hfsc_class *, struct service_curve *,
150 1.19 peter struct service_curve *, struct service_curve *);
151 1.19 peter
152 1.19 peter static int hfsccmd_if_attach(struct hfsc_attach *);
153 1.19 peter static int hfsccmd_if_detach(struct hfsc_interface *);
154 1.19 peter static int hfsccmd_add_class(struct hfsc_add_class *);
155 1.19 peter static int hfsccmd_delete_class(struct hfsc_delete_class *);
156 1.19 peter static int hfsccmd_modify_class(struct hfsc_modify_class *);
157 1.19 peter static int hfsccmd_add_filter(struct hfsc_add_filter *);
158 1.19 peter static int hfsccmd_delete_filter(struct hfsc_delete_filter *);
159 1.19 peter static int hfsccmd_class_stats(struct hfsc_class_stats *);
160 1.19 peter
161 1.19 peter altqdev_decl(hfsc);
162 1.19 peter #endif /* ALTQ3_COMPAT */
163 1.1 thorpej
164 1.1 thorpej /*
165 1.1 thorpej * macros
166 1.1 thorpej */
167 1.1 thorpej #define is_a_parent_class(cl) ((cl)->cl_children != NULL)
168 1.1 thorpej
169 1.19 peter #define HT_INFINITY 0xffffffffffffffffLL /* infinite time value */
170 1.19 peter
171 1.19 peter #ifdef ALTQ3_COMPAT
172 1.1 thorpej /* hif_list keeps all hfsc_if's allocated. */
173 1.1 thorpej static struct hfsc_if *hif_list = NULL;
174 1.19 peter #endif /* ALTQ3_COMPAT */
175 1.19 peter
176 1.20 peter #if NPF > 0
177 1.19 peter int
178 1.19 peter hfsc_pfattach(struct pf_altq *a)
179 1.19 peter {
180 1.19 peter struct ifnet *ifp;
181 1.19 peter int s, error;
182 1.19 peter
183 1.19 peter if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
184 1.19 peter return (EINVAL);
185 1.19 peter s = splnet();
186 1.19 peter error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
187 1.19 peter hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
188 1.19 peter splx(s);
189 1.19 peter return (error);
190 1.19 peter }
191 1.1 thorpej
192 1.19 peter int
193 1.19 peter hfsc_add_altq(struct pf_altq *a)
194 1.1 thorpej {
195 1.1 thorpej struct hfsc_if *hif;
196 1.19 peter struct ifnet *ifp;
197 1.19 peter
198 1.19 peter if ((ifp = ifunit(a->ifname)) == NULL)
199 1.19 peter return (EINVAL);
200 1.19 peter if (!ALTQ_IS_READY(&ifp->if_snd))
201 1.19 peter return (ENODEV);
202 1.1 thorpej
203 1.13 christos hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
204 1.1 thorpej if (hif == NULL)
205 1.19 peter return (ENOMEM);
206 1.1 thorpej
207 1.1 thorpej hif->hif_eligible = ellist_alloc();
208 1.1 thorpej if (hif->hif_eligible == NULL) {
209 1.13 christos free(hif, M_DEVBUF);
210 1.19 peter return (ENOMEM);
211 1.1 thorpej }
212 1.1 thorpej
213 1.19 peter hif->hif_ifq = &ifp->if_snd;
214 1.19 peter
215 1.19 peter /* keep the state in pf_altq */
216 1.19 peter a->altq_disc = hif;
217 1.19 peter
218 1.19 peter return (0);
219 1.19 peter }
220 1.19 peter
221 1.19 peter int
222 1.19 peter hfsc_remove_altq(struct pf_altq *a)
223 1.19 peter {
224 1.19 peter struct hfsc_if *hif;
225 1.19 peter
226 1.19 peter if ((hif = a->altq_disc) == NULL)
227 1.19 peter return (EINVAL);
228 1.19 peter a->altq_disc = NULL;
229 1.19 peter
230 1.19 peter (void)hfsc_clear_interface(hif);
231 1.19 peter (void)hfsc_class_destroy(hif->hif_rootclass);
232 1.19 peter
233 1.19 peter ellist_destroy(hif->hif_eligible);
234 1.19 peter
235 1.19 peter free(hif, M_DEVBUF);
236 1.19 peter
237 1.19 peter return (0);
238 1.19 peter }
239 1.19 peter
240 1.19 peter int
241 1.19 peter hfsc_add_queue(struct pf_altq *a)
242 1.19 peter {
243 1.19 peter struct hfsc_if *hif;
244 1.19 peter struct hfsc_class *cl, *parent;
245 1.19 peter struct hfsc_opts *opts;
246 1.19 peter struct service_curve rtsc, lssc, ulsc;
247 1.19 peter
248 1.19 peter if ((hif = a->altq_disc) == NULL)
249 1.19 peter return (EINVAL);
250 1.19 peter
251 1.19 peter opts = &a->pq_u.hfsc_opts;
252 1.19 peter
253 1.19 peter if (a->parent_qid == HFSC_NULLCLASS_HANDLE &&
254 1.19 peter hif->hif_rootclass == NULL)
255 1.19 peter parent = NULL;
256 1.19 peter else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
257 1.19 peter return (EINVAL);
258 1.19 peter
259 1.19 peter if (a->qid == 0)
260 1.19 peter return (EINVAL);
261 1.19 peter
262 1.19 peter if (clh_to_clp(hif, a->qid) != NULL)
263 1.19 peter return (EBUSY);
264 1.1 thorpej
265 1.19 peter rtsc.m1 = opts->rtsc_m1;
266 1.19 peter rtsc.d = opts->rtsc_d;
267 1.19 peter rtsc.m2 = opts->rtsc_m2;
268 1.19 peter lssc.m1 = opts->lssc_m1;
269 1.19 peter lssc.d = opts->lssc_d;
270 1.19 peter lssc.m2 = opts->lssc_m2;
271 1.19 peter ulsc.m1 = opts->ulsc_m1;
272 1.19 peter ulsc.d = opts->ulsc_d;
273 1.19 peter ulsc.m2 = opts->ulsc_m2;
274 1.1 thorpej
275 1.19 peter cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc,
276 1.19 peter parent, a->qlimit, opts->flags, a->qid);
277 1.19 peter if (cl == NULL)
278 1.19 peter return (ENOMEM);
279 1.1 thorpej
280 1.19 peter return (0);
281 1.1 thorpej }
282 1.1 thorpej
283 1.19 peter int
284 1.19 peter hfsc_remove_queue(struct pf_altq *a)
285 1.19 peter {
286 1.1 thorpej struct hfsc_if *hif;
287 1.19 peter struct hfsc_class *cl;
288 1.19 peter
289 1.19 peter if ((hif = a->altq_disc) == NULL)
290 1.19 peter return (EINVAL);
291 1.19 peter
292 1.19 peter if ((cl = clh_to_clp(hif, a->qid)) == NULL)
293 1.19 peter return (EINVAL);
294 1.19 peter
295 1.19 peter return (hfsc_class_destroy(cl));
296 1.19 peter }
297 1.19 peter
298 1.19 peter int
299 1.19 peter hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
300 1.1 thorpej {
301 1.19 peter struct hfsc_if *hif;
302 1.19 peter struct hfsc_class *cl;
303 1.19 peter struct hfsc_classstats stats;
304 1.19 peter int error = 0;
305 1.1 thorpej
306 1.19 peter if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
307 1.19 peter return (EBADF);
308 1.10 perry
309 1.19 peter if ((cl = clh_to_clp(hif, a->qid)) == NULL)
310 1.19 peter return (EINVAL);
311 1.1 thorpej
312 1.19 peter if (*nbytes < sizeof(stats))
313 1.19 peter return (EINVAL);
314 1.1 thorpej
315 1.27 riastrad memset(&stats, 0, sizeof(stats));
316 1.19 peter get_class_stats(&stats, cl);
317 1.1 thorpej
318 1.23 christos if ((error = copyout((void *)&stats, ubuf, sizeof(stats))) != 0)
319 1.19 peter return (error);
320 1.19 peter *nbytes = sizeof(stats);
321 1.1 thorpej return (0);
322 1.1 thorpej }
323 1.20 peter #endif /* NPF > 0 */
324 1.1 thorpej
325 1.1 thorpej /*
326 1.1 thorpej * bring the interface back to the initial state by discarding
327 1.1 thorpej * all the filters and classes except the root class.
328 1.1 thorpej */
329 1.1 thorpej static int
330 1.19 peter hfsc_clear_interface(struct hfsc_if *hif)
331 1.1 thorpej {
332 1.1 thorpej struct hfsc_class *cl;
333 1.1 thorpej
334 1.19 peter #ifdef ALTQ3_COMPAT
335 1.1 thorpej /* free the filters for this interface */
336 1.1 thorpej acc_discard_filters(&hif->hif_classifier, NULL, 1);
337 1.19 peter #endif
338 1.1 thorpej
339 1.1 thorpej /* clear out the classes */
340 1.19 peter while (hif->hif_rootclass != NULL &&
341 1.19 peter (cl = hif->hif_rootclass->cl_children) != NULL) {
342 1.1 thorpej /*
343 1.1 thorpej * remove the first leaf class found in the hierarchy
344 1.1 thorpej * then start over
345 1.1 thorpej */
346 1.1 thorpej for (; cl != NULL; cl = hfsc_nextclass(cl)) {
347 1.1 thorpej if (!is_a_parent_class(cl)) {
348 1.1 thorpej (void)hfsc_class_destroy(cl);
349 1.1 thorpej break;
350 1.1 thorpej }
351 1.1 thorpej }
352 1.1 thorpej }
353 1.10 perry
354 1.1 thorpej return (0);
355 1.1 thorpej }
356 1.1 thorpej
357 1.1 thorpej static int
358 1.22 christos hfsc_request(struct ifaltq *ifq, int req, void *arg)
359 1.1 thorpej {
360 1.1 thorpej struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
361 1.1 thorpej
362 1.1 thorpej switch (req) {
363 1.1 thorpej case ALTRQ_PURGE:
364 1.1 thorpej hfsc_purge(hif);
365 1.1 thorpej break;
366 1.1 thorpej }
367 1.1 thorpej return (0);
368 1.1 thorpej }
369 1.1 thorpej
370 1.1 thorpej /* discard all the queued packets on the interface */
371 1.1 thorpej static void
372 1.19 peter hfsc_purge(struct hfsc_if *hif)
373 1.1 thorpej {
374 1.1 thorpej struct hfsc_class *cl;
375 1.1 thorpej
376 1.1 thorpej for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
377 1.1 thorpej if (!qempty(cl->cl_q))
378 1.1 thorpej hfsc_purgeq(cl);
379 1.1 thorpej if (ALTQ_IS_ENABLED(hif->hif_ifq))
380 1.1 thorpej hif->hif_ifq->ifq_len = 0;
381 1.1 thorpej }
382 1.1 thorpej
383 1.1 thorpej struct hfsc_class *
384 1.19 peter hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
385 1.19 peter struct service_curve *fsc, struct service_curve *usc,
386 1.19 peter struct hfsc_class *parent, int qlimit, int flags, int qid)
387 1.1 thorpej {
388 1.1 thorpej struct hfsc_class *cl, *p;
389 1.19 peter int i, s;
390 1.19 peter
391 1.19 peter if (hif->hif_classes >= HFSC_MAX_CLASSES)
392 1.19 peter return (NULL);
393 1.1 thorpej
394 1.1 thorpej #ifndef ALTQ_RED
395 1.1 thorpej if (flags & HFCF_RED) {
396 1.19 peter #ifdef ALTQ_DEBUG
397 1.1 thorpej printf("hfsc_class_create: RED not configured for HFSC!\n");
398 1.19 peter #endif
399 1.1 thorpej return (NULL);
400 1.1 thorpej }
401 1.1 thorpej #endif
402 1.1 thorpej
403 1.13 christos cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_WAITOK|M_ZERO);
404 1.1 thorpej if (cl == NULL)
405 1.1 thorpej return (NULL);
406 1.1 thorpej
407 1.13 christos cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_WAITOK|M_ZERO);
408 1.1 thorpej if (cl->cl_q == NULL)
409 1.1 thorpej goto err_ret;
410 1.1 thorpej
411 1.1 thorpej cl->cl_actc = actlist_alloc();
412 1.1 thorpej if (cl->cl_actc == NULL)
413 1.1 thorpej goto err_ret;
414 1.1 thorpej
415 1.1 thorpej if (qlimit == 0)
416 1.1 thorpej qlimit = 50; /* use default */
417 1.1 thorpej qlimit(cl->cl_q) = qlimit;
418 1.1 thorpej qtype(cl->cl_q) = Q_DROPTAIL;
419 1.1 thorpej qlen(cl->cl_q) = 0;
420 1.1 thorpej cl->cl_flags = flags;
421 1.1 thorpej #ifdef ALTQ_RED
422 1.1 thorpej if (flags & (HFCF_RED|HFCF_RIO)) {
423 1.1 thorpej int red_flags, red_pkttime;
424 1.19 peter u_int m2;
425 1.19 peter
426 1.19 peter m2 = 0;
427 1.19 peter if (rsc != NULL && rsc->m2 > m2)
428 1.19 peter m2 = rsc->m2;
429 1.19 peter if (fsc != NULL && fsc->m2 > m2)
430 1.19 peter m2 = fsc->m2;
431 1.19 peter if (usc != NULL && usc->m2 > m2)
432 1.19 peter m2 = usc->m2;
433 1.1 thorpej
434 1.1 thorpej red_flags = 0;
435 1.1 thorpej if (flags & HFCF_ECN)
436 1.1 thorpej red_flags |= REDF_ECN;
437 1.1 thorpej #ifdef ALTQ_RIO
438 1.1 thorpej if (flags & HFCF_CLEARDSCP)
439 1.1 thorpej red_flags |= RIOF_CLEARDSCP;
440 1.1 thorpej #endif
441 1.19 peter if (m2 < 8)
442 1.1 thorpej red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
443 1.1 thorpej else
444 1.1 thorpej red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
445 1.19 peter * 1000 * 1000 * 1000 / (m2 / 8);
446 1.1 thorpej if (flags & HFCF_RED) {
447 1.19 peter cl->cl_red = red_alloc(0, 0,
448 1.19 peter qlimit(cl->cl_q) * 10/100,
449 1.19 peter qlimit(cl->cl_q) * 30/100,
450 1.19 peter red_flags, red_pkttime);
451 1.1 thorpej if (cl->cl_red != NULL)
452 1.1 thorpej qtype(cl->cl_q) = Q_RED;
453 1.1 thorpej }
454 1.1 thorpej #ifdef ALTQ_RIO
455 1.1 thorpej else {
456 1.1 thorpej cl->cl_red = (red_t *)rio_alloc(0, NULL,
457 1.19 peter red_flags, red_pkttime);
458 1.1 thorpej if (cl->cl_red != NULL)
459 1.1 thorpej qtype(cl->cl_q) = Q_RIO;
460 1.1 thorpej }
461 1.1 thorpej #endif
462 1.1 thorpej }
463 1.1 thorpej #endif /* ALTQ_RED */
464 1.1 thorpej
465 1.19 peter if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
466 1.13 christos cl->cl_rsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
467 1.13 christos M_WAITOK|M_ZERO);
468 1.1 thorpej if (cl->cl_rsc == NULL)
469 1.1 thorpej goto err_ret;
470 1.19 peter sc2isc(rsc, cl->cl_rsc);
471 1.1 thorpej rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
472 1.1 thorpej rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
473 1.19 peter }
474 1.19 peter if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
475 1.13 christos cl->cl_fsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
476 1.13 christos M_WAITOK|M_ZERO);
477 1.1 thorpej if (cl->cl_fsc == NULL)
478 1.1 thorpej goto err_ret;
479 1.19 peter sc2isc(fsc, cl->cl_fsc);
480 1.1 thorpej rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
481 1.1 thorpej }
482 1.19 peter if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
483 1.19 peter cl->cl_usc = malloc(sizeof(struct internal_sc), M_DEVBUF,
484 1.19 peter M_WAITOK|M_ZERO);
485 1.19 peter if (cl->cl_usc == NULL)
486 1.19 peter goto err_ret;
487 1.19 peter sc2isc(usc, cl->cl_usc);
488 1.19 peter rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
489 1.19 peter }
490 1.1 thorpej
491 1.1 thorpej cl->cl_id = hif->hif_classid++;
492 1.19 peter cl->cl_handle = qid;
493 1.1 thorpej cl->cl_hif = hif;
494 1.1 thorpej cl->cl_parent = parent;
495 1.1 thorpej
496 1.3 thorpej s = splnet();
497 1.1 thorpej hif->hif_classes++;
498 1.19 peter
499 1.19 peter /*
500 1.19 peter * find a free slot in the class table. if the slot matching
501 1.19 peter * the lower bits of qid is free, use this slot. otherwise,
502 1.19 peter * use the first free slot.
503 1.19 peter */
504 1.19 peter i = qid % HFSC_MAX_CLASSES;
505 1.19 peter if (hif->hif_class_tbl[i] == NULL)
506 1.19 peter hif->hif_class_tbl[i] = cl;
507 1.19 peter else {
508 1.19 peter for (i = 0; i < HFSC_MAX_CLASSES; i++)
509 1.19 peter if (hif->hif_class_tbl[i] == NULL) {
510 1.19 peter hif->hif_class_tbl[i] = cl;
511 1.19 peter break;
512 1.19 peter }
513 1.19 peter if (i == HFSC_MAX_CLASSES) {
514 1.19 peter splx(s);
515 1.19 peter goto err_ret;
516 1.19 peter }
517 1.19 peter }
518 1.19 peter
519 1.1 thorpej if (flags & HFCF_DEFAULTCLASS)
520 1.1 thorpej hif->hif_defaultclass = cl;
521 1.1 thorpej
522 1.1 thorpej if (parent == NULL) {
523 1.1 thorpej /* this is root class */
524 1.19 peter hif->hif_rootclass = cl;
525 1.19 peter } else {
526 1.19 peter /* add this class to the children list of the parent */
527 1.19 peter if ((p = parent->cl_children) == NULL)
528 1.19 peter parent->cl_children = cl;
529 1.19 peter else {
530 1.19 peter while (p->cl_siblings != NULL)
531 1.19 peter p = p->cl_siblings;
532 1.19 peter p->cl_siblings = cl;
533 1.19 peter }
534 1.1 thorpej }
535 1.1 thorpej splx(s);
536 1.1 thorpej
537 1.1 thorpej return (cl);
538 1.1 thorpej
539 1.1 thorpej err_ret:
540 1.1 thorpej if (cl->cl_actc != NULL)
541 1.1 thorpej actlist_destroy(cl->cl_actc);
542 1.1 thorpej if (cl->cl_red != NULL) {
543 1.1 thorpej #ifdef ALTQ_RIO
544 1.1 thorpej if (q_is_rio(cl->cl_q))
545 1.1 thorpej rio_destroy((rio_t *)cl->cl_red);
546 1.1 thorpej #endif
547 1.1 thorpej #ifdef ALTQ_RED
548 1.1 thorpej if (q_is_red(cl->cl_q))
549 1.1 thorpej red_destroy(cl->cl_red);
550 1.1 thorpej #endif
551 1.1 thorpej }
552 1.1 thorpej if (cl->cl_fsc != NULL)
553 1.13 christos free(cl->cl_fsc, M_DEVBUF);
554 1.1 thorpej if (cl->cl_rsc != NULL)
555 1.13 christos free(cl->cl_rsc, M_DEVBUF);
556 1.19 peter if (cl->cl_usc != NULL)
557 1.19 peter free(cl->cl_usc, M_DEVBUF);
558 1.1 thorpej if (cl->cl_q != NULL)
559 1.13 christos free(cl->cl_q, M_DEVBUF);
560 1.13 christos free(cl, M_DEVBUF);
561 1.1 thorpej return (NULL);
562 1.1 thorpej }
563 1.1 thorpej
564 1.1 thorpej static int
565 1.19 peter hfsc_class_destroy(struct hfsc_class *cl)
566 1.1 thorpej {
567 1.19 peter int i, s;
568 1.19 peter
569 1.19 peter if (cl == NULL)
570 1.19 peter return (0);
571 1.1 thorpej
572 1.1 thorpej if (is_a_parent_class(cl))
573 1.1 thorpej return (EBUSY);
574 1.1 thorpej
575 1.3 thorpej s = splnet();
576 1.1 thorpej
577 1.19 peter #ifdef ALTQ3_COMPAT
578 1.1 thorpej /* delete filters referencing to this class */
579 1.1 thorpej acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
580 1.19 peter #endif /* ALTQ3_COMPAT */
581 1.1 thorpej
582 1.1 thorpej if (!qempty(cl->cl_q))
583 1.1 thorpej hfsc_purgeq(cl);
584 1.1 thorpej
585 1.1 thorpej if (cl->cl_parent == NULL) {
586 1.1 thorpej /* this is root class */
587 1.1 thorpej } else {
588 1.1 thorpej struct hfsc_class *p = cl->cl_parent->cl_children;
589 1.1 thorpej
590 1.1 thorpej if (p == cl)
591 1.1 thorpej cl->cl_parent->cl_children = cl->cl_siblings;
592 1.1 thorpej else do {
593 1.1 thorpej if (p->cl_siblings == cl) {
594 1.1 thorpej p->cl_siblings = cl->cl_siblings;
595 1.1 thorpej break;
596 1.1 thorpej }
597 1.1 thorpej } while ((p = p->cl_siblings) != NULL);
598 1.1 thorpej ASSERT(p != NULL);
599 1.1 thorpej }
600 1.19 peter
601 1.19 peter for (i = 0; i < HFSC_MAX_CLASSES; i++)
602 1.19 peter if (cl->cl_hif->hif_class_tbl[i] == cl) {
603 1.19 peter cl->cl_hif->hif_class_tbl[i] = NULL;
604 1.19 peter break;
605 1.19 peter }
606 1.19 peter
607 1.1 thorpej cl->cl_hif->hif_classes--;
608 1.1 thorpej splx(s);
609 1.1 thorpej
610 1.1 thorpej actlist_destroy(cl->cl_actc);
611 1.1 thorpej
612 1.1 thorpej if (cl->cl_red != NULL) {
613 1.1 thorpej #ifdef ALTQ_RIO
614 1.1 thorpej if (q_is_rio(cl->cl_q))
615 1.1 thorpej rio_destroy((rio_t *)cl->cl_red);
616 1.1 thorpej #endif
617 1.1 thorpej #ifdef ALTQ_RED
618 1.1 thorpej if (q_is_red(cl->cl_q))
619 1.1 thorpej red_destroy(cl->cl_red);
620 1.1 thorpej #endif
621 1.1 thorpej }
622 1.19 peter
623 1.19 peter if (cl == cl->cl_hif->hif_rootclass)
624 1.19 peter cl->cl_hif->hif_rootclass = NULL;
625 1.19 peter if (cl == cl->cl_hif->hif_defaultclass)
626 1.19 peter cl->cl_hif->hif_defaultclass = NULL;
627 1.19 peter
628 1.19 peter if (cl->cl_usc != NULL)
629 1.19 peter free(cl->cl_usc, M_DEVBUF);
630 1.1 thorpej if (cl->cl_fsc != NULL)
631 1.13 christos free(cl->cl_fsc, M_DEVBUF);
632 1.1 thorpej if (cl->cl_rsc != NULL)
633 1.13 christos free(cl->cl_rsc, M_DEVBUF);
634 1.13 christos free(cl->cl_q, M_DEVBUF);
635 1.13 christos free(cl, M_DEVBUF);
636 1.1 thorpej
637 1.1 thorpej return (0);
638 1.1 thorpej }
639 1.1 thorpej
640 1.1 thorpej /*
641 1.1 thorpej * hfsc_nextclass returns the next class in the tree.
642 1.1 thorpej * usage:
643 1.19 peter * for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
644 1.1 thorpej * do_something;
645 1.1 thorpej */
646 1.1 thorpej static struct hfsc_class *
647 1.19 peter hfsc_nextclass(struct hfsc_class *cl)
648 1.1 thorpej {
649 1.1 thorpej if (cl->cl_children != NULL)
650 1.1 thorpej cl = cl->cl_children;
651 1.1 thorpej else if (cl->cl_siblings != NULL)
652 1.1 thorpej cl = cl->cl_siblings;
653 1.1 thorpej else {
654 1.1 thorpej while ((cl = cl->cl_parent) != NULL)
655 1.1 thorpej if (cl->cl_siblings) {
656 1.1 thorpej cl = cl->cl_siblings;
657 1.1 thorpej break;
658 1.1 thorpej }
659 1.1 thorpej }
660 1.1 thorpej
661 1.1 thorpej return (cl);
662 1.1 thorpej }
663 1.1 thorpej
664 1.1 thorpej /*
665 1.1 thorpej * hfsc_enqueue is an enqueue function to be registered to
666 1.1 thorpej * (*altq_enqueue) in struct ifaltq.
667 1.1 thorpej */
668 1.10 perry static int
669 1.26 knakahar hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m)
670 1.1 thorpej {
671 1.26 knakahar struct altq_pktattr pktattr;
672 1.1 thorpej struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
673 1.1 thorpej struct hfsc_class *cl;
674 1.19 peter struct m_tag *t;
675 1.1 thorpej int len;
676 1.1 thorpej
677 1.1 thorpej /* grab class set by classifier */
678 1.19 peter if ((m->m_flags & M_PKTHDR) == 0) {
679 1.19 peter /* should not happen */
680 1.19 peter printf("altq: packet for %s does not have pkthdr\n",
681 1.19 peter ifq->altq_ifp->if_xname);
682 1.19 peter m_freem(m);
683 1.19 peter return (ENOBUFS);
684 1.19 peter }
685 1.19 peter cl = NULL;
686 1.28 maxv if ((t = m_tag_find(m, PACKET_TAG_ALTQ_QID)) != NULL)
687 1.19 peter cl = clh_to_clp(hif, ((struct altq_tag *)(t+1))->qid);
688 1.19 peter #ifdef ALTQ3_COMPAT
689 1.26 knakahar else if ((ifq->altq_flags & ALTQF_CLASSIFY))
690 1.26 knakahar cl = m->m_pkthdr.pattr_class;
691 1.19 peter #endif
692 1.19 peter if (cl == NULL || is_a_parent_class(cl)) {
693 1.1 thorpej cl = hif->hif_defaultclass;
694 1.19 peter if (cl == NULL) {
695 1.19 peter m_freem(m);
696 1.19 peter return (ENOBUFS);
697 1.19 peter }
698 1.19 peter }
699 1.19 peter #ifdef ALTQ3_COMPAT
700 1.26 knakahar if (m->m_pkthdr.pattr_af != AF_UNSPEC) {
701 1.26 knakahar pktattr.pattr_class = m->m_pkthdr.pattr_class;
702 1.26 knakahar pktattr.pattr_af = m->m_pkthdr.pattr_af;
703 1.26 knakahar pktattr.pattr_hdr = m->m_pkthdr.pattr_hdr;
704 1.26 knakahar
705 1.26 knakahar cl->cl_pktattr = &pktattr; /* save proto hdr used by ECN */
706 1.26 knakahar } else
707 1.19 peter #endif
708 1.19 peter cl->cl_pktattr = NULL;
709 1.1 thorpej len = m_pktlen(m);
710 1.1 thorpej if (hfsc_addq(cl, m) != 0) {
711 1.1 thorpej /* drop occurred. mbuf was freed in hfsc_addq. */
712 1.1 thorpej PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
713 1.1 thorpej return (ENOBUFS);
714 1.1 thorpej }
715 1.1 thorpej IFQ_INC_LEN(ifq);
716 1.1 thorpej cl->cl_hif->hif_packets++;
717 1.1 thorpej
718 1.1 thorpej /* successfully queued. */
719 1.1 thorpej if (qlen(cl->cl_q) == 1)
720 1.1 thorpej set_active(cl, m_pktlen(m));
721 1.1 thorpej
722 1.1 thorpej return (0);
723 1.1 thorpej }
724 1.1 thorpej
725 1.1 thorpej /*
726 1.1 thorpej * hfsc_dequeue is a dequeue function to be registered to
727 1.1 thorpej * (*altq_dequeue) in struct ifaltq.
728 1.1 thorpej *
729 1.1 thorpej * note: ALTDQ_POLL returns the next packet without removing the packet
730 1.1 thorpej * from the queue. ALTDQ_REMOVE is a normal dequeue operation.
731 1.1 thorpej * ALTDQ_REMOVE must return the same packet if called immediately
732 1.1 thorpej * after ALTDQ_POLL.
733 1.1 thorpej */
734 1.1 thorpej static struct mbuf *
735 1.19 peter hfsc_dequeue(struct ifaltq *ifq, int op)
736 1.1 thorpej {
737 1.1 thorpej struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
738 1.1 thorpej struct hfsc_class *cl;
739 1.1 thorpej struct mbuf *m;
740 1.1 thorpej int len, next_len;
741 1.1 thorpej int realtime = 0;
742 1.19 peter u_int64_t cur_time;
743 1.1 thorpej
744 1.1 thorpej if (hif->hif_packets == 0)
745 1.1 thorpej /* no packet in the tree */
746 1.1 thorpej return (NULL);
747 1.1 thorpej
748 1.19 peter cur_time = read_machclk();
749 1.19 peter
750 1.1 thorpej if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
751 1.10 perry
752 1.1 thorpej cl = hif->hif_pollcache;
753 1.1 thorpej hif->hif_pollcache = NULL;
754 1.1 thorpej /* check if the class was scheduled by real-time criteria */
755 1.19 peter if (cl->cl_rsc != NULL)
756 1.1 thorpej realtime = (cl->cl_e <= cur_time);
757 1.1 thorpej } else {
758 1.1 thorpej /*
759 1.1 thorpej * if there are eligible classes, use real-time criteria.
760 1.1 thorpej * find the class with the minimum deadline among
761 1.1 thorpej * the eligible classes.
762 1.1 thorpej */
763 1.19 peter if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time))
764 1.19 peter != NULL) {
765 1.1 thorpej realtime = 1;
766 1.1 thorpej } else {
767 1.19 peter #ifdef ALTQ_DEBUG
768 1.19 peter int fits = 0;
769 1.19 peter #endif
770 1.1 thorpej /*
771 1.1 thorpej * use link-sharing criteria
772 1.1 thorpej * get the class with the minimum vt in the hierarchy
773 1.1 thorpej */
774 1.1 thorpej cl = hif->hif_rootclass;
775 1.1 thorpej while (is_a_parent_class(cl)) {
776 1.19 peter
777 1.19 peter cl = actlist_firstfit(cl, cur_time);
778 1.19 peter if (cl == NULL) {
779 1.19 peter #ifdef ALTQ_DEBUG
780 1.19 peter if (fits > 0)
781 1.19 peter printf("%d fit but none found\n",fits);
782 1.19 peter #endif
783 1.1 thorpej return (NULL);
784 1.19 peter }
785 1.19 peter /*
786 1.19 peter * update parent's cl_cvtmin.
787 1.19 peter * don't update if the new vt is smaller.
788 1.19 peter */
789 1.19 peter if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
790 1.19 peter cl->cl_parent->cl_cvtmin = cl->cl_vt;
791 1.19 peter #ifdef ALTQ_DEBUG
792 1.19 peter fits++;
793 1.19 peter #endif
794 1.1 thorpej }
795 1.1 thorpej }
796 1.1 thorpej
797 1.1 thorpej if (op == ALTDQ_POLL) {
798 1.1 thorpej hif->hif_pollcache = cl;
799 1.1 thorpej m = hfsc_pollq(cl);
800 1.1 thorpej return (m);
801 1.1 thorpej }
802 1.1 thorpej }
803 1.1 thorpej
804 1.1 thorpej m = hfsc_getq(cl);
805 1.19 peter if (m == NULL)
806 1.19 peter panic("hfsc_dequeue:");
807 1.1 thorpej len = m_pktlen(m);
808 1.1 thorpej cl->cl_hif->hif_packets--;
809 1.1 thorpej IFQ_DEC_LEN(ifq);
810 1.1 thorpej PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
811 1.1 thorpej
812 1.19 peter update_vf(cl, len, cur_time);
813 1.1 thorpej if (realtime)
814 1.1 thorpej cl->cl_cumul += len;
815 1.1 thorpej
816 1.1 thorpej if (!qempty(cl->cl_q)) {
817 1.1 thorpej if (cl->cl_rsc != NULL) {
818 1.1 thorpej /* update ed */
819 1.1 thorpej next_len = m_pktlen(qhead(cl->cl_q));
820 1.10 perry
821 1.1 thorpej if (realtime)
822 1.1 thorpej update_ed(cl, next_len);
823 1.1 thorpej else
824 1.1 thorpej update_d(cl, next_len);
825 1.1 thorpej }
826 1.1 thorpej } else {
827 1.1 thorpej /* the class becomes passive */
828 1.1 thorpej set_passive(cl);
829 1.1 thorpej }
830 1.1 thorpej
831 1.1 thorpej return (m);
832 1.1 thorpej }
833 1.1 thorpej
834 1.1 thorpej static int
835 1.19 peter hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
836 1.1 thorpej {
837 1.1 thorpej
838 1.1 thorpej #ifdef ALTQ_RIO
839 1.1 thorpej if (q_is_rio(cl->cl_q))
840 1.1 thorpej return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
841 1.1 thorpej m, cl->cl_pktattr);
842 1.1 thorpej #endif
843 1.1 thorpej #ifdef ALTQ_RED
844 1.1 thorpej if (q_is_red(cl->cl_q))
845 1.1 thorpej return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
846 1.1 thorpej #endif
847 1.1 thorpej if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
848 1.1 thorpej m_freem(m);
849 1.1 thorpej return (-1);
850 1.1 thorpej }
851 1.1 thorpej
852 1.1 thorpej if (cl->cl_flags & HFCF_CLEARDSCP)
853 1.1 thorpej write_dsfield(m, cl->cl_pktattr, 0);
854 1.1 thorpej
855 1.1 thorpej _addq(cl->cl_q, m);
856 1.1 thorpej
857 1.1 thorpej return (0);
858 1.1 thorpej }
859 1.1 thorpej
860 1.1 thorpej static struct mbuf *
861 1.19 peter hfsc_getq(struct hfsc_class *cl)
862 1.1 thorpej {
863 1.1 thorpej #ifdef ALTQ_RIO
864 1.1 thorpej if (q_is_rio(cl->cl_q))
865 1.1 thorpej return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
866 1.1 thorpej #endif
867 1.1 thorpej #ifdef ALTQ_RED
868 1.1 thorpej if (q_is_red(cl->cl_q))
869 1.1 thorpej return red_getq(cl->cl_red, cl->cl_q);
870 1.1 thorpej #endif
871 1.1 thorpej return _getq(cl->cl_q);
872 1.1 thorpej }
873 1.1 thorpej
874 1.1 thorpej static struct mbuf *
875 1.19 peter hfsc_pollq(struct hfsc_class *cl)
876 1.1 thorpej {
877 1.1 thorpej return qhead(cl->cl_q);
878 1.1 thorpej }
879 1.1 thorpej
880 1.1 thorpej static void
881 1.19 peter hfsc_purgeq(struct hfsc_class *cl)
882 1.1 thorpej {
883 1.1 thorpej struct mbuf *m;
884 1.1 thorpej
885 1.1 thorpej if (qempty(cl->cl_q))
886 1.1 thorpej return;
887 1.1 thorpej
888 1.1 thorpej while ((m = _getq(cl->cl_q)) != NULL) {
889 1.1 thorpej PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
890 1.1 thorpej m_freem(m);
891 1.19 peter cl->cl_hif->hif_packets--;
892 1.19 peter IFQ_DEC_LEN(cl->cl_hif->hif_ifq);
893 1.1 thorpej }
894 1.1 thorpej ASSERT(qlen(cl->cl_q) == 0);
895 1.10 perry
896 1.19 peter update_vf(cl, 0, 0); /* remove cl from the actlist */
897 1.1 thorpej set_passive(cl);
898 1.1 thorpej }
899 1.1 thorpej
900 1.10 perry static void
901 1.19 peter set_active(struct hfsc_class *cl, int len)
902 1.1 thorpej {
903 1.1 thorpej if (cl->cl_rsc != NULL)
904 1.1 thorpej init_ed(cl, len);
905 1.1 thorpej if (cl->cl_fsc != NULL)
906 1.19 peter init_vf(cl, len);
907 1.1 thorpej
908 1.1 thorpej cl->cl_stats.period++;
909 1.1 thorpej }
910 1.1 thorpej
911 1.10 perry static void
912 1.19 peter set_passive(struct hfsc_class *cl)
913 1.1 thorpej {
914 1.1 thorpej if (cl->cl_rsc != NULL)
915 1.1 thorpej ellist_remove(cl);
916 1.1 thorpej
917 1.19 peter /*
918 1.19 peter * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
919 1.19 peter * needs to be called explicitly to remove a class from actlist
920 1.19 peter */
921 1.1 thorpej }
922 1.1 thorpej
923 1.10 perry static void
924 1.19 peter init_ed(struct hfsc_class *cl, int next_len)
925 1.1 thorpej {
926 1.1 thorpej u_int64_t cur_time;
927 1.1 thorpej
928 1.1 thorpej cur_time = read_machclk();
929 1.1 thorpej
930 1.1 thorpej /* update the deadline curve */
931 1.1 thorpej rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
932 1.1 thorpej
933 1.1 thorpej /*
934 1.1 thorpej * update the eligible curve.
935 1.1 thorpej * for concave, it is equal to the deadline curve.
936 1.1 thorpej * for convex, it is a linear curve with slope m2.
937 1.1 thorpej */
938 1.1 thorpej cl->cl_eligible = cl->cl_deadline;
939 1.1 thorpej if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
940 1.1 thorpej cl->cl_eligible.dx = 0;
941 1.1 thorpej cl->cl_eligible.dy = 0;
942 1.1 thorpej }
943 1.1 thorpej
944 1.1 thorpej /* compute e and d */
945 1.1 thorpej cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
946 1.1 thorpej cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
947 1.1 thorpej
948 1.1 thorpej ellist_insert(cl);
949 1.1 thorpej }
950 1.1 thorpej
951 1.10 perry static void
952 1.19 peter update_ed(struct hfsc_class *cl, int next_len)
953 1.1 thorpej {
954 1.1 thorpej cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
955 1.1 thorpej cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
956 1.1 thorpej
957 1.1 thorpej ellist_update(cl);
958 1.1 thorpej }
959 1.1 thorpej
960 1.10 perry static void
961 1.19 peter update_d(struct hfsc_class *cl, int next_len)
962 1.1 thorpej {
963 1.1 thorpej cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
964 1.1 thorpej }
965 1.1 thorpej
966 1.10 perry static void
967 1.22 christos init_vf(struct hfsc_class *cl, int len)
968 1.1 thorpej {
969 1.19 peter struct hfsc_class *max_cl, *p;
970 1.19 peter u_int64_t vt, f, cur_time;
971 1.19 peter int go_active;
972 1.19 peter
973 1.19 peter cur_time = 0;
974 1.19 peter go_active = 1;
975 1.19 peter for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
976 1.1 thorpej
977 1.19 peter if (go_active && cl->cl_nactive++ == 0)
978 1.19 peter go_active = 1;
979 1.19 peter else
980 1.19 peter go_active = 0;
981 1.10 perry
982 1.19 peter if (go_active) {
983 1.19 peter max_cl = actlist_last(cl->cl_parent->cl_actc);
984 1.19 peter if (max_cl != NULL) {
985 1.19 peter /*
986 1.19 peter * set vt to the average of the min and max
987 1.19 peter * classes. if the parent's period didn't
988 1.19 peter * change, don't decrease vt of the class.
989 1.19 peter */
990 1.19 peter vt = max_cl->cl_vt;
991 1.19 peter if (cl->cl_parent->cl_cvtmin != 0)
992 1.19 peter vt = (cl->cl_parent->cl_cvtmin + vt)/2;
993 1.19 peter
994 1.19 peter if (cl->cl_parent->cl_vtperiod !=
995 1.19 peter cl->cl_parentperiod || vt > cl->cl_vt)
996 1.19 peter cl->cl_vt = vt;
997 1.19 peter } else {
998 1.19 peter /*
999 1.19 peter * first child for a new parent backlog period.
1000 1.19 peter * add parent's cvtmax to vtoff of children
1001 1.19 peter * to make a new vt (vtoff + vt) larger than
1002 1.19 peter * the vt in the last period for all children.
1003 1.19 peter */
1004 1.19 peter vt = cl->cl_parent->cl_cvtmax;
1005 1.19 peter for (p = cl->cl_parent->cl_children; p != NULL;
1006 1.19 peter p = p->cl_siblings)
1007 1.19 peter p->cl_vtoff += vt;
1008 1.19 peter cl->cl_vt = 0;
1009 1.19 peter cl->cl_parent->cl_cvtmax = 0;
1010 1.19 peter cl->cl_parent->cl_cvtmin = 0;
1011 1.19 peter }
1012 1.19 peter cl->cl_initvt = cl->cl_vt;
1013 1.1 thorpej
1014 1.19 peter /* update the virtual curve */
1015 1.19 peter vt = cl->cl_vt + cl->cl_vtoff;
1016 1.19 peter rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
1017 1.19 peter if (cl->cl_virtual.x == vt) {
1018 1.19 peter cl->cl_virtual.x -= cl->cl_vtoff;
1019 1.19 peter cl->cl_vtoff = 0;
1020 1.19 peter }
1021 1.19 peter cl->cl_vtadj = 0;
1022 1.1 thorpej
1023 1.19 peter cl->cl_vtperiod++; /* increment vt period */
1024 1.19 peter cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
1025 1.19 peter if (cl->cl_parent->cl_nactive == 0)
1026 1.19 peter cl->cl_parentperiod++;
1027 1.19 peter cl->cl_f = 0;
1028 1.19 peter
1029 1.19 peter actlist_insert(cl);
1030 1.19 peter
1031 1.19 peter if (cl->cl_usc != NULL) {
1032 1.19 peter /* class has upper limit curve */
1033 1.19 peter if (cur_time == 0)
1034 1.19 peter cur_time = read_machclk();
1035 1.19 peter
1036 1.19 peter /* update the ulimit curve */
1037 1.19 peter rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
1038 1.19 peter cl->cl_total);
1039 1.19 peter /* compute myf */
1040 1.19 peter cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
1041 1.19 peter cl->cl_total);
1042 1.19 peter cl->cl_myfadj = 0;
1043 1.19 peter }
1044 1.1 thorpej }
1045 1.1 thorpej
1046 1.19 peter if (cl->cl_myf > cl->cl_cfmin)
1047 1.19 peter f = cl->cl_myf;
1048 1.19 peter else
1049 1.19 peter f = cl->cl_cfmin;
1050 1.19 peter if (f != cl->cl_f) {
1051 1.19 peter cl->cl_f = f;
1052 1.19 peter update_cfmin(cl->cl_parent);
1053 1.19 peter }
1054 1.1 thorpej }
1055 1.1 thorpej }
1056 1.1 thorpej
1057 1.10 perry static void
1058 1.19 peter update_vf(struct hfsc_class *cl, int len, u_int64_t cur_time)
1059 1.1 thorpej {
1060 1.19 peter u_int64_t f, myf_bound, delta;
1061 1.19 peter int go_passive;
1062 1.19 peter
1063 1.19 peter go_passive = qempty(cl->cl_q);
1064 1.19 peter
1065 1.19 peter for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
1066 1.1 thorpej
1067 1.1 thorpej cl->cl_total += len;
1068 1.1 thorpej
1069 1.19 peter if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
1070 1.19 peter continue;
1071 1.19 peter
1072 1.19 peter if (go_passive && --cl->cl_nactive == 0)
1073 1.19 peter go_passive = 1;
1074 1.19 peter else
1075 1.19 peter go_passive = 0;
1076 1.19 peter
1077 1.19 peter if (go_passive) {
1078 1.19 peter /* no more active child, going passive */
1079 1.19 peter
1080 1.19 peter /* update cvtmax of the parent class */
1081 1.19 peter if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
1082 1.19 peter cl->cl_parent->cl_cvtmax = cl->cl_vt;
1083 1.19 peter
1084 1.19 peter /* remove this class from the vt list */
1085 1.19 peter actlist_remove(cl);
1086 1.19 peter
1087 1.19 peter update_cfmin(cl->cl_parent);
1088 1.19 peter
1089 1.19 peter continue;
1090 1.19 peter }
1091 1.19 peter
1092 1.19 peter /*
1093 1.19 peter * update vt and f
1094 1.19 peter */
1095 1.19 peter cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
1096 1.19 peter - cl->cl_vtoff + cl->cl_vtadj;
1097 1.19 peter
1098 1.19 peter /*
1099 1.19 peter * if vt of the class is smaller than cvtmin,
1100 1.19 peter * the class was skipped in the past due to non-fit.
1101 1.19 peter * if so, we need to adjust vtadj.
1102 1.19 peter */
1103 1.19 peter if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
1104 1.19 peter cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
1105 1.19 peter cl->cl_vt = cl->cl_parent->cl_cvtmin;
1106 1.19 peter }
1107 1.19 peter
1108 1.19 peter /* update the vt list */
1109 1.19 peter actlist_update(cl);
1110 1.19 peter
1111 1.19 peter if (cl->cl_usc != NULL) {
1112 1.19 peter cl->cl_myf = cl->cl_myfadj
1113 1.19 peter + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
1114 1.19 peter
1115 1.19 peter /*
1116 1.19 peter * if myf lags behind by more than one clock tick
1117 1.19 peter * from the current time, adjust myfadj to prevent
1118 1.19 peter * a rate-limited class from going greedy.
1119 1.19 peter * in a steady state under rate-limiting, myf
1120 1.19 peter * fluctuates within one clock tick.
1121 1.19 peter */
1122 1.19 peter myf_bound = cur_time - machclk_per_tick;
1123 1.19 peter if (cl->cl_myf < myf_bound) {
1124 1.19 peter delta = cur_time - cl->cl_myf;
1125 1.19 peter cl->cl_myfadj += delta;
1126 1.19 peter cl->cl_myf += delta;
1127 1.19 peter }
1128 1.19 peter }
1129 1.1 thorpej
1130 1.19 peter /* cl_f is max(cl_myf, cl_cfmin) */
1131 1.19 peter if (cl->cl_myf > cl->cl_cfmin)
1132 1.19 peter f = cl->cl_myf;
1133 1.19 peter else
1134 1.19 peter f = cl->cl_cfmin;
1135 1.19 peter if (f != cl->cl_f) {
1136 1.19 peter cl->cl_f = f;
1137 1.19 peter update_cfmin(cl->cl_parent);
1138 1.1 thorpej }
1139 1.19 peter }
1140 1.19 peter }
1141 1.19 peter
1142 1.19 peter static void
1143 1.19 peter update_cfmin(struct hfsc_class *cl)
1144 1.19 peter {
1145 1.19 peter struct hfsc_class *p;
1146 1.19 peter u_int64_t cfmin;
1147 1.1 thorpej
1148 1.19 peter if (TAILQ_EMPTY(cl->cl_actc)) {
1149 1.19 peter cl->cl_cfmin = 0;
1150 1.19 peter return;
1151 1.19 peter }
1152 1.19 peter cfmin = HT_INFINITY;
1153 1.19 peter TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1154 1.19 peter if (p->cl_f == 0) {
1155 1.19 peter cl->cl_cfmin = 0;
1156 1.19 peter return;
1157 1.19 peter }
1158 1.19 peter if (p->cl_f < cfmin)
1159 1.19 peter cfmin = p->cl_f;
1160 1.1 thorpej }
1161 1.19 peter cl->cl_cfmin = cfmin;
1162 1.1 thorpej }
1163 1.1 thorpej
1164 1.1 thorpej /*
1165 1.1 thorpej * TAILQ based ellist and actlist implementation
1166 1.1 thorpej * (ion wanted to make a calendar queue based implementation)
1167 1.1 thorpej */
1168 1.1 thorpej /*
1169 1.1 thorpej * eligible list holds backlogged classes being sorted by their eligible times.
1170 1.1 thorpej * there is one eligible list per interface.
1171 1.1 thorpej */
1172 1.1 thorpej
1173 1.1 thorpej static ellist_t *
1174 1.19 peter ellist_alloc(void)
1175 1.1 thorpej {
1176 1.1 thorpej ellist_t *head;
1177 1.10 perry
1178 1.13 christos head = malloc(sizeof(ellist_t), M_DEVBUF, M_WAITOK);
1179 1.19 peter TAILQ_INIT(head);
1180 1.1 thorpej return (head);
1181 1.1 thorpej }
1182 1.1 thorpej
1183 1.1 thorpej static void
1184 1.19 peter ellist_destroy(ellist_t *head)
1185 1.1 thorpej {
1186 1.13 christos free(head, M_DEVBUF);
1187 1.1 thorpej }
1188 1.1 thorpej
1189 1.10 perry static void
1190 1.19 peter ellist_insert(struct hfsc_class *cl)
1191 1.1 thorpej {
1192 1.1 thorpej struct hfsc_if *hif = cl->cl_hif;
1193 1.1 thorpej struct hfsc_class *p;
1194 1.1 thorpej
1195 1.1 thorpej /* check the last entry first */
1196 1.1 thorpej if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
1197 1.1 thorpej p->cl_e <= cl->cl_e) {
1198 1.1 thorpej TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1199 1.1 thorpej return;
1200 1.1 thorpej }
1201 1.1 thorpej
1202 1.1 thorpej TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
1203 1.1 thorpej if (cl->cl_e < p->cl_e) {
1204 1.1 thorpej TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1205 1.1 thorpej return;
1206 1.1 thorpej }
1207 1.1 thorpej }
1208 1.1 thorpej ASSERT(0); /* should not reach here */
1209 1.1 thorpej }
1210 1.1 thorpej
1211 1.10 perry static void
1212 1.19 peter ellist_remove(struct hfsc_class *cl)
1213 1.1 thorpej {
1214 1.1 thorpej struct hfsc_if *hif = cl->cl_hif;
1215 1.10 perry
1216 1.1 thorpej TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1217 1.1 thorpej }
1218 1.1 thorpej
1219 1.10 perry static void
1220 1.19 peter ellist_update(struct hfsc_class *cl)
1221 1.1 thorpej {
1222 1.1 thorpej struct hfsc_if *hif = cl->cl_hif;
1223 1.1 thorpej struct hfsc_class *p, *last;
1224 1.1 thorpej
1225 1.1 thorpej /*
1226 1.1 thorpej * the eligible time of a class increases monotonically.
1227 1.1 thorpej * if the next entry has a larger eligible time, nothing to do.
1228 1.1 thorpej */
1229 1.1 thorpej p = TAILQ_NEXT(cl, cl_ellist);
1230 1.1 thorpej if (p == NULL || cl->cl_e <= p->cl_e)
1231 1.1 thorpej return;
1232 1.1 thorpej
1233 1.1 thorpej /* check the last entry */
1234 1.1 thorpej last = TAILQ_LAST(hif->hif_eligible, _eligible);
1235 1.1 thorpej ASSERT(last != NULL);
1236 1.1 thorpej if (last->cl_e <= cl->cl_e) {
1237 1.1 thorpej TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1238 1.1 thorpej TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1239 1.1 thorpej return;
1240 1.1 thorpej }
1241 1.1 thorpej
1242 1.1 thorpej /*
1243 1.1 thorpej * the new position must be between the next entry
1244 1.1 thorpej * and the last entry
1245 1.1 thorpej */
1246 1.1 thorpej while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1247 1.1 thorpej if (cl->cl_e < p->cl_e) {
1248 1.1 thorpej TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1249 1.1 thorpej TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1250 1.1 thorpej return;
1251 1.1 thorpej }
1252 1.1 thorpej }
1253 1.1 thorpej ASSERT(0); /* should not reach here */
1254 1.1 thorpej }
1255 1.1 thorpej
1256 1.1 thorpej /* find the class with the minimum deadline among the eligible classes */
1257 1.1 thorpej struct hfsc_class *
1258 1.19 peter ellist_get_mindl(ellist_t *head, u_int64_t cur_time)
1259 1.1 thorpej {
1260 1.1 thorpej struct hfsc_class *p, *cl = NULL;
1261 1.1 thorpej
1262 1.1 thorpej TAILQ_FOREACH(p, head, cl_ellist) {
1263 1.1 thorpej if (p->cl_e > cur_time)
1264 1.1 thorpej break;
1265 1.1 thorpej if (cl == NULL || p->cl_d < cl->cl_d)
1266 1.1 thorpej cl = p;
1267 1.1 thorpej }
1268 1.1 thorpej return (cl);
1269 1.1 thorpej }
1270 1.1 thorpej
1271 1.1 thorpej /*
1272 1.1 thorpej * active children list holds backlogged child classes being sorted
1273 1.1 thorpej * by their virtual time.
1274 1.1 thorpej * each intermediate class has one active children list.
1275 1.1 thorpej */
1276 1.1 thorpej static actlist_t *
1277 1.19 peter actlist_alloc(void)
1278 1.1 thorpej {
1279 1.1 thorpej actlist_t *head;
1280 1.10 perry
1281 1.13 christos head = malloc(sizeof(actlist_t), M_DEVBUF, M_WAITOK);
1282 1.19 peter TAILQ_INIT(head);
1283 1.1 thorpej return (head);
1284 1.1 thorpej }
1285 1.1 thorpej
1286 1.1 thorpej static void
1287 1.19 peter actlist_destroy(actlist_t *head)
1288 1.1 thorpej {
1289 1.13 christos free(head, M_DEVBUF);
1290 1.1 thorpej }
1291 1.10 perry static void
1292 1.19 peter actlist_insert(struct hfsc_class *cl)
1293 1.1 thorpej {
1294 1.1 thorpej struct hfsc_class *p;
1295 1.1 thorpej
1296 1.1 thorpej /* check the last entry first */
1297 1.1 thorpej if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1298 1.1 thorpej || p->cl_vt <= cl->cl_vt) {
1299 1.1 thorpej TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1300 1.1 thorpej return;
1301 1.1 thorpej }
1302 1.1 thorpej
1303 1.1 thorpej TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1304 1.1 thorpej if (cl->cl_vt < p->cl_vt) {
1305 1.1 thorpej TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1306 1.1 thorpej return;
1307 1.1 thorpej }
1308 1.1 thorpej }
1309 1.1 thorpej ASSERT(0); /* should not reach here */
1310 1.1 thorpej }
1311 1.1 thorpej
1312 1.10 perry static void
1313 1.19 peter actlist_remove(struct hfsc_class *cl)
1314 1.1 thorpej {
1315 1.1 thorpej TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1316 1.1 thorpej }
1317 1.1 thorpej
1318 1.1 thorpej static void
1319 1.19 peter actlist_update(struct hfsc_class *cl)
1320 1.1 thorpej {
1321 1.1 thorpej struct hfsc_class *p, *last;
1322 1.1 thorpej
1323 1.1 thorpej /*
1324 1.1 thorpej * the virtual time of a class increases monotonically during its
1325 1.1 thorpej * backlogged period.
1326 1.1 thorpej * if the next entry has a larger virtual time, nothing to do.
1327 1.1 thorpej */
1328 1.1 thorpej p = TAILQ_NEXT(cl, cl_actlist);
1329 1.19 peter if (p == NULL || cl->cl_vt < p->cl_vt)
1330 1.1 thorpej return;
1331 1.1 thorpej
1332 1.1 thorpej /* check the last entry */
1333 1.1 thorpej last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1334 1.1 thorpej ASSERT(last != NULL);
1335 1.1 thorpej if (last->cl_vt <= cl->cl_vt) {
1336 1.1 thorpej TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1337 1.1 thorpej TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1338 1.1 thorpej return;
1339 1.1 thorpej }
1340 1.1 thorpej
1341 1.1 thorpej /*
1342 1.1 thorpej * the new position must be between the next entry
1343 1.1 thorpej * and the last entry
1344 1.1 thorpej */
1345 1.1 thorpej while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1346 1.1 thorpej if (cl->cl_vt < p->cl_vt) {
1347 1.1 thorpej TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1348 1.1 thorpej TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1349 1.1 thorpej return;
1350 1.1 thorpej }
1351 1.1 thorpej }
1352 1.1 thorpej ASSERT(0); /* should not reach here */
1353 1.1 thorpej }
1354 1.1 thorpej
1355 1.19 peter static struct hfsc_class *
1356 1.19 peter actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time)
1357 1.19 peter {
1358 1.19 peter struct hfsc_class *p;
1359 1.19 peter
1360 1.19 peter TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1361 1.19 peter if (p->cl_f <= cur_time)
1362 1.19 peter return (p);
1363 1.19 peter }
1364 1.19 peter return (NULL);
1365 1.19 peter }
1366 1.19 peter
1367 1.1 thorpej /*
1368 1.1 thorpej * service curve support functions
1369 1.1 thorpej *
1370 1.1 thorpej * external service curve parameters
1371 1.1 thorpej * m: bits/sec
1372 1.1 thorpej * d: msec
1373 1.1 thorpej * internal service curve parameters
1374 1.1 thorpej * sm: (bytes/tsc_interval) << SM_SHIFT
1375 1.1 thorpej * ism: (tsc_count/byte) << ISM_SHIFT
1376 1.1 thorpej * dx: tsc_count
1377 1.1 thorpej *
1378 1.1 thorpej * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1379 1.1 thorpej * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1380 1.1 thorpej * speed. SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1381 1.1 thorpej * digits in decimal using the following table.
1382 1.1 thorpej *
1383 1.19 peter * bits/sec 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
1384 1.1 thorpej * ----------+-------------------------------------------------------
1385 1.1 thorpej * bytes/nsec 12.5e-6 125e-6 1250e-6 12500e-6 125000e-6
1386 1.1 thorpej * sm(500MHz) 25.0e-6 250e-6 2500e-6 25000e-6 250000e-6
1387 1.1 thorpej * sm(200MHz) 62.5e-6 625e-6 6250e-6 62500e-6 625000e-6
1388 1.10 perry *
1389 1.1 thorpej * nsec/byte 80000 8000 800 80 8
1390 1.1 thorpej * ism(500MHz) 40000 4000 400 40 4
1391 1.1 thorpej * ism(200MHz) 16000 1600 160 16 1.6
1392 1.1 thorpej */
1393 1.1 thorpej #define SM_SHIFT 24
1394 1.1 thorpej #define ISM_SHIFT 10
1395 1.1 thorpej
1396 1.19 peter #define SM_MASK ((1LL << SM_SHIFT) - 1)
1397 1.19 peter #define ISM_MASK ((1LL << ISM_SHIFT) - 1)
1398 1.1 thorpej
1399 1.12 perry static inline u_int64_t
1400 1.19 peter seg_x2y(u_int64_t x, u_int64_t sm)
1401 1.1 thorpej {
1402 1.1 thorpej u_int64_t y;
1403 1.1 thorpej
1404 1.19 peter /*
1405 1.19 peter * compute
1406 1.19 peter * y = x * sm >> SM_SHIFT
1407 1.19 peter * but divide it for the upper and lower bits to avoid overflow
1408 1.19 peter */
1409 1.19 peter y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
1410 1.1 thorpej return (y);
1411 1.1 thorpej }
1412 1.1 thorpej
1413 1.12 perry static inline u_int64_t
1414 1.19 peter seg_y2x(u_int64_t y, u_int64_t ism)
1415 1.1 thorpej {
1416 1.1 thorpej u_int64_t x;
1417 1.1 thorpej
1418 1.1 thorpej if (y == 0)
1419 1.1 thorpej x = 0;
1420 1.19 peter else if (ism == HT_INFINITY)
1421 1.19 peter x = HT_INFINITY;
1422 1.19 peter else {
1423 1.19 peter x = (y >> ISM_SHIFT) * ism
1424 1.19 peter + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
1425 1.19 peter }
1426 1.1 thorpej return (x);
1427 1.1 thorpej }
1428 1.1 thorpej
1429 1.12 perry static inline u_int64_t
1430 1.19 peter m2sm(u_int m)
1431 1.1 thorpej {
1432 1.1 thorpej u_int64_t sm;
1433 1.1 thorpej
1434 1.1 thorpej sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
1435 1.1 thorpej return (sm);
1436 1.1 thorpej }
1437 1.1 thorpej
1438 1.12 perry static inline u_int64_t
1439 1.19 peter m2ism(u_int m)
1440 1.1 thorpej {
1441 1.1 thorpej u_int64_t ism;
1442 1.1 thorpej
1443 1.1 thorpej if (m == 0)
1444 1.19 peter ism = HT_INFINITY;
1445 1.1 thorpej else
1446 1.1 thorpej ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1447 1.1 thorpej return (ism);
1448 1.1 thorpej }
1449 1.1 thorpej
1450 1.12 perry static inline u_int64_t
1451 1.19 peter d2dx(u_int d)
1452 1.1 thorpej {
1453 1.1 thorpej u_int64_t dx;
1454 1.10 perry
1455 1.1 thorpej dx = ((u_int64_t)d * machclk_freq) / 1000;
1456 1.1 thorpej return (dx);
1457 1.1 thorpej }
1458 1.1 thorpej
1459 1.10 perry static u_int
1460 1.19 peter sm2m(u_int64_t sm)
1461 1.1 thorpej {
1462 1.1 thorpej u_int64_t m;
1463 1.1 thorpej
1464 1.1 thorpej m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1465 1.1 thorpej return ((u_int)m);
1466 1.1 thorpej }
1467 1.1 thorpej
1468 1.10 perry static u_int
1469 1.19 peter dx2d(u_int64_t dx)
1470 1.1 thorpej {
1471 1.1 thorpej u_int64_t d;
1472 1.1 thorpej
1473 1.1 thorpej d = dx * 1000 / machclk_freq;
1474 1.1 thorpej return ((u_int)d);
1475 1.1 thorpej }
1476 1.1 thorpej
1477 1.10 perry static void
1478 1.19 peter sc2isc(struct service_curve *sc, struct internal_sc *isc)
1479 1.1 thorpej {
1480 1.1 thorpej isc->sm1 = m2sm(sc->m1);
1481 1.1 thorpej isc->ism1 = m2ism(sc->m1);
1482 1.1 thorpej isc->dx = d2dx(sc->d);
1483 1.1 thorpej isc->dy = seg_x2y(isc->dx, isc->sm1);
1484 1.1 thorpej isc->sm2 = m2sm(sc->m2);
1485 1.1 thorpej isc->ism2 = m2ism(sc->m2);
1486 1.1 thorpej }
1487 1.1 thorpej
1488 1.1 thorpej /*
1489 1.1 thorpej * initialize the runtime service curve with the given internal
1490 1.1 thorpej * service curve starting at (x, y).
1491 1.1 thorpej */
1492 1.10 perry static void
1493 1.19 peter rtsc_init(struct runtime_sc *rtsc, struct internal_sc * isc, u_int64_t x,
1494 1.19 peter u_int64_t y)
1495 1.1 thorpej {
1496 1.1 thorpej rtsc->x = x;
1497 1.1 thorpej rtsc->y = y;
1498 1.1 thorpej rtsc->sm1 = isc->sm1;
1499 1.1 thorpej rtsc->ism1 = isc->ism1;
1500 1.1 thorpej rtsc->dx = isc->dx;
1501 1.1 thorpej rtsc->dy = isc->dy;
1502 1.1 thorpej rtsc->sm2 = isc->sm2;
1503 1.1 thorpej rtsc->ism2 = isc->ism2;
1504 1.1 thorpej }
1505 1.1 thorpej
1506 1.1 thorpej /*
1507 1.1 thorpej * calculate the y-projection of the runtime service curve by the
1508 1.1 thorpej * given x-projection value
1509 1.1 thorpej */
1510 1.10 perry static u_int64_t
1511 1.19 peter rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y)
1512 1.1 thorpej {
1513 1.1 thorpej u_int64_t x;
1514 1.1 thorpej
1515 1.1 thorpej if (y < rtsc->y)
1516 1.1 thorpej x = rtsc->x;
1517 1.1 thorpej else if (y <= rtsc->y + rtsc->dy) {
1518 1.1 thorpej /* x belongs to the 1st segment */
1519 1.1 thorpej if (rtsc->dy == 0)
1520 1.1 thorpej x = rtsc->x + rtsc->dx;
1521 1.1 thorpej else
1522 1.1 thorpej x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1523 1.1 thorpej } else {
1524 1.1 thorpej /* x belongs to the 2nd segment */
1525 1.1 thorpej x = rtsc->x + rtsc->dx
1526 1.1 thorpej + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1527 1.1 thorpej }
1528 1.1 thorpej return (x);
1529 1.1 thorpej }
1530 1.1 thorpej
1531 1.10 perry static u_int64_t
1532 1.19 peter rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x)
1533 1.1 thorpej {
1534 1.1 thorpej u_int64_t y;
1535 1.1 thorpej
1536 1.1 thorpej if (x <= rtsc->x)
1537 1.1 thorpej y = rtsc->y;
1538 1.1 thorpej else if (x <= rtsc->x + rtsc->dx)
1539 1.1 thorpej /* y belongs to the 1st segment */
1540 1.1 thorpej y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1541 1.1 thorpej else
1542 1.1 thorpej /* y belongs to the 2nd segment */
1543 1.1 thorpej y = rtsc->y + rtsc->dy
1544 1.1 thorpej + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1545 1.1 thorpej return (y);
1546 1.1 thorpej }
1547 1.1 thorpej
1548 1.1 thorpej /*
1549 1.1 thorpej * update the runtime service curve by taking the minimum of the current
1550 1.1 thorpej * runtime service curve and the service curve starting at (x, y).
1551 1.1 thorpej */
1552 1.10 perry static void
1553 1.19 peter rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x,
1554 1.19 peter u_int64_t y)
1555 1.1 thorpej {
1556 1.1 thorpej u_int64_t y1, y2, dx, dy;
1557 1.1 thorpej
1558 1.1 thorpej if (isc->sm1 <= isc->sm2) {
1559 1.1 thorpej /* service curve is convex */
1560 1.1 thorpej y1 = rtsc_x2y(rtsc, x);
1561 1.1 thorpej if (y1 < y)
1562 1.1 thorpej /* the current rtsc is smaller */
1563 1.1 thorpej return;
1564 1.1 thorpej rtsc->x = x;
1565 1.1 thorpej rtsc->y = y;
1566 1.1 thorpej return;
1567 1.1 thorpej }
1568 1.1 thorpej
1569 1.1 thorpej /*
1570 1.1 thorpej * service curve is concave
1571 1.1 thorpej * compute the two y values of the current rtsc
1572 1.1 thorpej * y1: at x
1573 1.1 thorpej * y2: at (x + dx)
1574 1.1 thorpej */
1575 1.1 thorpej y1 = rtsc_x2y(rtsc, x);
1576 1.1 thorpej if (y1 <= y) {
1577 1.1 thorpej /* rtsc is below isc, no change to rtsc */
1578 1.1 thorpej return;
1579 1.1 thorpej }
1580 1.1 thorpej
1581 1.1 thorpej y2 = rtsc_x2y(rtsc, x + isc->dx);
1582 1.1 thorpej if (y2 >= y + isc->dy) {
1583 1.1 thorpej /* rtsc is above isc, replace rtsc by isc */
1584 1.1 thorpej rtsc->x = x;
1585 1.1 thorpej rtsc->y = y;
1586 1.1 thorpej rtsc->dx = isc->dx;
1587 1.1 thorpej rtsc->dy = isc->dy;
1588 1.1 thorpej return;
1589 1.1 thorpej }
1590 1.1 thorpej
1591 1.1 thorpej /*
1592 1.1 thorpej * the two curves intersect
1593 1.1 thorpej * compute the offsets (dx, dy) using the reverse
1594 1.1 thorpej * function of seg_x2y()
1595 1.1 thorpej * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1596 1.1 thorpej */
1597 1.1 thorpej dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1598 1.1 thorpej /*
1599 1.1 thorpej * check if (x, y1) belongs to the 1st segment of rtsc.
1600 1.1 thorpej * if so, add the offset.
1601 1.10 perry */
1602 1.1 thorpej if (rtsc->x + rtsc->dx > x)
1603 1.1 thorpej dx += rtsc->x + rtsc->dx - x;
1604 1.1 thorpej dy = seg_x2y(dx, isc->sm1);
1605 1.1 thorpej
1606 1.1 thorpej rtsc->x = x;
1607 1.1 thorpej rtsc->y = y;
1608 1.1 thorpej rtsc->dx = dx;
1609 1.1 thorpej rtsc->dy = dy;
1610 1.1 thorpej return;
1611 1.1 thorpej }
1612 1.1 thorpej
1613 1.19 peter static void
1614 1.19 peter get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
1615 1.19 peter {
1616 1.19 peter sp->class_id = cl->cl_id;
1617 1.19 peter sp->class_handle = cl->cl_handle;
1618 1.19 peter
1619 1.19 peter if (cl->cl_rsc != NULL) {
1620 1.19 peter sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1621 1.19 peter sp->rsc.d = dx2d(cl->cl_rsc->dx);
1622 1.19 peter sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1623 1.19 peter } else {
1624 1.19 peter sp->rsc.m1 = 0;
1625 1.19 peter sp->rsc.d = 0;
1626 1.19 peter sp->rsc.m2 = 0;
1627 1.19 peter }
1628 1.19 peter if (cl->cl_fsc != NULL) {
1629 1.19 peter sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1630 1.19 peter sp->fsc.d = dx2d(cl->cl_fsc->dx);
1631 1.19 peter sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1632 1.19 peter } else {
1633 1.19 peter sp->fsc.m1 = 0;
1634 1.19 peter sp->fsc.d = 0;
1635 1.19 peter sp->fsc.m2 = 0;
1636 1.19 peter }
1637 1.19 peter if (cl->cl_usc != NULL) {
1638 1.19 peter sp->usc.m1 = sm2m(cl->cl_usc->sm1);
1639 1.19 peter sp->usc.d = dx2d(cl->cl_usc->dx);
1640 1.19 peter sp->usc.m2 = sm2m(cl->cl_usc->sm2);
1641 1.19 peter } else {
1642 1.19 peter sp->usc.m1 = 0;
1643 1.19 peter sp->usc.d = 0;
1644 1.19 peter sp->usc.m2 = 0;
1645 1.19 peter }
1646 1.19 peter
1647 1.19 peter sp->total = cl->cl_total;
1648 1.19 peter sp->cumul = cl->cl_cumul;
1649 1.19 peter
1650 1.19 peter sp->d = cl->cl_d;
1651 1.19 peter sp->e = cl->cl_e;
1652 1.19 peter sp->vt = cl->cl_vt;
1653 1.19 peter sp->f = cl->cl_f;
1654 1.19 peter
1655 1.19 peter sp->initvt = cl->cl_initvt;
1656 1.19 peter sp->vtperiod = cl->cl_vtperiod;
1657 1.19 peter sp->parentperiod = cl->cl_parentperiod;
1658 1.19 peter sp->nactive = cl->cl_nactive;
1659 1.19 peter sp->vtoff = cl->cl_vtoff;
1660 1.19 peter sp->cvtmax = cl->cl_cvtmax;
1661 1.19 peter sp->myf = cl->cl_myf;
1662 1.19 peter sp->cfmin = cl->cl_cfmin;
1663 1.19 peter sp->cvtmin = cl->cl_cvtmin;
1664 1.19 peter sp->myfadj = cl->cl_myfadj;
1665 1.19 peter sp->vtadj = cl->cl_vtadj;
1666 1.19 peter
1667 1.19 peter sp->cur_time = read_machclk();
1668 1.19 peter sp->machclk_freq = machclk_freq;
1669 1.19 peter
1670 1.19 peter sp->qlength = qlen(cl->cl_q);
1671 1.19 peter sp->qlimit = qlimit(cl->cl_q);
1672 1.19 peter sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1673 1.19 peter sp->drop_cnt = cl->cl_stats.drop_cnt;
1674 1.19 peter sp->period = cl->cl_stats.period;
1675 1.19 peter
1676 1.19 peter sp->qtype = qtype(cl->cl_q);
1677 1.19 peter #ifdef ALTQ_RED
1678 1.19 peter if (q_is_red(cl->cl_q))
1679 1.19 peter red_getstats(cl->cl_red, &sp->red[0]);
1680 1.19 peter #endif
1681 1.19 peter #ifdef ALTQ_RIO
1682 1.19 peter if (q_is_rio(cl->cl_q))
1683 1.19 peter rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1684 1.19 peter #endif
1685 1.19 peter }
1686 1.19 peter
1687 1.19 peter /* convert a class handle to the corresponding class pointer */
1688 1.19 peter static struct hfsc_class *
1689 1.19 peter clh_to_clp(struct hfsc_if *hif, u_int32_t chandle)
1690 1.19 peter {
1691 1.19 peter int i;
1692 1.19 peter struct hfsc_class *cl;
1693 1.19 peter
1694 1.19 peter if (chandle == 0)
1695 1.19 peter return (NULL);
1696 1.19 peter /*
1697 1.19 peter * first, try optimistically the slot matching the lower bits of
1698 1.19 peter * the handle. if it fails, do the linear table search.
1699 1.19 peter */
1700 1.19 peter i = chandle % HFSC_MAX_CLASSES;
1701 1.19 peter if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
1702 1.19 peter return (cl);
1703 1.19 peter for (i = 0; i < HFSC_MAX_CLASSES; i++)
1704 1.19 peter if ((cl = hif->hif_class_tbl[i]) != NULL &&
1705 1.19 peter cl->cl_handle == chandle)
1706 1.19 peter return (cl);
1707 1.19 peter return (NULL);
1708 1.19 peter }
1709 1.19 peter
1710 1.19 peter #ifdef ALTQ3_COMPAT
1711 1.19 peter static struct hfsc_if *
1712 1.22 christos hfsc_attach(struct ifaltq *ifq, u_int bandwidth)
1713 1.19 peter {
1714 1.19 peter struct hfsc_if *hif;
1715 1.19 peter
1716 1.19 peter hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
1717 1.19 peter if (hif == NULL)
1718 1.19 peter return (NULL);
1719 1.19 peter
1720 1.19 peter hif->hif_eligible = ellist_alloc();
1721 1.19 peter if (hif->hif_eligible == NULL) {
1722 1.19 peter free(hif, M_DEVBUF);
1723 1.19 peter return NULL;
1724 1.19 peter }
1725 1.19 peter
1726 1.19 peter hif->hif_ifq = ifq;
1727 1.19 peter
1728 1.19 peter /* add this state to the hfsc list */
1729 1.19 peter hif->hif_next = hif_list;
1730 1.19 peter hif_list = hif;
1731 1.19 peter
1732 1.19 peter return (hif);
1733 1.19 peter }
1734 1.19 peter
1735 1.25 christos static void
1736 1.19 peter hfsc_detach(struct hfsc_if *hif)
1737 1.19 peter {
1738 1.19 peter (void)hfsc_clear_interface(hif);
1739 1.19 peter (void)hfsc_class_destroy(hif->hif_rootclass);
1740 1.19 peter
1741 1.19 peter /* remove this interface from the hif list */
1742 1.19 peter if (hif_list == hif)
1743 1.19 peter hif_list = hif->hif_next;
1744 1.19 peter else {
1745 1.19 peter struct hfsc_if *h;
1746 1.19 peter
1747 1.19 peter for (h = hif_list; h != NULL; h = h->hif_next)
1748 1.19 peter if (h->hif_next == hif) {
1749 1.19 peter h->hif_next = hif->hif_next;
1750 1.19 peter break;
1751 1.19 peter }
1752 1.19 peter ASSERT(h != NULL);
1753 1.19 peter }
1754 1.19 peter
1755 1.19 peter ellist_destroy(hif->hif_eligible);
1756 1.19 peter
1757 1.19 peter free(hif, M_DEVBUF);
1758 1.19 peter }
1759 1.19 peter
1760 1.19 peter static int
1761 1.19 peter hfsc_class_modify(struct hfsc_class *cl, struct service_curve *rsc,
1762 1.19 peter struct service_curve *fsc, struct service_curve *usc)
1763 1.19 peter {
1764 1.19 peter struct internal_sc *rsc_tmp, *fsc_tmp, *usc_tmp;
1765 1.19 peter u_int64_t cur_time;
1766 1.19 peter int s;
1767 1.19 peter
1768 1.19 peter rsc_tmp = fsc_tmp = usc_tmp = NULL;
1769 1.19 peter if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
1770 1.19 peter cl->cl_rsc == NULL) {
1771 1.19 peter rsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1772 1.19 peter M_WAITOK);
1773 1.19 peter if (rsc_tmp == NULL)
1774 1.19 peter return (ENOMEM);
1775 1.19 peter }
1776 1.19 peter if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
1777 1.19 peter cl->cl_fsc == NULL) {
1778 1.19 peter fsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1779 1.19 peter M_WAITOK);
1780 1.19 peter if (fsc_tmp == NULL)
1781 1.19 peter return (ENOMEM);
1782 1.19 peter }
1783 1.19 peter if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0) &&
1784 1.19 peter cl->cl_usc == NULL) {
1785 1.19 peter usc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1786 1.19 peter M_WAITOK);
1787 1.19 peter if (usc_tmp == NULL)
1788 1.19 peter return (ENOMEM);
1789 1.19 peter }
1790 1.19 peter
1791 1.19 peter cur_time = read_machclk();
1792 1.19 peter s = splnet();
1793 1.19 peter
1794 1.19 peter if (rsc != NULL) {
1795 1.19 peter if (rsc->m1 == 0 && rsc->m2 == 0) {
1796 1.19 peter if (cl->cl_rsc != NULL) {
1797 1.19 peter if (!qempty(cl->cl_q))
1798 1.19 peter hfsc_purgeq(cl);
1799 1.19 peter free(cl->cl_rsc, M_DEVBUF);
1800 1.19 peter cl->cl_rsc = NULL;
1801 1.19 peter }
1802 1.19 peter } else {
1803 1.19 peter if (cl->cl_rsc == NULL)
1804 1.19 peter cl->cl_rsc = rsc_tmp;
1805 1.19 peter sc2isc(rsc, cl->cl_rsc);
1806 1.19 peter rtsc_init(&cl->cl_deadline, cl->cl_rsc, cur_time,
1807 1.19 peter cl->cl_cumul);
1808 1.19 peter cl->cl_eligible = cl->cl_deadline;
1809 1.19 peter if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
1810 1.19 peter cl->cl_eligible.dx = 0;
1811 1.19 peter cl->cl_eligible.dy = 0;
1812 1.19 peter }
1813 1.19 peter }
1814 1.19 peter }
1815 1.19 peter
1816 1.19 peter if (fsc != NULL) {
1817 1.19 peter if (fsc->m1 == 0 && fsc->m2 == 0) {
1818 1.19 peter if (cl->cl_fsc != NULL) {
1819 1.19 peter if (!qempty(cl->cl_q))
1820 1.19 peter hfsc_purgeq(cl);
1821 1.19 peter free(cl->cl_fsc, M_DEVBUF);
1822 1.19 peter cl->cl_fsc = NULL;
1823 1.19 peter }
1824 1.19 peter } else {
1825 1.19 peter if (cl->cl_fsc == NULL)
1826 1.19 peter cl->cl_fsc = fsc_tmp;
1827 1.19 peter sc2isc(fsc, cl->cl_fsc);
1828 1.19 peter rtsc_init(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt,
1829 1.19 peter cl->cl_total);
1830 1.19 peter }
1831 1.19 peter }
1832 1.19 peter
1833 1.19 peter if (usc != NULL) {
1834 1.19 peter if (usc->m1 == 0 && usc->m2 == 0) {
1835 1.19 peter if (cl->cl_usc != NULL) {
1836 1.19 peter free(cl->cl_usc, M_DEVBUF);
1837 1.19 peter cl->cl_usc = NULL;
1838 1.19 peter cl->cl_myf = 0;
1839 1.19 peter }
1840 1.19 peter } else {
1841 1.19 peter if (cl->cl_usc == NULL)
1842 1.19 peter cl->cl_usc = usc_tmp;
1843 1.19 peter sc2isc(usc, cl->cl_usc);
1844 1.19 peter rtsc_init(&cl->cl_ulimit, cl->cl_usc, cur_time,
1845 1.19 peter cl->cl_total);
1846 1.19 peter }
1847 1.19 peter }
1848 1.19 peter
1849 1.19 peter if (!qempty(cl->cl_q)) {
1850 1.19 peter if (cl->cl_rsc != NULL)
1851 1.19 peter update_ed(cl, m_pktlen(qhead(cl->cl_q)));
1852 1.19 peter if (cl->cl_fsc != NULL)
1853 1.19 peter update_vf(cl, 0, cur_time);
1854 1.19 peter /* is this enough? */
1855 1.19 peter }
1856 1.19 peter
1857 1.19 peter splx(s);
1858 1.19 peter
1859 1.19 peter return (0);
1860 1.19 peter }
1861 1.19 peter
1862 1.1 thorpej /*
1863 1.1 thorpej * hfsc device interface
1864 1.1 thorpej */
1865 1.1 thorpej int
1866 1.22 christos hfscopen(dev_t dev, int flag, int fmt,
1867 1.22 christos struct lwp *l)
1868 1.1 thorpej {
1869 1.1 thorpej if (machclk_freq == 0)
1870 1.1 thorpej init_machclk();
1871 1.1 thorpej
1872 1.1 thorpej if (machclk_freq == 0) {
1873 1.9 wiz printf("hfsc: no CPU clock available!\n");
1874 1.1 thorpej return (ENXIO);
1875 1.1 thorpej }
1876 1.1 thorpej
1877 1.1 thorpej /* everything will be done when the queueing scheme is attached. */
1878 1.1 thorpej return 0;
1879 1.1 thorpej }
1880 1.1 thorpej
1881 1.1 thorpej int
1882 1.22 christos hfscclose(dev_t dev, int flag, int fmt,
1883 1.22 christos struct lwp *l)
1884 1.1 thorpej {
1885 1.1 thorpej struct hfsc_if *hif;
1886 1.1 thorpej
1887 1.1 thorpej while ((hif = hif_list) != NULL) {
1888 1.1 thorpej /* destroy all */
1889 1.1 thorpej if (ALTQ_IS_ENABLED(hif->hif_ifq))
1890 1.1 thorpej altq_disable(hif->hif_ifq);
1891 1.1 thorpej
1892 1.25 christos int error = altq_detach(hif->hif_ifq);
1893 1.25 christos switch (error) {
1894 1.25 christos case 0:
1895 1.25 christos case ENXIO: /* already disabled */
1896 1.25 christos break;
1897 1.25 christos default:
1898 1.25 christos return error;
1899 1.25 christos }
1900 1.25 christos hfsc_detach(hif);
1901 1.1 thorpej }
1902 1.1 thorpej
1903 1.25 christos return 0;
1904 1.1 thorpej }
1905 1.1 thorpej
1906 1.1 thorpej int
1907 1.23 christos hfscioctl(dev_t dev, ioctlcmd_t cmd, void *addr, int flag,
1908 1.18 christos struct lwp *l)
1909 1.1 thorpej {
1910 1.1 thorpej struct hfsc_if *hif;
1911 1.1 thorpej struct hfsc_interface *ifacep;
1912 1.1 thorpej int error = 0;
1913 1.1 thorpej
1914 1.1 thorpej /* check super-user privilege */
1915 1.1 thorpej switch (cmd) {
1916 1.1 thorpej case HFSC_GETSTATS:
1917 1.1 thorpej break;
1918 1.1 thorpej default:
1919 1.1 thorpej #if (__FreeBSD_version > 400000)
1920 1.1 thorpej if ((error = suser(p)) != 0)
1921 1.1 thorpej return (error);
1922 1.1 thorpej #else
1923 1.21 elad if ((error = kauth_authorize_network(l->l_cred,
1924 1.21 elad KAUTH_NETWORK_ALTQ, KAUTH_REQ_NETWORK_ALTQ_HFSC, NULL,
1925 1.21 elad NULL, NULL)) != 0)
1926 1.1 thorpej return (error);
1927 1.1 thorpej #endif
1928 1.1 thorpej break;
1929 1.1 thorpej }
1930 1.10 perry
1931 1.1 thorpej switch (cmd) {
1932 1.1 thorpej
1933 1.1 thorpej case HFSC_IF_ATTACH:
1934 1.1 thorpej error = hfsccmd_if_attach((struct hfsc_attach *)addr);
1935 1.1 thorpej break;
1936 1.1 thorpej
1937 1.1 thorpej case HFSC_IF_DETACH:
1938 1.1 thorpej error = hfsccmd_if_detach((struct hfsc_interface *)addr);
1939 1.1 thorpej break;
1940 1.1 thorpej
1941 1.1 thorpej case HFSC_ENABLE:
1942 1.1 thorpej case HFSC_DISABLE:
1943 1.1 thorpej case HFSC_CLEAR_HIERARCHY:
1944 1.1 thorpej ifacep = (struct hfsc_interface *)addr;
1945 1.1 thorpej if ((hif = altq_lookup(ifacep->hfsc_ifname,
1946 1.1 thorpej ALTQT_HFSC)) == NULL) {
1947 1.1 thorpej error = EBADF;
1948 1.1 thorpej break;
1949 1.1 thorpej }
1950 1.1 thorpej
1951 1.1 thorpej switch (cmd) {
1952 1.1 thorpej
1953 1.1 thorpej case HFSC_ENABLE:
1954 1.1 thorpej if (hif->hif_defaultclass == NULL) {
1955 1.19 peter #ifdef ALTQ_DEBUG
1956 1.1 thorpej printf("hfsc: no default class\n");
1957 1.1 thorpej #endif
1958 1.1 thorpej error = EINVAL;
1959 1.1 thorpej break;
1960 1.1 thorpej }
1961 1.1 thorpej error = altq_enable(hif->hif_ifq);
1962 1.1 thorpej break;
1963 1.1 thorpej
1964 1.1 thorpej case HFSC_DISABLE:
1965 1.1 thorpej error = altq_disable(hif->hif_ifq);
1966 1.1 thorpej break;
1967 1.1 thorpej
1968 1.1 thorpej case HFSC_CLEAR_HIERARCHY:
1969 1.1 thorpej hfsc_clear_interface(hif);
1970 1.1 thorpej break;
1971 1.1 thorpej }
1972 1.1 thorpej break;
1973 1.1 thorpej
1974 1.1 thorpej case HFSC_ADD_CLASS:
1975 1.1 thorpej error = hfsccmd_add_class((struct hfsc_add_class *)addr);
1976 1.1 thorpej break;
1977 1.1 thorpej
1978 1.1 thorpej case HFSC_DEL_CLASS:
1979 1.1 thorpej error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
1980 1.1 thorpej break;
1981 1.1 thorpej
1982 1.1 thorpej case HFSC_MOD_CLASS:
1983 1.1 thorpej error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
1984 1.1 thorpej break;
1985 1.1 thorpej
1986 1.1 thorpej case HFSC_ADD_FILTER:
1987 1.1 thorpej error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
1988 1.1 thorpej break;
1989 1.1 thorpej
1990 1.1 thorpej case HFSC_DEL_FILTER:
1991 1.1 thorpej error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
1992 1.1 thorpej break;
1993 1.1 thorpej
1994 1.1 thorpej case HFSC_GETSTATS:
1995 1.1 thorpej error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
1996 1.1 thorpej break;
1997 1.1 thorpej
1998 1.1 thorpej default:
1999 1.1 thorpej error = EINVAL;
2000 1.1 thorpej break;
2001 1.1 thorpej }
2002 1.1 thorpej return error;
2003 1.1 thorpej }
2004 1.1 thorpej
2005 1.1 thorpej static int
2006 1.19 peter hfsccmd_if_attach(struct hfsc_attach *ap)
2007 1.1 thorpej {
2008 1.1 thorpej struct hfsc_if *hif;
2009 1.1 thorpej struct ifnet *ifp;
2010 1.1 thorpej int error;
2011 1.10 perry
2012 1.1 thorpej if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
2013 1.1 thorpej return (ENXIO);
2014 1.1 thorpej
2015 1.1 thorpej if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
2016 1.1 thorpej return (ENOMEM);
2017 1.10 perry
2018 1.1 thorpej /*
2019 1.1 thorpej * set HFSC to this ifnet structure.
2020 1.1 thorpej */
2021 1.1 thorpej if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
2022 1.1 thorpej hfsc_enqueue, hfsc_dequeue, hfsc_request,
2023 1.1 thorpej &hif->hif_classifier, acc_classify)) != 0)
2024 1.25 christos hfsc_detach(hif);
2025 1.1 thorpej
2026 1.1 thorpej return (error);
2027 1.1 thorpej }
2028 1.1 thorpej
2029 1.1 thorpej static int
2030 1.19 peter hfsccmd_if_detach(struct hfsc_interface *ap)
2031 1.1 thorpej {
2032 1.1 thorpej struct hfsc_if *hif;
2033 1.1 thorpej int error;
2034 1.1 thorpej
2035 1.1 thorpej if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
2036 1.1 thorpej return (EBADF);
2037 1.10 perry
2038 1.1 thorpej if (ALTQ_IS_ENABLED(hif->hif_ifq))
2039 1.1 thorpej altq_disable(hif->hif_ifq);
2040 1.1 thorpej
2041 1.1 thorpej if ((error = altq_detach(hif->hif_ifq)))
2042 1.1 thorpej return (error);
2043 1.1 thorpej
2044 1.25 christos hfsc_detach(hif);
2045 1.25 christos return 0;
2046 1.1 thorpej }
2047 1.1 thorpej
2048 1.1 thorpej static int
2049 1.19 peter hfsccmd_add_class(struct hfsc_add_class *ap)
2050 1.1 thorpej {
2051 1.1 thorpej struct hfsc_if *hif;
2052 1.1 thorpej struct hfsc_class *cl, *parent;
2053 1.19 peter int i;
2054 1.1 thorpej
2055 1.1 thorpej if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2056 1.1 thorpej return (EBADF);
2057 1.1 thorpej
2058 1.19 peter if (ap->parent_handle == HFSC_NULLCLASS_HANDLE &&
2059 1.19 peter hif->hif_rootclass == NULL)
2060 1.19 peter parent = NULL;
2061 1.19 peter else if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL)
2062 1.19 peter return (EINVAL);
2063 1.19 peter
2064 1.19 peter /* assign a class handle (use a free slot number for now) */
2065 1.19 peter for (i = 1; i < HFSC_MAX_CLASSES; i++)
2066 1.19 peter if (hif->hif_class_tbl[i] == NULL)
2067 1.19 peter break;
2068 1.19 peter if (i == HFSC_MAX_CLASSES)
2069 1.19 peter return (EBUSY);
2070 1.10 perry
2071 1.19 peter if ((cl = hfsc_class_create(hif, &ap->service_curve, NULL, NULL,
2072 1.19 peter parent, ap->qlimit, ap->flags, i)) == NULL)
2073 1.1 thorpej return (ENOMEM);
2074 1.10 perry
2075 1.1 thorpej /* return a class handle to the user */
2076 1.19 peter ap->class_handle = i;
2077 1.19 peter
2078 1.1 thorpej return (0);
2079 1.1 thorpej }
2080 1.1 thorpej
2081 1.1 thorpej static int
2082 1.19 peter hfsccmd_delete_class(struct hfsc_delete_class *ap)
2083 1.1 thorpej {
2084 1.1 thorpej struct hfsc_if *hif;
2085 1.1 thorpej struct hfsc_class *cl;
2086 1.1 thorpej
2087 1.1 thorpej if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2088 1.1 thorpej return (EBADF);
2089 1.1 thorpej
2090 1.1 thorpej if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2091 1.1 thorpej return (EINVAL);
2092 1.10 perry
2093 1.1 thorpej return hfsc_class_destroy(cl);
2094 1.1 thorpej }
2095 1.1 thorpej
2096 1.1 thorpej static int
2097 1.19 peter hfsccmd_modify_class(struct hfsc_modify_class *ap)
2098 1.1 thorpej {
2099 1.1 thorpej struct hfsc_if *hif;
2100 1.1 thorpej struct hfsc_class *cl;
2101 1.1 thorpej struct service_curve *rsc = NULL;
2102 1.1 thorpej struct service_curve *fsc = NULL;
2103 1.19 peter struct service_curve *usc = NULL;
2104 1.1 thorpej
2105 1.1 thorpej if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2106 1.1 thorpej return (EBADF);
2107 1.1 thorpej
2108 1.1 thorpej if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2109 1.1 thorpej return (EINVAL);
2110 1.1 thorpej
2111 1.1 thorpej if (ap->sctype & HFSC_REALTIMESC)
2112 1.1 thorpej rsc = &ap->service_curve;
2113 1.1 thorpej if (ap->sctype & HFSC_LINKSHARINGSC)
2114 1.1 thorpej fsc = &ap->service_curve;
2115 1.19 peter if (ap->sctype & HFSC_UPPERLIMITSC)
2116 1.19 peter usc = &ap->service_curve;
2117 1.1 thorpej
2118 1.19 peter return hfsc_class_modify(cl, rsc, fsc, usc);
2119 1.1 thorpej }
2120 1.1 thorpej
2121 1.1 thorpej static int
2122 1.19 peter hfsccmd_add_filter(struct hfsc_add_filter *ap)
2123 1.1 thorpej {
2124 1.1 thorpej struct hfsc_if *hif;
2125 1.1 thorpej struct hfsc_class *cl;
2126 1.1 thorpej
2127 1.1 thorpej if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2128 1.1 thorpej return (EBADF);
2129 1.1 thorpej
2130 1.1 thorpej if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2131 1.1 thorpej return (EINVAL);
2132 1.1 thorpej
2133 1.1 thorpej if (is_a_parent_class(cl)) {
2134 1.19 peter #ifdef ALTQ_DEBUG
2135 1.1 thorpej printf("hfsccmd_add_filter: not a leaf class!\n");
2136 1.1 thorpej #endif
2137 1.1 thorpej return (EINVAL);
2138 1.1 thorpej }
2139 1.1 thorpej
2140 1.1 thorpej return acc_add_filter(&hif->hif_classifier, &ap->filter,
2141 1.1 thorpej cl, &ap->filter_handle);
2142 1.1 thorpej }
2143 1.1 thorpej
2144 1.1 thorpej static int
2145 1.19 peter hfsccmd_delete_filter(struct hfsc_delete_filter *ap)
2146 1.1 thorpej {
2147 1.1 thorpej struct hfsc_if *hif;
2148 1.1 thorpej
2149 1.1 thorpej if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2150 1.1 thorpej return (EBADF);
2151 1.1 thorpej
2152 1.1 thorpej return acc_delete_filter(&hif->hif_classifier,
2153 1.1 thorpej ap->filter_handle);
2154 1.1 thorpej }
2155 1.1 thorpej
2156 1.1 thorpej static int
2157 1.19 peter hfsccmd_class_stats(struct hfsc_class_stats *ap)
2158 1.1 thorpej {
2159 1.1 thorpej struct hfsc_if *hif;
2160 1.1 thorpej struct hfsc_class *cl;
2161 1.19 peter struct hfsc_classstats stats, *usp;
2162 1.1 thorpej int n, nclasses, error;
2163 1.10 perry
2164 1.1 thorpej if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2165 1.1 thorpej return (EBADF);
2166 1.1 thorpej
2167 1.1 thorpej ap->cur_time = read_machclk();
2168 1.19 peter ap->machclk_freq = machclk_freq;
2169 1.1 thorpej ap->hif_classes = hif->hif_classes;
2170 1.1 thorpej ap->hif_packets = hif->hif_packets;
2171 1.1 thorpej
2172 1.1 thorpej /* skip the first N classes in the tree */
2173 1.1 thorpej nclasses = ap->nskip;
2174 1.1 thorpej for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
2175 1.1 thorpej cl = hfsc_nextclass(cl), n++)
2176 1.1 thorpej ;
2177 1.1 thorpej if (n != nclasses)
2178 1.1 thorpej return (EINVAL);
2179 1.1 thorpej
2180 1.1 thorpej /* then, read the next N classes in the tree */
2181 1.1 thorpej nclasses = ap->nclasses;
2182 1.1 thorpej usp = ap->stats;
2183 1.1 thorpej for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
2184 1.1 thorpej
2185 1.29 riastrad memset(&stats, 0, sizeof(stats));
2186 1.1 thorpej get_class_stats(&stats, cl);
2187 1.10 perry
2188 1.23 christos if ((error = copyout((void *)&stats, (void *)usp++,
2189 1.1 thorpej sizeof(stats))) != 0)
2190 1.1 thorpej return (error);
2191 1.1 thorpej }
2192 1.1 thorpej
2193 1.1 thorpej ap->nclasses = n;
2194 1.1 thorpej
2195 1.1 thorpej return (0);
2196 1.1 thorpej }
2197 1.1 thorpej
2198 1.1 thorpej #ifdef KLD_MODULE
2199 1.1 thorpej
2200 1.1 thorpej static struct altqsw hfsc_sw =
2201 1.1 thorpej {"hfsc", hfscopen, hfscclose, hfscioctl};
2202 1.1 thorpej
2203 1.1 thorpej ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
2204 1.19 peter MODULE_DEPEND(altq_hfsc, altq_red, 1, 1, 1);
2205 1.19 peter MODULE_DEPEND(altq_hfsc, altq_rio, 1, 1, 1);
2206 1.1 thorpej
2207 1.1 thorpej #endif /* KLD_MODULE */
2208 1.19 peter #endif /* ALTQ3_COMPAT */
2209 1.1 thorpej
2210 1.1 thorpej #endif /* ALTQ_HFSC */
2211