altq_hfsc.c revision 1.5 1 /* $NetBSD: altq_hfsc.c,v 1.5 2001/11/12 23:14:21 lukem Exp $ */
2 /* $KAME: altq_hfsc.c,v 1.9 2001/10/26 04:56:11 kjc Exp $ */
3
4 /*
5 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
6 *
7 * Permission to use, copy, modify, and distribute this software and
8 * its documentation is hereby granted (including for commercial or
9 * for-profit use), provided that both the copyright notice and this
10 * permission notice appear in all copies of the software, derivative
11 * works, or modified versions, and any portions thereof, and that
12 * both notices appear in supporting documentation, and that credit
13 * is given to Carnegie Mellon University in all publications reporting
14 * on direct or indirect use of this code or its derivatives.
15 *
16 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
17 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
18 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
24 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
25 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
26 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
29 * DAMAGE.
30 *
31 * Carnegie Mellon encourages (but does not require) users of this
32 * software to return any improvements or extensions that they make,
33 * and to grant Carnegie Mellon the rights to redistribute these
34 * changes without encumbrance.
35 */
36 /*
37 * H-FSC is described in Proceedings of SIGCOMM'97,
38 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
39 * Real-Time and Priority Service"
40 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.5 2001/11/12 23:14:21 lukem Exp $");
45
46 #if defined(__FreeBSD__) || defined(__NetBSD__)
47 #include "opt_altq.h"
48 #if (__FreeBSD__ != 2)
49 #include "opt_inet.h"
50 #ifdef __FreeBSD__
51 #include "opt_inet6.h"
52 #endif
53 #endif
54 #endif /* __FreeBSD__ || __NetBSD__ */
55
56 #ifdef ALTQ_HFSC /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
57
58 #include <sys/param.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/socket.h>
62 #include <sys/sockio.h>
63 #include <sys/systm.h>
64 #include <sys/proc.h>
65 #include <sys/errno.h>
66 #include <sys/kernel.h>
67 #include <sys/queue.h>
68
69 #include <net/if.h>
70 #include <net/if_types.h>
71
72 #include <altq/altq.h>
73 #include <altq/altq_conf.h>
74 #include <altq/altq_hfsc.h>
75
76 /*
77 * function prototypes
78 */
79 static struct hfsc_if *hfsc_attach __P((struct ifaltq *, u_int));
80 static int hfsc_detach __P((struct hfsc_if *));
81 static int hfsc_clear_interface __P((struct hfsc_if *));
82 static int hfsc_request __P((struct ifaltq *, int, void *));
83 static void hfsc_purge __P((struct hfsc_if *));
84 static struct hfsc_class *hfsc_class_create __P((struct hfsc_if *,
85 struct service_curve *, struct hfsc_class *, int, int));
86 static int hfsc_class_destroy __P((struct hfsc_class *));
87 static int hfsc_class_modify __P((struct hfsc_class *,
88 struct service_curve *, struct service_curve *));
89 static struct hfsc_class *hfsc_nextclass __P((struct hfsc_class *));
90
91 static int hfsc_enqueue __P((struct ifaltq *, struct mbuf *,
92 struct altq_pktattr *));
93 static struct mbuf *hfsc_dequeue __P((struct ifaltq *, int));
94
95 static int hfsc_addq __P((struct hfsc_class *, struct mbuf *));
96 static struct mbuf *hfsc_getq __P((struct hfsc_class *));
97 static struct mbuf *hfsc_pollq __P((struct hfsc_class *));
98 static void hfsc_purgeq __P((struct hfsc_class *));
99
100 static void set_active __P((struct hfsc_class *, int));
101 static void set_passive __P((struct hfsc_class *));
102
103 static void init_ed __P((struct hfsc_class *, int));
104 static void update_ed __P((struct hfsc_class *, int));
105 static void update_d __P((struct hfsc_class *, int));
106 static void init_v __P((struct hfsc_class *, int));
107 static void update_v __P((struct hfsc_class *, int));
108 static ellist_t *ellist_alloc __P((void));
109 static void ellist_destroy __P((ellist_t *));
110 static void ellist_insert __P((struct hfsc_class *));
111 static void ellist_remove __P((struct hfsc_class *));
112 static void ellist_update __P((struct hfsc_class *));
113 struct hfsc_class *ellist_get_mindl __P((ellist_t *));
114 static actlist_t *actlist_alloc __P((void));
115 static void actlist_destroy __P((actlist_t *));
116 static void actlist_insert __P((struct hfsc_class *));
117 static void actlist_remove __P((struct hfsc_class *));
118 static void actlist_update __P((struct hfsc_class *));
119
120 static __inline u_int64_t seg_x2y __P((u_int64_t, u_int64_t));
121 static __inline u_int64_t seg_y2x __P((u_int64_t, u_int64_t));
122 static __inline u_int64_t m2sm __P((u_int));
123 static __inline u_int64_t m2ism __P((u_int));
124 static __inline u_int64_t d2dx __P((u_int));
125 static u_int sm2m __P((u_int64_t));
126 static u_int dx2d __P((u_int64_t));
127
128 static void sc2isc __P((struct service_curve *, struct internal_sc *));
129 static void rtsc_init __P((struct runtime_sc *, struct internal_sc *,
130 u_int64_t, u_int64_t));
131 static u_int64_t rtsc_y2x __P((struct runtime_sc *, u_int64_t));
132 static u_int64_t rtsc_x2y __P((struct runtime_sc *, u_int64_t));
133 static void rtsc_min __P((struct runtime_sc *, struct internal_sc *,
134 u_int64_t, u_int64_t));
135
136 int hfscopen __P((dev_t, int, int, struct proc *));
137 int hfscclose __P((dev_t, int, int, struct proc *));
138 int hfscioctl __P((dev_t, ioctlcmd_t, caddr_t, int, struct proc *));
139 static int hfsccmd_if_attach __P((struct hfsc_attach *));
140 static int hfsccmd_if_detach __P((struct hfsc_interface *));
141 static int hfsccmd_add_class __P((struct hfsc_add_class *));
142 static int hfsccmd_delete_class __P((struct hfsc_delete_class *));
143 static int hfsccmd_modify_class __P((struct hfsc_modify_class *));
144 static int hfsccmd_add_filter __P((struct hfsc_add_filter *));
145 static int hfsccmd_delete_filter __P((struct hfsc_delete_filter *));
146 static int hfsccmd_class_stats __P((struct hfsc_class_stats *));
147 static void get_class_stats __P((struct class_stats *, struct hfsc_class *));
148 static struct hfsc_class *clh_to_clp __P((struct hfsc_if *, u_long));
149 static u_long clp_to_clh __P((struct hfsc_class *));
150
151 /*
152 * macros
153 */
154 #define is_a_parent_class(cl) ((cl)->cl_children != NULL)
155
156 /* hif_list keeps all hfsc_if's allocated. */
157 static struct hfsc_if *hif_list = NULL;
158
159 static struct hfsc_if *
160 hfsc_attach(ifq, bandwidth)
161 struct ifaltq *ifq;
162 u_int bandwidth;
163 {
164 struct hfsc_if *hif;
165 struct service_curve root_sc;
166
167 MALLOC(hif, struct hfsc_if *, sizeof(struct hfsc_if),
168 M_DEVBUF, M_WAITOK);
169 if (hif == NULL)
170 return (NULL);
171 bzero(hif, sizeof(struct hfsc_if));
172
173 hif->hif_eligible = ellist_alloc();
174 if (hif->hif_eligible == NULL) {
175 FREE(hif, M_DEVBUF);
176 return NULL;
177 }
178
179 hif->hif_ifq = ifq;
180
181 /*
182 * create root class
183 */
184 root_sc.m1 = bandwidth;
185 root_sc.d = 0;
186 root_sc.m2 = bandwidth;
187 if ((hif->hif_rootclass =
188 hfsc_class_create(hif, &root_sc, NULL, 0, 0)) == NULL) {
189 FREE(hif, M_DEVBUF);
190 return (NULL);
191 }
192
193 /* add this state to the hfsc list */
194 hif->hif_next = hif_list;
195 hif_list = hif;
196
197 return (hif);
198 }
199
200 static int
201 hfsc_detach(hif)
202 struct hfsc_if *hif;
203 {
204 (void)hfsc_clear_interface(hif);
205 (void)hfsc_class_destroy(hif->hif_rootclass);
206
207 /* remove this interface from the hif list */
208 if (hif_list == hif)
209 hif_list = hif->hif_next;
210 else {
211 struct hfsc_if *h;
212
213 for (h = hif_list; h != NULL; h = h->hif_next)
214 if (h->hif_next == hif) {
215 h->hif_next = hif->hif_next;
216 break;
217 }
218 ASSERT(h != NULL);
219 }
220
221 ellist_destroy(hif->hif_eligible);
222
223 FREE(hif, M_DEVBUF);
224
225 return (0);
226 }
227
228 /*
229 * bring the interface back to the initial state by discarding
230 * all the filters and classes except the root class.
231 */
232 static int
233 hfsc_clear_interface(hif)
234 struct hfsc_if *hif;
235 {
236 struct hfsc_class *cl;
237
238 /* free the filters for this interface */
239 acc_discard_filters(&hif->hif_classifier, NULL, 1);
240
241 /* clear out the classes */
242 while ((cl = hif->hif_rootclass->cl_children) != NULL) {
243 /*
244 * remove the first leaf class found in the hierarchy
245 * then start over
246 */
247 for (; cl != NULL; cl = hfsc_nextclass(cl)) {
248 if (!is_a_parent_class(cl)) {
249 (void)hfsc_class_destroy(cl);
250 break;
251 }
252 }
253 }
254
255 return (0);
256 }
257
258 static int
259 hfsc_request(ifq, req, arg)
260 struct ifaltq *ifq;
261 int req;
262 void *arg;
263 {
264 struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
265
266 switch (req) {
267 case ALTRQ_PURGE:
268 hfsc_purge(hif);
269 break;
270 }
271 return (0);
272 }
273
274 /* discard all the queued packets on the interface */
275 static void
276 hfsc_purge(hif)
277 struct hfsc_if *hif;
278 {
279 struct hfsc_class *cl;
280
281 for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
282 if (!qempty(cl->cl_q))
283 hfsc_purgeq(cl);
284 if (ALTQ_IS_ENABLED(hif->hif_ifq))
285 hif->hif_ifq->ifq_len = 0;
286 }
287
288 struct hfsc_class *
289 hfsc_class_create(hif, sc, parent, qlimit, flags)
290 struct hfsc_if *hif;
291 struct service_curve *sc;
292 struct hfsc_class *parent;
293 int qlimit, flags;
294 {
295 struct hfsc_class *cl, *p;
296 int s;
297
298 #ifndef ALTQ_RED
299 if (flags & HFCF_RED) {
300 printf("hfsc_class_create: RED not configured for HFSC!\n");
301 return (NULL);
302 }
303 #endif
304
305 MALLOC(cl, struct hfsc_class *, sizeof(struct hfsc_class),
306 M_DEVBUF, M_WAITOK);
307 if (cl == NULL)
308 return (NULL);
309 bzero(cl, sizeof(struct hfsc_class));
310
311 MALLOC(cl->cl_q, class_queue_t *, sizeof(class_queue_t),
312 M_DEVBUF, M_WAITOK);
313 if (cl->cl_q == NULL)
314 goto err_ret;
315 bzero(cl->cl_q, sizeof(class_queue_t));
316
317 cl->cl_actc = actlist_alloc();
318 if (cl->cl_actc == NULL)
319 goto err_ret;
320
321 if (qlimit == 0)
322 qlimit = 50; /* use default */
323 qlimit(cl->cl_q) = qlimit;
324 qtype(cl->cl_q) = Q_DROPTAIL;
325 qlen(cl->cl_q) = 0;
326 cl->cl_flags = flags;
327 #ifdef ALTQ_RED
328 if (flags & (HFCF_RED|HFCF_RIO)) {
329 int red_flags, red_pkttime;
330
331 red_flags = 0;
332 if (flags & HFCF_ECN)
333 red_flags |= REDF_ECN;
334 #ifdef ALTQ_RIO
335 if (flags & HFCF_CLEARDSCP)
336 red_flags |= RIOF_CLEARDSCP;
337 #endif
338 if (sc->m2 < 8)
339 red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
340 else
341 red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
342 * 1000 * 1000 * 1000 / (sc->m2 / 8);
343 if (flags & HFCF_RED) {
344 cl->cl_red = red_alloc(0, 0, 0, 0,
345 red_flags, red_pkttime);
346 if (cl->cl_red != NULL)
347 qtype(cl->cl_q) = Q_RED;
348 }
349 #ifdef ALTQ_RIO
350 else {
351 cl->cl_red = (red_t *)rio_alloc(0, NULL,
352 red_flags, red_pkttime);
353 if (cl->cl_red != NULL)
354 qtype(cl->cl_q) = Q_RIO;
355 }
356 #endif
357 }
358 #endif /* ALTQ_RED */
359
360 if (sc != NULL && (sc->m1 != 0 || sc->m2 != 0)) {
361 MALLOC(cl->cl_rsc, struct internal_sc *,
362 sizeof(struct internal_sc), M_DEVBUF, M_WAITOK);
363 if (cl->cl_rsc == NULL)
364 goto err_ret;
365 bzero(cl->cl_rsc, sizeof(struct internal_sc));
366 sc2isc(sc, cl->cl_rsc);
367 rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
368 rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
369
370 MALLOC(cl->cl_fsc, struct internal_sc *,
371 sizeof(struct internal_sc), M_DEVBUF, M_WAITOK);
372 if (cl->cl_fsc == NULL)
373 goto err_ret;
374 bzero(cl->cl_fsc, sizeof(struct internal_sc));
375 sc2isc(sc, cl->cl_fsc);
376 rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
377 }
378
379 cl->cl_id = hif->hif_classid++;
380 cl->cl_handle = (u_long)cl; /* XXX: just a pointer to this class */
381 cl->cl_hif = hif;
382 cl->cl_parent = parent;
383
384 s = splnet();
385 hif->hif_classes++;
386 if (flags & HFCF_DEFAULTCLASS)
387 hif->hif_defaultclass = cl;
388
389 /* add this class to the children list of the parent */
390 if (parent == NULL) {
391 /* this is root class */
392 }
393 else if ((p = parent->cl_children) == NULL)
394 parent->cl_children = cl;
395 else {
396 while (p->cl_siblings != NULL)
397 p = p->cl_siblings;
398 p->cl_siblings = cl;
399 }
400 splx(s);
401
402 return (cl);
403
404 err_ret:
405 if (cl->cl_actc != NULL)
406 actlist_destroy(cl->cl_actc);
407 if (cl->cl_red != NULL) {
408 #ifdef ALTQ_RIO
409 if (q_is_rio(cl->cl_q))
410 rio_destroy((rio_t *)cl->cl_red);
411 #endif
412 #ifdef ALTQ_RED
413 if (q_is_red(cl->cl_q))
414 red_destroy(cl->cl_red);
415 #endif
416 }
417 if (cl->cl_fsc != NULL)
418 FREE(cl->cl_fsc, M_DEVBUF);
419 if (cl->cl_rsc != NULL)
420 FREE(cl->cl_rsc, M_DEVBUF);
421 if (cl->cl_q != NULL)
422 FREE(cl->cl_q, M_DEVBUF);
423 FREE(cl, M_DEVBUF);
424 return (NULL);
425 }
426
427 static int
428 hfsc_class_destroy(cl)
429 struct hfsc_class *cl;
430 {
431 int s;
432
433 if (is_a_parent_class(cl))
434 return (EBUSY);
435
436 s = splnet();
437
438 /* delete filters referencing to this class */
439 acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
440
441 if (!qempty(cl->cl_q))
442 hfsc_purgeq(cl);
443
444 if (cl->cl_parent == NULL) {
445 /* this is root class */
446 } else {
447 struct hfsc_class *p = cl->cl_parent->cl_children;
448
449 if (p == cl)
450 cl->cl_parent->cl_children = cl->cl_siblings;
451 else do {
452 if (p->cl_siblings == cl) {
453 p->cl_siblings = cl->cl_siblings;
454 break;
455 }
456 } while ((p = p->cl_siblings) != NULL);
457 ASSERT(p != NULL);
458 }
459 cl->cl_hif->hif_classes--;
460 splx(s);
461
462 actlist_destroy(cl->cl_actc);
463
464 if (cl->cl_red != NULL) {
465 #ifdef ALTQ_RIO
466 if (q_is_rio(cl->cl_q))
467 rio_destroy((rio_t *)cl->cl_red);
468 #endif
469 #ifdef ALTQ_RED
470 if (q_is_red(cl->cl_q))
471 red_destroy(cl->cl_red);
472 #endif
473 }
474 if (cl->cl_fsc != NULL)
475 FREE(cl->cl_fsc, M_DEVBUF);
476 if (cl->cl_rsc != NULL)
477 FREE(cl->cl_rsc, M_DEVBUF);
478 FREE(cl->cl_q, M_DEVBUF);
479 FREE(cl, M_DEVBUF);
480
481 return (0);
482 }
483
484 static int
485 hfsc_class_modify(cl, rsc, fsc)
486 struct hfsc_class *cl;
487 struct service_curve *rsc, *fsc;
488 {
489 struct internal_sc *tmp;
490 int s;
491
492 s = splnet();
493 if (!qempty(cl->cl_q))
494 hfsc_purgeq(cl);
495
496 if (rsc != NULL) {
497 if (rsc->m1 == 0 && rsc->m2 == 0) {
498 if (cl->cl_rsc != NULL) {
499 FREE(cl->cl_rsc, M_DEVBUF);
500 cl->cl_rsc = NULL;
501 }
502 } else {
503 if (cl->cl_rsc == NULL) {
504 MALLOC(tmp, struct internal_sc *,
505 sizeof(struct internal_sc),
506 M_DEVBUF, M_WAITOK);
507 if (tmp == NULL) {
508 splx(s);
509 return (ENOMEM);
510 }
511 cl->cl_rsc = tmp;
512 }
513 bzero(cl->cl_rsc, sizeof(struct internal_sc));
514 sc2isc(rsc, cl->cl_rsc);
515 rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
516 rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
517 }
518 }
519
520 if (fsc != NULL) {
521 if (fsc->m1 == 0 && fsc->m2 == 0) {
522 if (cl->cl_fsc != NULL) {
523 FREE(cl->cl_fsc, M_DEVBUF);
524 cl->cl_fsc = NULL;
525 }
526 } else {
527 if (cl->cl_fsc == NULL) {
528 MALLOC(tmp, struct internal_sc *,
529 sizeof(struct internal_sc),
530 M_DEVBUF, M_WAITOK);
531 if (tmp == NULL) {
532 splx(s);
533 return (ENOMEM);
534 }
535 cl->cl_fsc = tmp;
536 }
537 bzero(cl->cl_fsc, sizeof(struct internal_sc));
538 sc2isc(fsc, cl->cl_fsc);
539 rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
540 }
541 }
542 splx(s);
543
544 return (0);
545 }
546
547 /*
548 * hfsc_nextclass returns the next class in the tree.
549 * usage:
550 * for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
551 * do_something;
552 */
553 static struct hfsc_class *
554 hfsc_nextclass(cl)
555 struct hfsc_class *cl;
556 {
557 if (cl->cl_children != NULL)
558 cl = cl->cl_children;
559 else if (cl->cl_siblings != NULL)
560 cl = cl->cl_siblings;
561 else {
562 while ((cl = cl->cl_parent) != NULL)
563 if (cl->cl_siblings) {
564 cl = cl->cl_siblings;
565 break;
566 }
567 }
568
569 return (cl);
570 }
571
572 /*
573 * hfsc_enqueue is an enqueue function to be registered to
574 * (*altq_enqueue) in struct ifaltq.
575 */
576 static int
577 hfsc_enqueue(ifq, m, pktattr)
578 struct ifaltq *ifq;
579 struct mbuf *m;
580 struct altq_pktattr *pktattr;
581 {
582 struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
583 struct hfsc_class *cl;
584 int len;
585
586 /* grab class set by classifier */
587 if (pktattr == NULL || (cl = pktattr->pattr_class) == NULL)
588 cl = hif->hif_defaultclass;
589 cl->cl_pktattr = pktattr; /* save proto hdr used by ECN */
590
591 len = m_pktlen(m);
592 if (hfsc_addq(cl, m) != 0) {
593 /* drop occurred. mbuf was freed in hfsc_addq. */
594 PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
595 return (ENOBUFS);
596 }
597 IFQ_INC_LEN(ifq);
598 cl->cl_hif->hif_packets++;
599
600 /* successfully queued. */
601 if (qlen(cl->cl_q) == 1)
602 set_active(cl, m_pktlen(m));
603
604 #ifdef HFSC_PKTLOG
605 /* put the logging_hook here */
606 #endif
607 return (0);
608 }
609
610 /*
611 * hfsc_dequeue is a dequeue function to be registered to
612 * (*altq_dequeue) in struct ifaltq.
613 *
614 * note: ALTDQ_POLL returns the next packet without removing the packet
615 * from the queue. ALTDQ_REMOVE is a normal dequeue operation.
616 * ALTDQ_REMOVE must return the same packet if called immediately
617 * after ALTDQ_POLL.
618 */
619 static struct mbuf *
620 hfsc_dequeue(ifq, op)
621 struct ifaltq *ifq;
622 int op;
623 {
624 struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
625 struct hfsc_class *cl;
626 struct mbuf *m;
627 int len, next_len;
628 int realtime = 0;
629
630 if (hif->hif_packets == 0)
631 /* no packet in the tree */
632 return (NULL);
633
634 if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
635 u_int64_t cur_time;
636
637 cl = hif->hif_pollcache;
638 hif->hif_pollcache = NULL;
639 /* check if the class was scheduled by real-time criteria */
640 if (cl->cl_rsc != NULL) {
641 cur_time = read_machclk();
642 realtime = (cl->cl_e <= cur_time);
643 }
644 } else {
645 /*
646 * if there are eligible classes, use real-time criteria.
647 * find the class with the minimum deadline among
648 * the eligible classes.
649 */
650 if ((cl = ellist_get_mindl(hif->hif_eligible)) != NULL) {
651 realtime = 1;
652 } else {
653 /*
654 * use link-sharing criteria
655 * get the class with the minimum vt in the hierarchy
656 */
657 cl = hif->hif_rootclass;
658 while (is_a_parent_class(cl)) {
659 cl = actlist_first(cl->cl_actc);
660 if (cl == NULL)
661 return (NULL);
662 }
663 }
664
665 if (op == ALTDQ_POLL) {
666 hif->hif_pollcache = cl;
667 m = hfsc_pollq(cl);
668 return (m);
669 }
670 }
671
672 m = hfsc_getq(cl);
673 len = m_pktlen(m);
674 cl->cl_hif->hif_packets--;
675 IFQ_DEC_LEN(ifq);
676 PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
677
678 update_v(cl, len);
679 if (realtime)
680 cl->cl_cumul += len;
681
682 if (!qempty(cl->cl_q)) {
683 if (cl->cl_rsc != NULL) {
684 /* update ed */
685 next_len = m_pktlen(qhead(cl->cl_q));
686
687 if (realtime)
688 update_ed(cl, next_len);
689 else
690 update_d(cl, next_len);
691 }
692 } else {
693 /* the class becomes passive */
694 set_passive(cl);
695 }
696
697 #ifdef HFSC_PKTLOG
698 /* put the logging_hook here */
699 #endif
700
701 return (m);
702 }
703
704 static int
705 hfsc_addq(cl, m)
706 struct hfsc_class *cl;
707 struct mbuf *m;
708 {
709
710 #ifdef ALTQ_RIO
711 if (q_is_rio(cl->cl_q))
712 return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
713 m, cl->cl_pktattr);
714 #endif
715 #ifdef ALTQ_RED
716 if (q_is_red(cl->cl_q))
717 return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
718 #endif
719 if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
720 m_freem(m);
721 return (-1);
722 }
723
724 if (cl->cl_flags & HFCF_CLEARDSCP)
725 write_dsfield(m, cl->cl_pktattr, 0);
726
727 _addq(cl->cl_q, m);
728
729 return (0);
730 }
731
732 static struct mbuf *
733 hfsc_getq(cl)
734 struct hfsc_class *cl;
735 {
736 #ifdef ALTQ_RIO
737 if (q_is_rio(cl->cl_q))
738 return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
739 #endif
740 #ifdef ALTQ_RED
741 if (q_is_red(cl->cl_q))
742 return red_getq(cl->cl_red, cl->cl_q);
743 #endif
744 return _getq(cl->cl_q);
745 }
746
747 static struct mbuf *
748 hfsc_pollq(cl)
749 struct hfsc_class *cl;
750 {
751 return qhead(cl->cl_q);
752 }
753
754 static void
755 hfsc_purgeq(cl)
756 struct hfsc_class *cl;
757 {
758 struct mbuf *m;
759
760 if (qempty(cl->cl_q))
761 return;
762
763 while ((m = _getq(cl->cl_q)) != NULL) {
764 PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
765 m_freem(m);
766 }
767 ASSERT(qlen(cl->cl_q) == 0);
768
769 set_passive(cl);
770 }
771
772 static void
773 set_active(cl, len)
774 struct hfsc_class *cl;
775 int len;
776 {
777 if (cl->cl_rsc != NULL)
778 init_ed(cl, len);
779 if (cl->cl_fsc != NULL)
780 init_v(cl, len);
781
782 cl->cl_stats.period++;
783 }
784
785 static void
786 set_passive(cl)
787 struct hfsc_class *cl;
788 {
789 if (cl->cl_rsc != NULL)
790 ellist_remove(cl);
791
792 if (cl->cl_fsc != NULL) {
793 while (cl->cl_parent != NULL) {
794 if (--cl->cl_nactive == 0) {
795 /* remove this class from the vt list */
796 actlist_remove(cl);
797 } else
798 /* still has active children */
799 break;
800
801 /* go up to the parent class */
802 cl = cl->cl_parent;
803 }
804 }
805 }
806
807 static void
808 init_ed(cl, next_len)
809 struct hfsc_class *cl;
810 int next_len;
811 {
812 u_int64_t cur_time;
813
814 cur_time = read_machclk();
815
816 /* update the deadline curve */
817 rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
818
819 /*
820 * update the eligible curve.
821 * for concave, it is equal to the deadline curve.
822 * for convex, it is a linear curve with slope m2.
823 */
824 cl->cl_eligible = cl->cl_deadline;
825 if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
826 cl->cl_eligible.dx = 0;
827 cl->cl_eligible.dy = 0;
828 }
829
830 /* compute e and d */
831 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
832 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
833
834 ellist_insert(cl);
835 }
836
837 static void
838 update_ed(cl, next_len)
839 struct hfsc_class *cl;
840 int next_len;
841 {
842 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
843 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
844
845 ellist_update(cl);
846 }
847
848 static void
849 update_d(cl, next_len)
850 struct hfsc_class *cl;
851 int next_len;
852 {
853 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
854 }
855
856 static void
857 init_v(cl, len)
858 struct hfsc_class *cl;
859 int len;
860 {
861 struct hfsc_class *min_cl, *max_cl;
862
863 while (cl->cl_parent != NULL) {
864
865 if (cl->cl_nactive++ > 0)
866 /* already active */
867 break;
868
869 min_cl = actlist_first(cl->cl_parent->cl_actc);
870 if (min_cl != NULL) {
871 u_int64_t vt;
872
873 /*
874 * set vt to the average of the min and max classes.
875 * if the parent's period didn't change,
876 * don't decrease vt of the class.
877 */
878 max_cl = actlist_last(cl->cl_parent->cl_actc);
879 vt = (min_cl->cl_vt + max_cl->cl_vt) / 2;
880 if (cl->cl_parent->cl_vtperiod == cl->cl_parentperiod)
881 vt = max(cl->cl_vt, vt);
882 cl->cl_vt = vt;
883 } else {
884 /* no packet is backlogged. set vt to 0 */
885 cl->cl_vt = 0;
886 }
887
888 /* update the virtual curve */
889 rtsc_min(&cl->cl_virtual, cl->cl_fsc,
890 cl->cl_vt, cl->cl_total);
891
892 cl->cl_vtperiod++; /* increment vt period */
893 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
894 if (cl->cl_parent->cl_nactive == 0)
895 cl->cl_parentperiod++;
896
897 actlist_insert(cl);
898
899 /* go up to the parent class */
900 cl = cl->cl_parent;
901 }
902 }
903
904 static void
905 update_v(cl, len)
906 struct hfsc_class *cl;
907 int len;
908 {
909 while (cl->cl_parent != NULL) {
910
911 cl->cl_total += len;
912
913 if (cl->cl_fsc != NULL) {
914 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total);
915
916 /* update the vt list */
917 actlist_update(cl);
918 }
919
920 /* go up to the parent class */
921 cl = cl->cl_parent;
922 }
923 }
924
925 /*
926 * TAILQ based ellist and actlist implementation
927 * (ion wanted to make a calendar queue based implementation)
928 */
929 /*
930 * eligible list holds backlogged classes being sorted by their eligible times.
931 * there is one eligible list per interface.
932 */
933
934 static ellist_t *
935 ellist_alloc()
936 {
937 ellist_t *head;
938
939 MALLOC(head, ellist_t *, sizeof(ellist_t), M_DEVBUF, M_WAITOK);
940 TAILQ_INIT(head);
941 return (head);
942 }
943
944 static void
945 ellist_destroy(head)
946 ellist_t *head;
947 {
948 FREE(head, M_DEVBUF);
949 }
950
951 static void
952 ellist_insert(cl)
953 struct hfsc_class *cl;
954 {
955 struct hfsc_if *hif = cl->cl_hif;
956 struct hfsc_class *p;
957
958 /* check the last entry first */
959 if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
960 p->cl_e <= cl->cl_e) {
961 TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
962 return;
963 }
964
965 TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
966 if (cl->cl_e < p->cl_e) {
967 TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
968 return;
969 }
970 }
971 ASSERT(0); /* should not reach here */
972 }
973
974 static void
975 ellist_remove(cl)
976 struct hfsc_class *cl;
977 {
978 struct hfsc_if *hif = cl->cl_hif;
979
980 TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
981 }
982
983 static void
984 ellist_update(cl)
985 struct hfsc_class *cl;
986 {
987 struct hfsc_if *hif = cl->cl_hif;
988 struct hfsc_class *p, *last;
989
990 /*
991 * the eligible time of a class increases monotonically.
992 * if the next entry has a larger eligible time, nothing to do.
993 */
994 p = TAILQ_NEXT(cl, cl_ellist);
995 if (p == NULL || cl->cl_e <= p->cl_e)
996 return;
997
998 /* check the last entry */
999 last = TAILQ_LAST(hif->hif_eligible, _eligible);
1000 ASSERT(last != NULL);
1001 if (last->cl_e <= cl->cl_e) {
1002 TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1003 TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1004 return;
1005 }
1006
1007 /*
1008 * the new position must be between the next entry
1009 * and the last entry
1010 */
1011 while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1012 if (cl->cl_e < p->cl_e) {
1013 TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1014 TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1015 return;
1016 }
1017 }
1018 ASSERT(0); /* should not reach here */
1019 }
1020
1021 /* find the class with the minimum deadline among the eligible classes */
1022 struct hfsc_class *
1023 ellist_get_mindl(head)
1024 ellist_t *head;
1025 {
1026 struct hfsc_class *p, *cl = NULL;
1027 u_int64_t cur_time;
1028
1029 cur_time = read_machclk();
1030
1031 TAILQ_FOREACH(p, head, cl_ellist) {
1032 if (p->cl_e > cur_time)
1033 break;
1034 if (cl == NULL || p->cl_d < cl->cl_d)
1035 cl = p;
1036 }
1037 return (cl);
1038 }
1039
1040 /*
1041 * active children list holds backlogged child classes being sorted
1042 * by their virtual time.
1043 * each intermediate class has one active children list.
1044 */
1045 static actlist_t *
1046 actlist_alloc()
1047 {
1048 actlist_t *head;
1049
1050 MALLOC(head, actlist_t *, sizeof(actlist_t), M_DEVBUF, M_WAITOK);
1051 TAILQ_INIT(head);
1052 return (head);
1053 }
1054
1055 static void
1056 actlist_destroy(head)
1057 actlist_t *head;
1058 {
1059 FREE(head, M_DEVBUF);
1060 }
1061 static void
1062 actlist_insert(cl)
1063 struct hfsc_class *cl;
1064 {
1065 struct hfsc_class *p;
1066
1067 /* check the last entry first */
1068 if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1069 || p->cl_vt <= cl->cl_vt) {
1070 TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1071 return;
1072 }
1073
1074 TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1075 if (cl->cl_vt < p->cl_vt) {
1076 TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1077 return;
1078 }
1079 }
1080 ASSERT(0); /* should not reach here */
1081 }
1082
1083 static void
1084 actlist_remove(cl)
1085 struct hfsc_class *cl;
1086 {
1087 TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1088 }
1089
1090 static void
1091 actlist_update(cl)
1092 struct hfsc_class *cl;
1093 {
1094 struct hfsc_class *p, *last;
1095
1096 /*
1097 * the virtual time of a class increases monotonically during its
1098 * backlogged period.
1099 * if the next entry has a larger virtual time, nothing to do.
1100 */
1101 p = TAILQ_NEXT(cl, cl_actlist);
1102 if (p == NULL || cl->cl_vt <= p->cl_vt)
1103 return;
1104
1105 /* check the last entry */
1106 last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1107 ASSERT(last != NULL);
1108 if (last->cl_vt <= cl->cl_vt) {
1109 TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1110 TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1111 return;
1112 }
1113
1114 /*
1115 * the new position must be between the next entry
1116 * and the last entry
1117 */
1118 while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1119 if (cl->cl_vt < p->cl_vt) {
1120 TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1121 TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1122 return;
1123 }
1124 }
1125 ASSERT(0); /* should not reach here */
1126 }
1127
1128 /*
1129 * service curve support functions
1130 *
1131 * external service curve parameters
1132 * m: bits/sec
1133 * d: msec
1134 * internal service curve parameters
1135 * sm: (bytes/tsc_interval) << SM_SHIFT
1136 * ism: (tsc_count/byte) << ISM_SHIFT
1137 * dx: tsc_count
1138 *
1139 * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1140 * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1141 * speed. SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1142 * digits in decimal using the following table.
1143 *
1144 * bits/set 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
1145 * ----------+-------------------------------------------------------
1146 * bytes/nsec 12.5e-6 125e-6 1250e-6 12500e-6 125000e-6
1147 * sm(500MHz) 25.0e-6 250e-6 2500e-6 25000e-6 250000e-6
1148 * sm(200MHz) 62.5e-6 625e-6 6250e-6 62500e-6 625000e-6
1149 *
1150 * nsec/byte 80000 8000 800 80 8
1151 * ism(500MHz) 40000 4000 400 40 4
1152 * ism(200MHz) 16000 1600 160 16 1.6
1153 */
1154 #define SM_SHIFT 24
1155 #define ISM_SHIFT 10
1156
1157 #define SC_LARGEVAL (1LL << 32)
1158 #define SC_INFINITY 0xffffffffffffffffLL
1159
1160 static __inline u_int64_t
1161 seg_x2y(x, sm)
1162 u_int64_t x;
1163 u_int64_t sm;
1164 {
1165 u_int64_t y;
1166
1167 if (x < SC_LARGEVAL)
1168 y = x * sm >> SM_SHIFT;
1169 else
1170 y = (x >> SM_SHIFT) * sm;
1171 return (y);
1172 }
1173
1174 static __inline u_int64_t
1175 seg_y2x(y, ism)
1176 u_int64_t y;
1177 u_int64_t ism;
1178 {
1179 u_int64_t x;
1180
1181 if (y == 0)
1182 x = 0;
1183 else if (ism == SC_INFINITY)
1184 x = SC_INFINITY;
1185 else if (y < SC_LARGEVAL)
1186 x = y * ism >> ISM_SHIFT;
1187 else
1188 x = (y >> ISM_SHIFT) * ism;
1189 return (x);
1190 }
1191
1192 static __inline u_int64_t
1193 m2sm(m)
1194 u_int m;
1195 {
1196 u_int64_t sm;
1197
1198 sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
1199 return (sm);
1200 }
1201
1202 static __inline u_int64_t
1203 m2ism(m)
1204 u_int m;
1205 {
1206 u_int64_t ism;
1207
1208 if (m == 0)
1209 ism = SC_INFINITY;
1210 else
1211 ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1212 return (ism);
1213 }
1214
1215 static __inline u_int64_t
1216 d2dx(d)
1217 u_int d;
1218 {
1219 u_int64_t dx;
1220
1221 dx = ((u_int64_t)d * machclk_freq) / 1000;
1222 return (dx);
1223 }
1224
1225 static u_int
1226 sm2m(sm)
1227 u_int64_t sm;
1228 {
1229 u_int64_t m;
1230
1231 m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1232 return ((u_int)m);
1233 }
1234
1235 static u_int
1236 dx2d(dx)
1237 u_int64_t dx;
1238 {
1239 u_int64_t d;
1240
1241 d = dx * 1000 / machclk_freq;
1242 return ((u_int)d);
1243 }
1244
1245 static void
1246 sc2isc(sc, isc)
1247 struct service_curve *sc;
1248 struct internal_sc *isc;
1249 {
1250 isc->sm1 = m2sm(sc->m1);
1251 isc->ism1 = m2ism(sc->m1);
1252 isc->dx = d2dx(sc->d);
1253 isc->dy = seg_x2y(isc->dx, isc->sm1);
1254 isc->sm2 = m2sm(sc->m2);
1255 isc->ism2 = m2ism(sc->m2);
1256 }
1257
1258 /*
1259 * initialize the runtime service curve with the given internal
1260 * service curve starting at (x, y).
1261 */
1262 static void
1263 rtsc_init(rtsc, isc, x, y)
1264 struct runtime_sc *rtsc;
1265 struct internal_sc *isc;
1266 u_int64_t x, y;
1267 {
1268 rtsc->x = x;
1269 rtsc->y = y;
1270 rtsc->sm1 = isc->sm1;
1271 rtsc->ism1 = isc->ism1;
1272 rtsc->dx = isc->dx;
1273 rtsc->dy = isc->dy;
1274 rtsc->sm2 = isc->sm2;
1275 rtsc->ism2 = isc->ism2;
1276 }
1277
1278 /*
1279 * calculate the y-projection of the runtime service curve by the
1280 * given x-projection value
1281 */
1282 static u_int64_t
1283 rtsc_y2x(rtsc, y)
1284 struct runtime_sc *rtsc;
1285 u_int64_t y;
1286 {
1287 u_int64_t x;
1288
1289 if (y < rtsc->y)
1290 x = rtsc->x;
1291 else if (y <= rtsc->y + rtsc->dy) {
1292 /* x belongs to the 1st segment */
1293 if (rtsc->dy == 0)
1294 x = rtsc->x + rtsc->dx;
1295 else
1296 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1297 } else {
1298 /* x belongs to the 2nd segment */
1299 x = rtsc->x + rtsc->dx
1300 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1301 }
1302 return (x);
1303 }
1304
1305 static u_int64_t
1306 rtsc_x2y(rtsc, x)
1307 struct runtime_sc *rtsc;
1308 u_int64_t x;
1309 {
1310 u_int64_t y;
1311
1312 if (x <= rtsc->x)
1313 y = rtsc->y;
1314 else if (x <= rtsc->x + rtsc->dx)
1315 /* y belongs to the 1st segment */
1316 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1317 else
1318 /* y belongs to the 2nd segment */
1319 y = rtsc->y + rtsc->dy
1320 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1321 return (y);
1322 }
1323
1324 /*
1325 * update the runtime service curve by taking the minimum of the current
1326 * runtime service curve and the service curve starting at (x, y).
1327 */
1328 static void
1329 rtsc_min(rtsc, isc, x, y)
1330 struct runtime_sc *rtsc;
1331 struct internal_sc *isc;
1332 u_int64_t x, y;
1333 {
1334 u_int64_t y1, y2, dx, dy;
1335
1336 if (isc->sm1 <= isc->sm2) {
1337 /* service curve is convex */
1338 y1 = rtsc_x2y(rtsc, x);
1339 if (y1 < y)
1340 /* the current rtsc is smaller */
1341 return;
1342 rtsc->x = x;
1343 rtsc->y = y;
1344 return;
1345 }
1346
1347 /*
1348 * service curve is concave
1349 * compute the two y values of the current rtsc
1350 * y1: at x
1351 * y2: at (x + dx)
1352 */
1353 y1 = rtsc_x2y(rtsc, x);
1354 if (y1 <= y) {
1355 /* rtsc is below isc, no change to rtsc */
1356 return;
1357 }
1358
1359 y2 = rtsc_x2y(rtsc, x + isc->dx);
1360 if (y2 >= y + isc->dy) {
1361 /* rtsc is above isc, replace rtsc by isc */
1362 rtsc->x = x;
1363 rtsc->y = y;
1364 rtsc->dx = isc->dx;
1365 rtsc->dy = isc->dy;
1366 return;
1367 }
1368
1369 /*
1370 * the two curves intersect
1371 * compute the offsets (dx, dy) using the reverse
1372 * function of seg_x2y()
1373 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1374 */
1375 dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1376 /*
1377 * check if (x, y1) belongs to the 1st segment of rtsc.
1378 * if so, add the offset.
1379 */
1380 if (rtsc->x + rtsc->dx > x)
1381 dx += rtsc->x + rtsc->dx - x;
1382 dy = seg_x2y(dx, isc->sm1);
1383
1384 rtsc->x = x;
1385 rtsc->y = y;
1386 rtsc->dx = dx;
1387 rtsc->dy = dy;
1388 return;
1389 }
1390
1391 /*
1392 * hfsc device interface
1393 */
1394 int
1395 hfscopen(dev, flag, fmt, p)
1396 dev_t dev;
1397 int flag, fmt;
1398 struct proc *p;
1399 {
1400 if (machclk_freq == 0)
1401 init_machclk();
1402
1403 if (machclk_freq == 0) {
1404 printf("hfsc: no cpu clock available!\n");
1405 return (ENXIO);
1406 }
1407
1408 /* everything will be done when the queueing scheme is attached. */
1409 return 0;
1410 }
1411
1412 int
1413 hfscclose(dev, flag, fmt, p)
1414 dev_t dev;
1415 int flag, fmt;
1416 struct proc *p;
1417 {
1418 struct hfsc_if *hif;
1419 int err, error = 0;
1420
1421 while ((hif = hif_list) != NULL) {
1422 /* destroy all */
1423 if (ALTQ_IS_ENABLED(hif->hif_ifq))
1424 altq_disable(hif->hif_ifq);
1425
1426 err = altq_detach(hif->hif_ifq);
1427 if (err == 0)
1428 err = hfsc_detach(hif);
1429 if (err != 0 && error == 0)
1430 error = err;
1431 }
1432
1433 return error;
1434 }
1435
1436 int
1437 hfscioctl(dev, cmd, addr, flag, p)
1438 dev_t dev;
1439 ioctlcmd_t cmd;
1440 caddr_t addr;
1441 int flag;
1442 struct proc *p;
1443 {
1444 struct hfsc_if *hif;
1445 struct hfsc_interface *ifacep;
1446 int error = 0;
1447
1448 /* check super-user privilege */
1449 switch (cmd) {
1450 case HFSC_GETSTATS:
1451 break;
1452 default:
1453 #if (__FreeBSD_version > 400000)
1454 if ((error = suser(p)) != 0)
1455 return (error);
1456 #else
1457 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1458 return (error);
1459 #endif
1460 break;
1461 }
1462
1463 switch (cmd) {
1464
1465 case HFSC_IF_ATTACH:
1466 error = hfsccmd_if_attach((struct hfsc_attach *)addr);
1467 break;
1468
1469 case HFSC_IF_DETACH:
1470 error = hfsccmd_if_detach((struct hfsc_interface *)addr);
1471 break;
1472
1473 case HFSC_ENABLE:
1474 case HFSC_DISABLE:
1475 case HFSC_CLEAR_HIERARCHY:
1476 ifacep = (struct hfsc_interface *)addr;
1477 if ((hif = altq_lookup(ifacep->hfsc_ifname,
1478 ALTQT_HFSC)) == NULL) {
1479 error = EBADF;
1480 break;
1481 }
1482
1483 switch (cmd) {
1484
1485 case HFSC_ENABLE:
1486 if (hif->hif_defaultclass == NULL) {
1487 #if 1
1488 printf("hfsc: no default class\n");
1489 #endif
1490 error = EINVAL;
1491 break;
1492 }
1493 error = altq_enable(hif->hif_ifq);
1494 break;
1495
1496 case HFSC_DISABLE:
1497 error = altq_disable(hif->hif_ifq);
1498 break;
1499
1500 case HFSC_CLEAR_HIERARCHY:
1501 hfsc_clear_interface(hif);
1502 break;
1503 }
1504 break;
1505
1506 case HFSC_ADD_CLASS:
1507 error = hfsccmd_add_class((struct hfsc_add_class *)addr);
1508 break;
1509
1510 case HFSC_DEL_CLASS:
1511 error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
1512 break;
1513
1514 case HFSC_MOD_CLASS:
1515 error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
1516 break;
1517
1518 case HFSC_ADD_FILTER:
1519 error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
1520 break;
1521
1522 case HFSC_DEL_FILTER:
1523 error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
1524 break;
1525
1526 case HFSC_GETSTATS:
1527 error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
1528 break;
1529
1530 default:
1531 error = EINVAL;
1532 break;
1533 }
1534 return error;
1535 }
1536
1537 static int
1538 hfsccmd_if_attach(ap)
1539 struct hfsc_attach *ap;
1540 {
1541 struct hfsc_if *hif;
1542 struct ifnet *ifp;
1543 int error;
1544
1545 if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
1546 return (ENXIO);
1547
1548 if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
1549 return (ENOMEM);
1550
1551 /*
1552 * set HFSC to this ifnet structure.
1553 */
1554 if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
1555 hfsc_enqueue, hfsc_dequeue, hfsc_request,
1556 &hif->hif_classifier, acc_classify)) != 0)
1557 (void)hfsc_detach(hif);
1558
1559 return (error);
1560 }
1561
1562 static int
1563 hfsccmd_if_detach(ap)
1564 struct hfsc_interface *ap;
1565 {
1566 struct hfsc_if *hif;
1567 int error;
1568
1569 if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
1570 return (EBADF);
1571
1572 if (ALTQ_IS_ENABLED(hif->hif_ifq))
1573 altq_disable(hif->hif_ifq);
1574
1575 if ((error = altq_detach(hif->hif_ifq)))
1576 return (error);
1577
1578 return hfsc_detach(hif);
1579 }
1580
1581 static int
1582 hfsccmd_add_class(ap)
1583 struct hfsc_add_class *ap;
1584 {
1585 struct hfsc_if *hif;
1586 struct hfsc_class *cl, *parent;
1587
1588 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1589 return (EBADF);
1590
1591 if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL) {
1592 if (ap->parent_handle == HFSC_ROOTCLASS_HANDLE)
1593 parent = hif->hif_rootclass;
1594 else
1595 return (EINVAL);
1596 }
1597
1598 if ((cl = hfsc_class_create(hif, &ap->service_curve, parent,
1599 ap->qlimit, ap->flags)) == NULL)
1600 return (ENOMEM);
1601
1602 /* return a class handle to the user */
1603 ap->class_handle = clp_to_clh(cl);
1604 return (0);
1605 }
1606
1607 static int
1608 hfsccmd_delete_class(ap)
1609 struct hfsc_delete_class *ap;
1610 {
1611 struct hfsc_if *hif;
1612 struct hfsc_class *cl;
1613
1614 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1615 return (EBADF);
1616
1617 if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
1618 return (EINVAL);
1619
1620 return hfsc_class_destroy(cl);
1621 }
1622
1623 static int
1624 hfsccmd_modify_class(ap)
1625 struct hfsc_modify_class *ap;
1626 {
1627 struct hfsc_if *hif;
1628 struct hfsc_class *cl;
1629 struct service_curve *rsc = NULL;
1630 struct service_curve *fsc = NULL;
1631
1632 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1633 return (EBADF);
1634
1635 if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
1636 return (EINVAL);
1637
1638 if (ap->sctype & HFSC_REALTIMESC)
1639 rsc = &ap->service_curve;
1640 if (ap->sctype & HFSC_LINKSHARINGSC)
1641 fsc = &ap->service_curve;
1642
1643 return hfsc_class_modify(cl, rsc, fsc);
1644 }
1645
1646 static int
1647 hfsccmd_add_filter(ap)
1648 struct hfsc_add_filter *ap;
1649 {
1650 struct hfsc_if *hif;
1651 struct hfsc_class *cl;
1652
1653 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1654 return (EBADF);
1655
1656 if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
1657 return (EINVAL);
1658
1659 if (is_a_parent_class(cl)) {
1660 #if 1
1661 printf("hfsccmd_add_filter: not a leaf class!\n");
1662 #endif
1663 return (EINVAL);
1664 }
1665
1666 return acc_add_filter(&hif->hif_classifier, &ap->filter,
1667 cl, &ap->filter_handle);
1668 }
1669
1670 static int
1671 hfsccmd_delete_filter(ap)
1672 struct hfsc_delete_filter *ap;
1673 {
1674 struct hfsc_if *hif;
1675
1676 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1677 return (EBADF);
1678
1679 return acc_delete_filter(&hif->hif_classifier,
1680 ap->filter_handle);
1681 }
1682
1683 static int
1684 hfsccmd_class_stats(ap)
1685 struct hfsc_class_stats *ap;
1686 {
1687 struct hfsc_if *hif;
1688 struct hfsc_class *cl;
1689 struct class_stats stats, *usp;
1690 int n, nclasses, error;
1691
1692 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1693 return (EBADF);
1694
1695 ap->cur_time = read_machclk();
1696 ap->hif_classes = hif->hif_classes;
1697 ap->hif_packets = hif->hif_packets;
1698
1699 /* skip the first N classes in the tree */
1700 nclasses = ap->nskip;
1701 for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
1702 cl = hfsc_nextclass(cl), n++)
1703 ;
1704 if (n != nclasses)
1705 return (EINVAL);
1706
1707 /* then, read the next N classes in the tree */
1708 nclasses = ap->nclasses;
1709 usp = ap->stats;
1710 for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
1711
1712 get_class_stats(&stats, cl);
1713
1714 if ((error = copyout((caddr_t)&stats, (caddr_t)usp++,
1715 sizeof(stats))) != 0)
1716 return (error);
1717 }
1718
1719 ap->nclasses = n;
1720
1721 return (0);
1722 }
1723
1724 static void get_class_stats(sp, cl)
1725 struct class_stats *sp;
1726 struct hfsc_class *cl;
1727 {
1728 sp->class_id = cl->cl_id;
1729 sp->class_handle = clp_to_clh(cl);
1730
1731 if (cl->cl_rsc != NULL) {
1732 sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1733 sp->rsc.d = dx2d(cl->cl_rsc->dx);
1734 sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1735 } else {
1736 sp->rsc.m1 = 0;
1737 sp->rsc.d = 0;
1738 sp->rsc.m2 = 0;
1739 }
1740 if (cl->cl_fsc != NULL) {
1741 sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1742 sp->fsc.d = dx2d(cl->cl_fsc->dx);
1743 sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1744 } else {
1745 sp->fsc.m1 = 0;
1746 sp->fsc.d = 0;
1747 sp->fsc.m2 = 0;
1748 }
1749
1750 sp->total = cl->cl_total;
1751 sp->cumul = cl->cl_cumul;
1752
1753 sp->d = cl->cl_d;
1754 sp->e = cl->cl_e;
1755 sp->vt = cl->cl_vt;
1756
1757 sp->qlength = qlen(cl->cl_q);
1758 sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1759 sp->drop_cnt = cl->cl_stats.drop_cnt;
1760 sp->period = cl->cl_stats.period;
1761
1762 sp->qtype = qtype(cl->cl_q);
1763 #ifdef ALTQ_RED
1764 if (q_is_red(cl->cl_q))
1765 red_getstats(cl->cl_red, &sp->red[0]);
1766 #endif
1767 #ifdef ALTQ_RIO
1768 if (q_is_rio(cl->cl_q))
1769 rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1770 #endif
1771 }
1772
1773 /* convert a class handle to the corresponding class pointer */
1774 static struct hfsc_class *
1775 clh_to_clp(hif, chandle)
1776 struct hfsc_if *hif;
1777 u_long chandle;
1778 {
1779 struct hfsc_class *cl;
1780
1781 cl = (struct hfsc_class *)chandle;
1782 if (chandle != ALIGN(cl)) {
1783 #if 1
1784 printf("clh_to_cl: unaligned pointer %p\n", cl);
1785 #endif
1786 return (NULL);
1787 }
1788
1789 if (cl == NULL || cl->cl_handle != chandle || cl->cl_hif != hif)
1790 return (NULL);
1791
1792 return (cl);
1793 }
1794
1795 /* convert a class pointer to the corresponding class handle */
1796 static u_long
1797 clp_to_clh(cl)
1798 struct hfsc_class *cl;
1799 {
1800 if (cl->cl_parent == NULL)
1801 return (HFSC_ROOTCLASS_HANDLE); /* XXX */
1802 return (cl->cl_handle);
1803 }
1804
1805 #ifdef KLD_MODULE
1806
1807 static struct altqsw hfsc_sw =
1808 {"hfsc", hfscopen, hfscclose, hfscioctl};
1809
1810 ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
1811
1812 #endif /* KLD_MODULE */
1813
1814 #endif /* ALTQ_HFSC */
1815