altq_hfsc.c revision 1.7 1 /* $NetBSD: altq_hfsc.c,v 1.7 2003/01/06 03:44:23 christos Exp $ */
2 /* $KAME: altq_hfsc.c,v 1.9 2001/10/26 04:56:11 kjc Exp $ */
3
4 /*
5 * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
6 *
7 * Permission to use, copy, modify, and distribute this software and
8 * its documentation is hereby granted (including for commercial or
9 * for-profit use), provided that both the copyright notice and this
10 * permission notice appear in all copies of the software, derivative
11 * works, or modified versions, and any portions thereof, and that
12 * both notices appear in supporting documentation, and that credit
13 * is given to Carnegie Mellon University in all publications reporting
14 * on direct or indirect use of this code or its derivatives.
15 *
16 * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
17 * WHICH MAY HAVE SERIOUS CONSEQUENCES. CARNEGIE MELLON PROVIDES THIS
18 * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21 * DISCLAIMED. IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
24 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
25 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
26 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
29 * DAMAGE.
30 *
31 * Carnegie Mellon encourages (but does not require) users of this
32 * software to return any improvements or extensions that they make,
33 * and to grant Carnegie Mellon the rights to redistribute these
34 * changes without encumbrance.
35 */
36 /*
37 * H-FSC is described in Proceedings of SIGCOMM'97,
38 * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
39 * Real-Time and Priority Service"
40 * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.7 2003/01/06 03:44:23 christos Exp $");
45
46 #if defined(__FreeBSD__) || defined(__NetBSD__)
47 #include "opt_altq.h"
48 #if (__FreeBSD__ != 2)
49 #include "opt_inet.h"
50 #ifdef __FreeBSD__
51 #include "opt_inet6.h"
52 #endif
53 #endif
54 #endif /* __FreeBSD__ || __NetBSD__ */
55
56 #ifdef ALTQ_HFSC /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
57
58 #include <sys/param.h>
59 #include <sys/malloc.h>
60 #include <sys/mbuf.h>
61 #include <sys/socket.h>
62 #include <sys/sockio.h>
63 #include <sys/systm.h>
64 #include <sys/proc.h>
65 #include <sys/errno.h>
66 #include <sys/kernel.h>
67 #include <sys/queue.h>
68
69 #include <net/if.h>
70 #include <net/if_types.h>
71
72 #include <altq/altq.h>
73 #include <altq/altq_conf.h>
74 #include <altq/altq_hfsc.h>
75
76 /*
77 * function prototypes
78 */
79 static struct hfsc_if *hfsc_attach __P((struct ifaltq *, u_int));
80 static int hfsc_detach __P((struct hfsc_if *));
81 static int hfsc_clear_interface __P((struct hfsc_if *));
82 static int hfsc_request __P((struct ifaltq *, int, void *));
83 static void hfsc_purge __P((struct hfsc_if *));
84 static struct hfsc_class *hfsc_class_create __P((struct hfsc_if *,
85 struct service_curve *, struct hfsc_class *, int, int));
86 static int hfsc_class_destroy __P((struct hfsc_class *));
87 static int hfsc_class_modify __P((struct hfsc_class *,
88 struct service_curve *, struct service_curve *));
89 static struct hfsc_class *hfsc_nextclass __P((struct hfsc_class *));
90
91 static int hfsc_enqueue __P((struct ifaltq *, struct mbuf *,
92 struct altq_pktattr *));
93 static struct mbuf *hfsc_dequeue __P((struct ifaltq *, int));
94
95 static int hfsc_addq __P((struct hfsc_class *, struct mbuf *));
96 static struct mbuf *hfsc_getq __P((struct hfsc_class *));
97 static struct mbuf *hfsc_pollq __P((struct hfsc_class *));
98 static void hfsc_purgeq __P((struct hfsc_class *));
99
100 static void set_active __P((struct hfsc_class *, int));
101 static void set_passive __P((struct hfsc_class *));
102
103 static void init_ed __P((struct hfsc_class *, int));
104 static void update_ed __P((struct hfsc_class *, int));
105 static void update_d __P((struct hfsc_class *, int));
106 static void init_v __P((struct hfsc_class *, int));
107 static void update_v __P((struct hfsc_class *, int));
108 static ellist_t *ellist_alloc __P((void));
109 static void ellist_destroy __P((ellist_t *));
110 static void ellist_insert __P((struct hfsc_class *));
111 static void ellist_remove __P((struct hfsc_class *));
112 static void ellist_update __P((struct hfsc_class *));
113 struct hfsc_class *ellist_get_mindl __P((ellist_t *));
114 static actlist_t *actlist_alloc __P((void));
115 static void actlist_destroy __P((actlist_t *));
116 static void actlist_insert __P((struct hfsc_class *));
117 static void actlist_remove __P((struct hfsc_class *));
118 static void actlist_update __P((struct hfsc_class *));
119
120 static __inline u_int64_t seg_x2y __P((u_int64_t, u_int64_t));
121 static __inline u_int64_t seg_y2x __P((u_int64_t, u_int64_t));
122 static __inline u_int64_t m2sm __P((u_int));
123 static __inline u_int64_t m2ism __P((u_int));
124 static __inline u_int64_t d2dx __P((u_int));
125 static u_int sm2m __P((u_int64_t));
126 static u_int dx2d __P((u_int64_t));
127
128 static void sc2isc __P((struct service_curve *, struct internal_sc *));
129 static void rtsc_init __P((struct runtime_sc *, struct internal_sc *,
130 u_int64_t, u_int64_t));
131 static u_int64_t rtsc_y2x __P((struct runtime_sc *, u_int64_t));
132 static u_int64_t rtsc_x2y __P((struct runtime_sc *, u_int64_t));
133 static void rtsc_min __P((struct runtime_sc *, struct internal_sc *,
134 u_int64_t, u_int64_t));
135
136 int hfscopen __P((dev_t, int, int, struct proc *));
137 int hfscclose __P((dev_t, int, int, struct proc *));
138 int hfscioctl __P((dev_t, ioctlcmd_t, caddr_t, int, struct proc *));
139 static int hfsccmd_if_attach __P((struct hfsc_attach *));
140 static int hfsccmd_if_detach __P((struct hfsc_interface *));
141 static int hfsccmd_add_class __P((struct hfsc_add_class *));
142 static int hfsccmd_delete_class __P((struct hfsc_delete_class *));
143 static int hfsccmd_modify_class __P((struct hfsc_modify_class *));
144 static int hfsccmd_add_filter __P((struct hfsc_add_filter *));
145 static int hfsccmd_delete_filter __P((struct hfsc_delete_filter *));
146 static int hfsccmd_class_stats __P((struct hfsc_class_stats *));
147 static void get_class_stats __P((struct hfsc_basic_class_stats *,
148 struct hfsc_class *));
149 static struct hfsc_class *clh_to_clp __P((struct hfsc_if *, u_long));
150 static u_long clp_to_clh __P((struct hfsc_class *));
151
152 /*
153 * macros
154 */
155 #define is_a_parent_class(cl) ((cl)->cl_children != NULL)
156
157 /* hif_list keeps all hfsc_if's allocated. */
158 static struct hfsc_if *hif_list = NULL;
159
160 static struct hfsc_if *
161 hfsc_attach(ifq, bandwidth)
162 struct ifaltq *ifq;
163 u_int bandwidth;
164 {
165 struct hfsc_if *hif;
166 struct service_curve root_sc;
167
168 MALLOC(hif, struct hfsc_if *, sizeof(struct hfsc_if),
169 M_DEVBUF, M_WAITOK);
170 if (hif == NULL)
171 return (NULL);
172 bzero(hif, sizeof(struct hfsc_if));
173
174 hif->hif_eligible = ellist_alloc();
175 if (hif->hif_eligible == NULL) {
176 FREE(hif, M_DEVBUF);
177 return NULL;
178 }
179
180 hif->hif_ifq = ifq;
181
182 /*
183 * create root class
184 */
185 root_sc.m1 = bandwidth;
186 root_sc.d = 0;
187 root_sc.m2 = bandwidth;
188 if ((hif->hif_rootclass =
189 hfsc_class_create(hif, &root_sc, NULL, 0, 0)) == NULL) {
190 FREE(hif, M_DEVBUF);
191 return (NULL);
192 }
193
194 /* add this state to the hfsc list */
195 hif->hif_next = hif_list;
196 hif_list = hif;
197
198 return (hif);
199 }
200
201 static int
202 hfsc_detach(hif)
203 struct hfsc_if *hif;
204 {
205 (void)hfsc_clear_interface(hif);
206 (void)hfsc_class_destroy(hif->hif_rootclass);
207
208 /* remove this interface from the hif list */
209 if (hif_list == hif)
210 hif_list = hif->hif_next;
211 else {
212 struct hfsc_if *h;
213
214 for (h = hif_list; h != NULL; h = h->hif_next)
215 if (h->hif_next == hif) {
216 h->hif_next = hif->hif_next;
217 break;
218 }
219 ASSERT(h != NULL);
220 }
221
222 ellist_destroy(hif->hif_eligible);
223
224 FREE(hif, M_DEVBUF);
225
226 return (0);
227 }
228
229 /*
230 * bring the interface back to the initial state by discarding
231 * all the filters and classes except the root class.
232 */
233 static int
234 hfsc_clear_interface(hif)
235 struct hfsc_if *hif;
236 {
237 struct hfsc_class *cl;
238
239 /* free the filters for this interface */
240 acc_discard_filters(&hif->hif_classifier, NULL, 1);
241
242 /* clear out the classes */
243 while ((cl = hif->hif_rootclass->cl_children) != NULL) {
244 /*
245 * remove the first leaf class found in the hierarchy
246 * then start over
247 */
248 for (; cl != NULL; cl = hfsc_nextclass(cl)) {
249 if (!is_a_parent_class(cl)) {
250 (void)hfsc_class_destroy(cl);
251 break;
252 }
253 }
254 }
255
256 return (0);
257 }
258
259 static int
260 hfsc_request(ifq, req, arg)
261 struct ifaltq *ifq;
262 int req;
263 void *arg;
264 {
265 struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
266
267 switch (req) {
268 case ALTRQ_PURGE:
269 hfsc_purge(hif);
270 break;
271 }
272 return (0);
273 }
274
275 /* discard all the queued packets on the interface */
276 static void
277 hfsc_purge(hif)
278 struct hfsc_if *hif;
279 {
280 struct hfsc_class *cl;
281
282 for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
283 if (!qempty(cl->cl_q))
284 hfsc_purgeq(cl);
285 if (ALTQ_IS_ENABLED(hif->hif_ifq))
286 hif->hif_ifq->ifq_len = 0;
287 }
288
289 struct hfsc_class *
290 hfsc_class_create(hif, sc, parent, qlimit, flags)
291 struct hfsc_if *hif;
292 struct service_curve *sc;
293 struct hfsc_class *parent;
294 int qlimit, flags;
295 {
296 struct hfsc_class *cl, *p;
297 int s;
298
299 #ifndef ALTQ_RED
300 if (flags & HFCF_RED) {
301 printf("hfsc_class_create: RED not configured for HFSC!\n");
302 return (NULL);
303 }
304 #endif
305
306 MALLOC(cl, struct hfsc_class *, sizeof(struct hfsc_class),
307 M_DEVBUF, M_WAITOK);
308 if (cl == NULL)
309 return (NULL);
310 bzero(cl, sizeof(struct hfsc_class));
311
312 MALLOC(cl->cl_q, class_queue_t *, sizeof(class_queue_t),
313 M_DEVBUF, M_WAITOK);
314 if (cl->cl_q == NULL)
315 goto err_ret;
316 bzero(cl->cl_q, sizeof(class_queue_t));
317
318 cl->cl_actc = actlist_alloc();
319 if (cl->cl_actc == NULL)
320 goto err_ret;
321
322 if (qlimit == 0)
323 qlimit = 50; /* use default */
324 qlimit(cl->cl_q) = qlimit;
325 qtype(cl->cl_q) = Q_DROPTAIL;
326 qlen(cl->cl_q) = 0;
327 cl->cl_flags = flags;
328 #ifdef ALTQ_RED
329 if (flags & (HFCF_RED|HFCF_RIO)) {
330 int red_flags, red_pkttime;
331
332 red_flags = 0;
333 if (flags & HFCF_ECN)
334 red_flags |= REDF_ECN;
335 #ifdef ALTQ_RIO
336 if (flags & HFCF_CLEARDSCP)
337 red_flags |= RIOF_CLEARDSCP;
338 #endif
339 if (sc->m2 < 8)
340 red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
341 else
342 red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
343 * 1000 * 1000 * 1000 / (sc->m2 / 8);
344 if (flags & HFCF_RED) {
345 cl->cl_red = red_alloc(0, 0, 0, 0,
346 red_flags, red_pkttime);
347 if (cl->cl_red != NULL)
348 qtype(cl->cl_q) = Q_RED;
349 }
350 #ifdef ALTQ_RIO
351 else {
352 cl->cl_red = (red_t *)rio_alloc(0, NULL,
353 red_flags, red_pkttime);
354 if (cl->cl_red != NULL)
355 qtype(cl->cl_q) = Q_RIO;
356 }
357 #endif
358 }
359 #endif /* ALTQ_RED */
360
361 if (sc != NULL && (sc->m1 != 0 || sc->m2 != 0)) {
362 MALLOC(cl->cl_rsc, struct internal_sc *,
363 sizeof(struct internal_sc), M_DEVBUF, M_WAITOK);
364 if (cl->cl_rsc == NULL)
365 goto err_ret;
366 bzero(cl->cl_rsc, sizeof(struct internal_sc));
367 sc2isc(sc, cl->cl_rsc);
368 rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
369 rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
370
371 MALLOC(cl->cl_fsc, struct internal_sc *,
372 sizeof(struct internal_sc), M_DEVBUF, M_WAITOK);
373 if (cl->cl_fsc == NULL)
374 goto err_ret;
375 bzero(cl->cl_fsc, sizeof(struct internal_sc));
376 sc2isc(sc, cl->cl_fsc);
377 rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
378 }
379
380 cl->cl_id = hif->hif_classid++;
381 cl->cl_handle = (u_long)cl; /* XXX: just a pointer to this class */
382 cl->cl_hif = hif;
383 cl->cl_parent = parent;
384
385 s = splnet();
386 hif->hif_classes++;
387 if (flags & HFCF_DEFAULTCLASS)
388 hif->hif_defaultclass = cl;
389
390 /* add this class to the children list of the parent */
391 if (parent == NULL) {
392 /* this is root class */
393 }
394 else if ((p = parent->cl_children) == NULL)
395 parent->cl_children = cl;
396 else {
397 while (p->cl_siblings != NULL)
398 p = p->cl_siblings;
399 p->cl_siblings = cl;
400 }
401 splx(s);
402
403 return (cl);
404
405 err_ret:
406 if (cl->cl_actc != NULL)
407 actlist_destroy(cl->cl_actc);
408 if (cl->cl_red != NULL) {
409 #ifdef ALTQ_RIO
410 if (q_is_rio(cl->cl_q))
411 rio_destroy((rio_t *)cl->cl_red);
412 #endif
413 #ifdef ALTQ_RED
414 if (q_is_red(cl->cl_q))
415 red_destroy(cl->cl_red);
416 #endif
417 }
418 if (cl->cl_fsc != NULL)
419 FREE(cl->cl_fsc, M_DEVBUF);
420 if (cl->cl_rsc != NULL)
421 FREE(cl->cl_rsc, M_DEVBUF);
422 if (cl->cl_q != NULL)
423 FREE(cl->cl_q, M_DEVBUF);
424 FREE(cl, M_DEVBUF);
425 return (NULL);
426 }
427
428 static int
429 hfsc_class_destroy(cl)
430 struct hfsc_class *cl;
431 {
432 int s;
433
434 if (is_a_parent_class(cl))
435 return (EBUSY);
436
437 s = splnet();
438
439 /* delete filters referencing to this class */
440 acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
441
442 if (!qempty(cl->cl_q))
443 hfsc_purgeq(cl);
444
445 if (cl->cl_parent == NULL) {
446 /* this is root class */
447 } else {
448 struct hfsc_class *p = cl->cl_parent->cl_children;
449
450 if (p == cl)
451 cl->cl_parent->cl_children = cl->cl_siblings;
452 else do {
453 if (p->cl_siblings == cl) {
454 p->cl_siblings = cl->cl_siblings;
455 break;
456 }
457 } while ((p = p->cl_siblings) != NULL);
458 ASSERT(p != NULL);
459 }
460 cl->cl_hif->hif_classes--;
461 splx(s);
462
463 actlist_destroy(cl->cl_actc);
464
465 if (cl->cl_red != NULL) {
466 #ifdef ALTQ_RIO
467 if (q_is_rio(cl->cl_q))
468 rio_destroy((rio_t *)cl->cl_red);
469 #endif
470 #ifdef ALTQ_RED
471 if (q_is_red(cl->cl_q))
472 red_destroy(cl->cl_red);
473 #endif
474 }
475 if (cl->cl_fsc != NULL)
476 FREE(cl->cl_fsc, M_DEVBUF);
477 if (cl->cl_rsc != NULL)
478 FREE(cl->cl_rsc, M_DEVBUF);
479 FREE(cl->cl_q, M_DEVBUF);
480 FREE(cl, M_DEVBUF);
481
482 return (0);
483 }
484
485 static int
486 hfsc_class_modify(cl, rsc, fsc)
487 struct hfsc_class *cl;
488 struct service_curve *rsc, *fsc;
489 {
490 struct internal_sc *rsc_tmp, *fsc_tmp;
491 int s;
492
493 if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
494 cl->cl_rsc == NULL) {
495 MALLOC(rsc_tmp, struct internal_sc *,
496 sizeof(struct internal_sc), M_DEVBUF, M_WAITOK);
497 if (rsc_tmp == NULL)
498 return (ENOMEM);
499 }
500 if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
501 cl->cl_fsc == NULL) {
502 MALLOC(fsc_tmp, struct internal_sc *,
503 sizeof(struct internal_sc), M_DEVBUF, M_WAITOK);
504 if (fsc_tmp == NULL)
505 return (ENOMEM);
506 }
507
508 s = splnet();
509 if (!qempty(cl->cl_q))
510 hfsc_purgeq(cl);
511
512 if (rsc != NULL) {
513 if (rsc->m1 == 0 && rsc->m2 == 0) {
514 if (cl->cl_rsc != NULL) {
515 FREE(cl->cl_rsc, M_DEVBUF);
516 cl->cl_rsc = NULL;
517 }
518 } else {
519 if (cl->cl_rsc == NULL)
520 cl->cl_rsc = rsc_tmp;
521 bzero(cl->cl_rsc, sizeof(struct internal_sc));
522 sc2isc(rsc, cl->cl_rsc);
523 rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
524 rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
525 }
526 }
527
528 if (fsc != NULL) {
529 if (fsc->m1 == 0 && fsc->m2 == 0) {
530 if (cl->cl_fsc != NULL) {
531 FREE(cl->cl_fsc, M_DEVBUF);
532 cl->cl_fsc = NULL;
533 }
534 } else {
535 if (cl->cl_fsc == NULL)
536 cl->cl_fsc = fsc_tmp;
537 bzero(cl->cl_fsc, sizeof(struct internal_sc));
538 sc2isc(fsc, cl->cl_fsc);
539 rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
540 }
541 }
542 splx(s);
543
544 return (0);
545 }
546
547 /*
548 * hfsc_nextclass returns the next class in the tree.
549 * usage:
550 * for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
551 * do_something;
552 */
553 static struct hfsc_class *
554 hfsc_nextclass(cl)
555 struct hfsc_class *cl;
556 {
557 if (cl->cl_children != NULL)
558 cl = cl->cl_children;
559 else if (cl->cl_siblings != NULL)
560 cl = cl->cl_siblings;
561 else {
562 while ((cl = cl->cl_parent) != NULL)
563 if (cl->cl_siblings) {
564 cl = cl->cl_siblings;
565 break;
566 }
567 }
568
569 return (cl);
570 }
571
572 /*
573 * hfsc_enqueue is an enqueue function to be registered to
574 * (*altq_enqueue) in struct ifaltq.
575 */
576 static int
577 hfsc_enqueue(ifq, m, pktattr)
578 struct ifaltq *ifq;
579 struct mbuf *m;
580 struct altq_pktattr *pktattr;
581 {
582 struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
583 struct hfsc_class *cl;
584 int len;
585
586 /* grab class set by classifier */
587 if (pktattr == NULL || (cl = pktattr->pattr_class) == NULL)
588 cl = hif->hif_defaultclass;
589 cl->cl_pktattr = pktattr; /* save proto hdr used by ECN */
590
591 len = m_pktlen(m);
592 if (hfsc_addq(cl, m) != 0) {
593 /* drop occurred. mbuf was freed in hfsc_addq. */
594 PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
595 return (ENOBUFS);
596 }
597 IFQ_INC_LEN(ifq);
598 cl->cl_hif->hif_packets++;
599
600 /* successfully queued. */
601 if (qlen(cl->cl_q) == 1)
602 set_active(cl, m_pktlen(m));
603
604 #ifdef HFSC_PKTLOG
605 /* put the logging_hook here */
606 #endif
607 return (0);
608 }
609
610 /*
611 * hfsc_dequeue is a dequeue function to be registered to
612 * (*altq_dequeue) in struct ifaltq.
613 *
614 * note: ALTDQ_POLL returns the next packet without removing the packet
615 * from the queue. ALTDQ_REMOVE is a normal dequeue operation.
616 * ALTDQ_REMOVE must return the same packet if called immediately
617 * after ALTDQ_POLL.
618 */
619 static struct mbuf *
620 hfsc_dequeue(ifq, op)
621 struct ifaltq *ifq;
622 int op;
623 {
624 struct hfsc_if *hif = (struct hfsc_if *)ifq->altq_disc;
625 struct hfsc_class *cl;
626 struct mbuf *m;
627 int len, next_len;
628 int realtime = 0;
629
630 if (hif->hif_packets == 0)
631 /* no packet in the tree */
632 return (NULL);
633
634 if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
635 u_int64_t cur_time;
636
637 cl = hif->hif_pollcache;
638 hif->hif_pollcache = NULL;
639 /* check if the class was scheduled by real-time criteria */
640 if (cl->cl_rsc != NULL) {
641 cur_time = read_machclk();
642 realtime = (cl->cl_e <= cur_time);
643 }
644 } else {
645 /*
646 * if there are eligible classes, use real-time criteria.
647 * find the class with the minimum deadline among
648 * the eligible classes.
649 */
650 if ((cl = ellist_get_mindl(hif->hif_eligible)) != NULL) {
651 realtime = 1;
652 } else {
653 /*
654 * use link-sharing criteria
655 * get the class with the minimum vt in the hierarchy
656 */
657 cl = hif->hif_rootclass;
658 while (is_a_parent_class(cl)) {
659 cl = actlist_first(cl->cl_actc);
660 if (cl == NULL)
661 return (NULL);
662 }
663 }
664
665 if (op == ALTDQ_POLL) {
666 hif->hif_pollcache = cl;
667 m = hfsc_pollq(cl);
668 return (m);
669 }
670 }
671
672 m = hfsc_getq(cl);
673 len = m_pktlen(m);
674 cl->cl_hif->hif_packets--;
675 IFQ_DEC_LEN(ifq);
676 PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
677
678 update_v(cl, len);
679 if (realtime)
680 cl->cl_cumul += len;
681
682 if (!qempty(cl->cl_q)) {
683 if (cl->cl_rsc != NULL) {
684 /* update ed */
685 next_len = m_pktlen(qhead(cl->cl_q));
686
687 if (realtime)
688 update_ed(cl, next_len);
689 else
690 update_d(cl, next_len);
691 }
692 } else {
693 /* the class becomes passive */
694 set_passive(cl);
695 }
696
697 #ifdef HFSC_PKTLOG
698 /* put the logging_hook here */
699 #endif
700
701 return (m);
702 }
703
704 static int
705 hfsc_addq(cl, m)
706 struct hfsc_class *cl;
707 struct mbuf *m;
708 {
709
710 #ifdef ALTQ_RIO
711 if (q_is_rio(cl->cl_q))
712 return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
713 m, cl->cl_pktattr);
714 #endif
715 #ifdef ALTQ_RED
716 if (q_is_red(cl->cl_q))
717 return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
718 #endif
719 if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
720 m_freem(m);
721 return (-1);
722 }
723
724 if (cl->cl_flags & HFCF_CLEARDSCP)
725 write_dsfield(m, cl->cl_pktattr, 0);
726
727 _addq(cl->cl_q, m);
728
729 return (0);
730 }
731
732 static struct mbuf *
733 hfsc_getq(cl)
734 struct hfsc_class *cl;
735 {
736 #ifdef ALTQ_RIO
737 if (q_is_rio(cl->cl_q))
738 return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
739 #endif
740 #ifdef ALTQ_RED
741 if (q_is_red(cl->cl_q))
742 return red_getq(cl->cl_red, cl->cl_q);
743 #endif
744 return _getq(cl->cl_q);
745 }
746
747 static struct mbuf *
748 hfsc_pollq(cl)
749 struct hfsc_class *cl;
750 {
751 return qhead(cl->cl_q);
752 }
753
754 static void
755 hfsc_purgeq(cl)
756 struct hfsc_class *cl;
757 {
758 struct mbuf *m;
759
760 if (qempty(cl->cl_q))
761 return;
762
763 while ((m = _getq(cl->cl_q)) != NULL) {
764 PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
765 m_freem(m);
766 }
767 ASSERT(qlen(cl->cl_q) == 0);
768
769 set_passive(cl);
770 }
771
772 static void
773 set_active(cl, len)
774 struct hfsc_class *cl;
775 int len;
776 {
777 if (cl->cl_rsc != NULL)
778 init_ed(cl, len);
779 if (cl->cl_fsc != NULL)
780 init_v(cl, len);
781
782 cl->cl_stats.period++;
783 }
784
785 static void
786 set_passive(cl)
787 struct hfsc_class *cl;
788 {
789 if (cl->cl_rsc != NULL)
790 ellist_remove(cl);
791
792 if (cl->cl_fsc != NULL) {
793 while (cl->cl_parent != NULL) {
794 if (--cl->cl_nactive == 0) {
795 /* remove this class from the vt list */
796 actlist_remove(cl);
797 } else
798 /* still has active children */
799 break;
800
801 /* go up to the parent class */
802 cl = cl->cl_parent;
803 }
804 }
805 }
806
807 static void
808 init_ed(cl, next_len)
809 struct hfsc_class *cl;
810 int next_len;
811 {
812 u_int64_t cur_time;
813
814 cur_time = read_machclk();
815
816 /* update the deadline curve */
817 rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
818
819 /*
820 * update the eligible curve.
821 * for concave, it is equal to the deadline curve.
822 * for convex, it is a linear curve with slope m2.
823 */
824 cl->cl_eligible = cl->cl_deadline;
825 if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
826 cl->cl_eligible.dx = 0;
827 cl->cl_eligible.dy = 0;
828 }
829
830 /* compute e and d */
831 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
832 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
833
834 ellist_insert(cl);
835 }
836
837 static void
838 update_ed(cl, next_len)
839 struct hfsc_class *cl;
840 int next_len;
841 {
842 cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
843 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
844
845 ellist_update(cl);
846 }
847
848 static void
849 update_d(cl, next_len)
850 struct hfsc_class *cl;
851 int next_len;
852 {
853 cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
854 }
855
856 static void
857 init_v(cl, len)
858 struct hfsc_class *cl;
859 int len;
860 {
861 struct hfsc_class *min_cl, *max_cl;
862
863 while (cl->cl_parent != NULL) {
864
865 if (cl->cl_nactive++ > 0)
866 /* already active */
867 break;
868
869 /*
870 * if parent became idle while this class was idle.
871 * reset vt and the runtime service curve.
872 */
873 if (cl->cl_parent->cl_nactive == 0 ||
874 cl->cl_parent->cl_vtperiod != cl->cl_parentperiod) {
875 cl->cl_vt = 0;
876 rtsc_init(&cl->cl_virtual, cl->cl_fsc,
877 0, cl->cl_total);
878 }
879 min_cl = actlist_first(cl->cl_parent->cl_actc);
880 if (min_cl != NULL) {
881 u_int64_t vt;
882
883 /*
884 * set vt to the average of the min and max classes.
885 * if the parent's period didn't change,
886 * don't decrease vt of the class.
887 */
888 max_cl = actlist_last(cl->cl_parent->cl_actc);
889 vt = (min_cl->cl_vt + max_cl->cl_vt) / 2;
890 if (cl->cl_parent->cl_vtperiod != cl->cl_parentperiod
891 || vt > cl->cl_vt)
892 cl->cl_vt = vt;
893 }
894
895 /* update the virtual curve */
896 rtsc_min(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt, cl->cl_total);
897
898 cl->cl_vtperiod++; /* increment vt period */
899 cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
900 if (cl->cl_parent->cl_nactive == 0)
901 cl->cl_parentperiod++;
902
903 actlist_insert(cl);
904
905 /* go up to the parent class */
906 cl = cl->cl_parent;
907 }
908 }
909
910 static void
911 update_v(cl, len)
912 struct hfsc_class *cl;
913 int len;
914 {
915 while (cl->cl_parent != NULL) {
916
917 cl->cl_total += len;
918
919 if (cl->cl_fsc != NULL) {
920 cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total);
921
922 /* update the vt list */
923 actlist_update(cl);
924 }
925
926 /* go up to the parent class */
927 cl = cl->cl_parent;
928 }
929 }
930
931 /*
932 * TAILQ based ellist and actlist implementation
933 * (ion wanted to make a calendar queue based implementation)
934 */
935 /*
936 * eligible list holds backlogged classes being sorted by their eligible times.
937 * there is one eligible list per interface.
938 */
939
940 static ellist_t *
941 ellist_alloc()
942 {
943 ellist_t *head;
944
945 MALLOC(head, ellist_t *, sizeof(ellist_t), M_DEVBUF, M_WAITOK);
946 TAILQ_INIT(head);
947 return (head);
948 }
949
950 static void
951 ellist_destroy(head)
952 ellist_t *head;
953 {
954 FREE(head, M_DEVBUF);
955 }
956
957 static void
958 ellist_insert(cl)
959 struct hfsc_class *cl;
960 {
961 struct hfsc_if *hif = cl->cl_hif;
962 struct hfsc_class *p;
963
964 /* check the last entry first */
965 if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
966 p->cl_e <= cl->cl_e) {
967 TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
968 return;
969 }
970
971 TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
972 if (cl->cl_e < p->cl_e) {
973 TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
974 return;
975 }
976 }
977 ASSERT(0); /* should not reach here */
978 }
979
980 static void
981 ellist_remove(cl)
982 struct hfsc_class *cl;
983 {
984 struct hfsc_if *hif = cl->cl_hif;
985
986 TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
987 }
988
989 static void
990 ellist_update(cl)
991 struct hfsc_class *cl;
992 {
993 struct hfsc_if *hif = cl->cl_hif;
994 struct hfsc_class *p, *last;
995
996 /*
997 * the eligible time of a class increases monotonically.
998 * if the next entry has a larger eligible time, nothing to do.
999 */
1000 p = TAILQ_NEXT(cl, cl_ellist);
1001 if (p == NULL || cl->cl_e <= p->cl_e)
1002 return;
1003
1004 /* check the last entry */
1005 last = TAILQ_LAST(hif->hif_eligible, _eligible);
1006 ASSERT(last != NULL);
1007 if (last->cl_e <= cl->cl_e) {
1008 TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1009 TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1010 return;
1011 }
1012
1013 /*
1014 * the new position must be between the next entry
1015 * and the last entry
1016 */
1017 while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1018 if (cl->cl_e < p->cl_e) {
1019 TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1020 TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1021 return;
1022 }
1023 }
1024 ASSERT(0); /* should not reach here */
1025 }
1026
1027 /* find the class with the minimum deadline among the eligible classes */
1028 struct hfsc_class *
1029 ellist_get_mindl(head)
1030 ellist_t *head;
1031 {
1032 struct hfsc_class *p, *cl = NULL;
1033 u_int64_t cur_time;
1034
1035 cur_time = read_machclk();
1036
1037 TAILQ_FOREACH(p, head, cl_ellist) {
1038 if (p->cl_e > cur_time)
1039 break;
1040 if (cl == NULL || p->cl_d < cl->cl_d)
1041 cl = p;
1042 }
1043 return (cl);
1044 }
1045
1046 /*
1047 * active children list holds backlogged child classes being sorted
1048 * by their virtual time.
1049 * each intermediate class has one active children list.
1050 */
1051 static actlist_t *
1052 actlist_alloc()
1053 {
1054 actlist_t *head;
1055
1056 MALLOC(head, actlist_t *, sizeof(actlist_t), M_DEVBUF, M_WAITOK);
1057 TAILQ_INIT(head);
1058 return (head);
1059 }
1060
1061 static void
1062 actlist_destroy(head)
1063 actlist_t *head;
1064 {
1065 FREE(head, M_DEVBUF);
1066 }
1067 static void
1068 actlist_insert(cl)
1069 struct hfsc_class *cl;
1070 {
1071 struct hfsc_class *p;
1072
1073 /* check the last entry first */
1074 if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1075 || p->cl_vt <= cl->cl_vt) {
1076 TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1077 return;
1078 }
1079
1080 TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1081 if (cl->cl_vt < p->cl_vt) {
1082 TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1083 return;
1084 }
1085 }
1086 ASSERT(0); /* should not reach here */
1087 }
1088
1089 static void
1090 actlist_remove(cl)
1091 struct hfsc_class *cl;
1092 {
1093 TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1094 }
1095
1096 static void
1097 actlist_update(cl)
1098 struct hfsc_class *cl;
1099 {
1100 struct hfsc_class *p, *last;
1101
1102 /*
1103 * the virtual time of a class increases monotonically during its
1104 * backlogged period.
1105 * if the next entry has a larger virtual time, nothing to do.
1106 */
1107 p = TAILQ_NEXT(cl, cl_actlist);
1108 if (p == NULL || cl->cl_vt <= p->cl_vt)
1109 return;
1110
1111 /* check the last entry */
1112 last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1113 ASSERT(last != NULL);
1114 if (last->cl_vt <= cl->cl_vt) {
1115 TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1116 TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1117 return;
1118 }
1119
1120 /*
1121 * the new position must be between the next entry
1122 * and the last entry
1123 */
1124 while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1125 if (cl->cl_vt < p->cl_vt) {
1126 TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1127 TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1128 return;
1129 }
1130 }
1131 ASSERT(0); /* should not reach here */
1132 }
1133
1134 /*
1135 * service curve support functions
1136 *
1137 * external service curve parameters
1138 * m: bits/sec
1139 * d: msec
1140 * internal service curve parameters
1141 * sm: (bytes/tsc_interval) << SM_SHIFT
1142 * ism: (tsc_count/byte) << ISM_SHIFT
1143 * dx: tsc_count
1144 *
1145 * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1146 * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1147 * speed. SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1148 * digits in decimal using the following table.
1149 *
1150 * bits/set 100Kbps 1Mbps 10Mbps 100Mbps 1Gbps
1151 * ----------+-------------------------------------------------------
1152 * bytes/nsec 12.5e-6 125e-6 1250e-6 12500e-6 125000e-6
1153 * sm(500MHz) 25.0e-6 250e-6 2500e-6 25000e-6 250000e-6
1154 * sm(200MHz) 62.5e-6 625e-6 6250e-6 62500e-6 625000e-6
1155 *
1156 * nsec/byte 80000 8000 800 80 8
1157 * ism(500MHz) 40000 4000 400 40 4
1158 * ism(200MHz) 16000 1600 160 16 1.6
1159 */
1160 #define SM_SHIFT 24
1161 #define ISM_SHIFT 10
1162
1163 #define SC_LARGEVAL (1LL << 32)
1164 #define SC_INFINITY 0xffffffffffffffffLL
1165
1166 static __inline u_int64_t
1167 seg_x2y(x, sm)
1168 u_int64_t x;
1169 u_int64_t sm;
1170 {
1171 u_int64_t y;
1172
1173 if (x < SC_LARGEVAL)
1174 y = x * sm >> SM_SHIFT;
1175 else
1176 y = (x >> SM_SHIFT) * sm;
1177 return (y);
1178 }
1179
1180 static __inline u_int64_t
1181 seg_y2x(y, ism)
1182 u_int64_t y;
1183 u_int64_t ism;
1184 {
1185 u_int64_t x;
1186
1187 if (y == 0)
1188 x = 0;
1189 else if (ism == SC_INFINITY)
1190 x = SC_INFINITY;
1191 else if (y < SC_LARGEVAL)
1192 x = y * ism >> ISM_SHIFT;
1193 else
1194 x = (y >> ISM_SHIFT) * ism;
1195 return (x);
1196 }
1197
1198 static __inline u_int64_t
1199 m2sm(m)
1200 u_int m;
1201 {
1202 u_int64_t sm;
1203
1204 sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
1205 return (sm);
1206 }
1207
1208 static __inline u_int64_t
1209 m2ism(m)
1210 u_int m;
1211 {
1212 u_int64_t ism;
1213
1214 if (m == 0)
1215 ism = SC_INFINITY;
1216 else
1217 ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1218 return (ism);
1219 }
1220
1221 static __inline u_int64_t
1222 d2dx(d)
1223 u_int d;
1224 {
1225 u_int64_t dx;
1226
1227 dx = ((u_int64_t)d * machclk_freq) / 1000;
1228 return (dx);
1229 }
1230
1231 static u_int
1232 sm2m(sm)
1233 u_int64_t sm;
1234 {
1235 u_int64_t m;
1236
1237 m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1238 return ((u_int)m);
1239 }
1240
1241 static u_int
1242 dx2d(dx)
1243 u_int64_t dx;
1244 {
1245 u_int64_t d;
1246
1247 d = dx * 1000 / machclk_freq;
1248 return ((u_int)d);
1249 }
1250
1251 static void
1252 sc2isc(sc, isc)
1253 struct service_curve *sc;
1254 struct internal_sc *isc;
1255 {
1256 isc->sm1 = m2sm(sc->m1);
1257 isc->ism1 = m2ism(sc->m1);
1258 isc->dx = d2dx(sc->d);
1259 isc->dy = seg_x2y(isc->dx, isc->sm1);
1260 isc->sm2 = m2sm(sc->m2);
1261 isc->ism2 = m2ism(sc->m2);
1262 }
1263
1264 /*
1265 * initialize the runtime service curve with the given internal
1266 * service curve starting at (x, y).
1267 */
1268 static void
1269 rtsc_init(rtsc, isc, x, y)
1270 struct runtime_sc *rtsc;
1271 struct internal_sc *isc;
1272 u_int64_t x, y;
1273 {
1274 rtsc->x = x;
1275 rtsc->y = y;
1276 rtsc->sm1 = isc->sm1;
1277 rtsc->ism1 = isc->ism1;
1278 rtsc->dx = isc->dx;
1279 rtsc->dy = isc->dy;
1280 rtsc->sm2 = isc->sm2;
1281 rtsc->ism2 = isc->ism2;
1282 }
1283
1284 /*
1285 * calculate the y-projection of the runtime service curve by the
1286 * given x-projection value
1287 */
1288 static u_int64_t
1289 rtsc_y2x(rtsc, y)
1290 struct runtime_sc *rtsc;
1291 u_int64_t y;
1292 {
1293 u_int64_t x;
1294
1295 if (y < rtsc->y)
1296 x = rtsc->x;
1297 else if (y <= rtsc->y + rtsc->dy) {
1298 /* x belongs to the 1st segment */
1299 if (rtsc->dy == 0)
1300 x = rtsc->x + rtsc->dx;
1301 else
1302 x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1303 } else {
1304 /* x belongs to the 2nd segment */
1305 x = rtsc->x + rtsc->dx
1306 + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1307 }
1308 return (x);
1309 }
1310
1311 static u_int64_t
1312 rtsc_x2y(rtsc, x)
1313 struct runtime_sc *rtsc;
1314 u_int64_t x;
1315 {
1316 u_int64_t y;
1317
1318 if (x <= rtsc->x)
1319 y = rtsc->y;
1320 else if (x <= rtsc->x + rtsc->dx)
1321 /* y belongs to the 1st segment */
1322 y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1323 else
1324 /* y belongs to the 2nd segment */
1325 y = rtsc->y + rtsc->dy
1326 + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1327 return (y);
1328 }
1329
1330 /*
1331 * update the runtime service curve by taking the minimum of the current
1332 * runtime service curve and the service curve starting at (x, y).
1333 */
1334 static void
1335 rtsc_min(rtsc, isc, x, y)
1336 struct runtime_sc *rtsc;
1337 struct internal_sc *isc;
1338 u_int64_t x, y;
1339 {
1340 u_int64_t y1, y2, dx, dy;
1341
1342 if (isc->sm1 <= isc->sm2) {
1343 /* service curve is convex */
1344 y1 = rtsc_x2y(rtsc, x);
1345 if (y1 < y)
1346 /* the current rtsc is smaller */
1347 return;
1348 rtsc->x = x;
1349 rtsc->y = y;
1350 return;
1351 }
1352
1353 /*
1354 * service curve is concave
1355 * compute the two y values of the current rtsc
1356 * y1: at x
1357 * y2: at (x + dx)
1358 */
1359 y1 = rtsc_x2y(rtsc, x);
1360 if (y1 <= y) {
1361 /* rtsc is below isc, no change to rtsc */
1362 return;
1363 }
1364
1365 y2 = rtsc_x2y(rtsc, x + isc->dx);
1366 if (y2 >= y + isc->dy) {
1367 /* rtsc is above isc, replace rtsc by isc */
1368 rtsc->x = x;
1369 rtsc->y = y;
1370 rtsc->dx = isc->dx;
1371 rtsc->dy = isc->dy;
1372 return;
1373 }
1374
1375 /*
1376 * the two curves intersect
1377 * compute the offsets (dx, dy) using the reverse
1378 * function of seg_x2y()
1379 * seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1380 */
1381 dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1382 /*
1383 * check if (x, y1) belongs to the 1st segment of rtsc.
1384 * if so, add the offset.
1385 */
1386 if (rtsc->x + rtsc->dx > x)
1387 dx += rtsc->x + rtsc->dx - x;
1388 dy = seg_x2y(dx, isc->sm1);
1389
1390 rtsc->x = x;
1391 rtsc->y = y;
1392 rtsc->dx = dx;
1393 rtsc->dy = dy;
1394 return;
1395 }
1396
1397 /*
1398 * hfsc device interface
1399 */
1400 int
1401 hfscopen(dev, flag, fmt, p)
1402 dev_t dev;
1403 int flag, fmt;
1404 struct proc *p;
1405 {
1406 if (machclk_freq == 0)
1407 init_machclk();
1408
1409 if (machclk_freq == 0) {
1410 printf("hfsc: no cpu clock available!\n");
1411 return (ENXIO);
1412 }
1413
1414 /* everything will be done when the queueing scheme is attached. */
1415 return 0;
1416 }
1417
1418 int
1419 hfscclose(dev, flag, fmt, p)
1420 dev_t dev;
1421 int flag, fmt;
1422 struct proc *p;
1423 {
1424 struct hfsc_if *hif;
1425 int err, error = 0;
1426
1427 while ((hif = hif_list) != NULL) {
1428 /* destroy all */
1429 if (ALTQ_IS_ENABLED(hif->hif_ifq))
1430 altq_disable(hif->hif_ifq);
1431
1432 err = altq_detach(hif->hif_ifq);
1433 if (err == 0)
1434 err = hfsc_detach(hif);
1435 if (err != 0 && error == 0)
1436 error = err;
1437 }
1438
1439 return error;
1440 }
1441
1442 int
1443 hfscioctl(dev, cmd, addr, flag, p)
1444 dev_t dev;
1445 ioctlcmd_t cmd;
1446 caddr_t addr;
1447 int flag;
1448 struct proc *p;
1449 {
1450 struct hfsc_if *hif;
1451 struct hfsc_interface *ifacep;
1452 int error = 0;
1453
1454 /* check super-user privilege */
1455 switch (cmd) {
1456 case HFSC_GETSTATS:
1457 break;
1458 default:
1459 #if (__FreeBSD_version > 400000)
1460 if ((error = suser(p)) != 0)
1461 return (error);
1462 #else
1463 if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
1464 return (error);
1465 #endif
1466 break;
1467 }
1468
1469 switch (cmd) {
1470
1471 case HFSC_IF_ATTACH:
1472 error = hfsccmd_if_attach((struct hfsc_attach *)addr);
1473 break;
1474
1475 case HFSC_IF_DETACH:
1476 error = hfsccmd_if_detach((struct hfsc_interface *)addr);
1477 break;
1478
1479 case HFSC_ENABLE:
1480 case HFSC_DISABLE:
1481 case HFSC_CLEAR_HIERARCHY:
1482 ifacep = (struct hfsc_interface *)addr;
1483 if ((hif = altq_lookup(ifacep->hfsc_ifname,
1484 ALTQT_HFSC)) == NULL) {
1485 error = EBADF;
1486 break;
1487 }
1488
1489 switch (cmd) {
1490
1491 case HFSC_ENABLE:
1492 if (hif->hif_defaultclass == NULL) {
1493 #if 1
1494 printf("hfsc: no default class\n");
1495 #endif
1496 error = EINVAL;
1497 break;
1498 }
1499 error = altq_enable(hif->hif_ifq);
1500 break;
1501
1502 case HFSC_DISABLE:
1503 error = altq_disable(hif->hif_ifq);
1504 break;
1505
1506 case HFSC_CLEAR_HIERARCHY:
1507 hfsc_clear_interface(hif);
1508 break;
1509 }
1510 break;
1511
1512 case HFSC_ADD_CLASS:
1513 error = hfsccmd_add_class((struct hfsc_add_class *)addr);
1514 break;
1515
1516 case HFSC_DEL_CLASS:
1517 error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
1518 break;
1519
1520 case HFSC_MOD_CLASS:
1521 error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
1522 break;
1523
1524 case HFSC_ADD_FILTER:
1525 error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
1526 break;
1527
1528 case HFSC_DEL_FILTER:
1529 error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
1530 break;
1531
1532 case HFSC_GETSTATS:
1533 error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
1534 break;
1535
1536 default:
1537 error = EINVAL;
1538 break;
1539 }
1540 return error;
1541 }
1542
1543 static int
1544 hfsccmd_if_attach(ap)
1545 struct hfsc_attach *ap;
1546 {
1547 struct hfsc_if *hif;
1548 struct ifnet *ifp;
1549 int error;
1550
1551 if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
1552 return (ENXIO);
1553
1554 if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
1555 return (ENOMEM);
1556
1557 /*
1558 * set HFSC to this ifnet structure.
1559 */
1560 if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
1561 hfsc_enqueue, hfsc_dequeue, hfsc_request,
1562 &hif->hif_classifier, acc_classify)) != 0)
1563 (void)hfsc_detach(hif);
1564
1565 return (error);
1566 }
1567
1568 static int
1569 hfsccmd_if_detach(ap)
1570 struct hfsc_interface *ap;
1571 {
1572 struct hfsc_if *hif;
1573 int error;
1574
1575 if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
1576 return (EBADF);
1577
1578 if (ALTQ_IS_ENABLED(hif->hif_ifq))
1579 altq_disable(hif->hif_ifq);
1580
1581 if ((error = altq_detach(hif->hif_ifq)))
1582 return (error);
1583
1584 return hfsc_detach(hif);
1585 }
1586
1587 static int
1588 hfsccmd_add_class(ap)
1589 struct hfsc_add_class *ap;
1590 {
1591 struct hfsc_if *hif;
1592 struct hfsc_class *cl, *parent;
1593
1594 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1595 return (EBADF);
1596
1597 if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL) {
1598 if (ap->parent_handle == HFSC_ROOTCLASS_HANDLE)
1599 parent = hif->hif_rootclass;
1600 else
1601 return (EINVAL);
1602 }
1603
1604 if ((cl = hfsc_class_create(hif, &ap->service_curve, parent,
1605 ap->qlimit, ap->flags)) == NULL)
1606 return (ENOMEM);
1607
1608 /* return a class handle to the user */
1609 ap->class_handle = clp_to_clh(cl);
1610 return (0);
1611 }
1612
1613 static int
1614 hfsccmd_delete_class(ap)
1615 struct hfsc_delete_class *ap;
1616 {
1617 struct hfsc_if *hif;
1618 struct hfsc_class *cl;
1619
1620 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1621 return (EBADF);
1622
1623 if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
1624 return (EINVAL);
1625
1626 return hfsc_class_destroy(cl);
1627 }
1628
1629 static int
1630 hfsccmd_modify_class(ap)
1631 struct hfsc_modify_class *ap;
1632 {
1633 struct hfsc_if *hif;
1634 struct hfsc_class *cl;
1635 struct service_curve *rsc = NULL;
1636 struct service_curve *fsc = NULL;
1637
1638 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1639 return (EBADF);
1640
1641 if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
1642 return (EINVAL);
1643
1644 if (ap->sctype & HFSC_REALTIMESC)
1645 rsc = &ap->service_curve;
1646 if (ap->sctype & HFSC_LINKSHARINGSC)
1647 fsc = &ap->service_curve;
1648
1649 return hfsc_class_modify(cl, rsc, fsc);
1650 }
1651
1652 static int
1653 hfsccmd_add_filter(ap)
1654 struct hfsc_add_filter *ap;
1655 {
1656 struct hfsc_if *hif;
1657 struct hfsc_class *cl;
1658
1659 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1660 return (EBADF);
1661
1662 if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
1663 return (EINVAL);
1664
1665 if (is_a_parent_class(cl)) {
1666 #if 1
1667 printf("hfsccmd_add_filter: not a leaf class!\n");
1668 #endif
1669 return (EINVAL);
1670 }
1671
1672 return acc_add_filter(&hif->hif_classifier, &ap->filter,
1673 cl, &ap->filter_handle);
1674 }
1675
1676 static int
1677 hfsccmd_delete_filter(ap)
1678 struct hfsc_delete_filter *ap;
1679 {
1680 struct hfsc_if *hif;
1681
1682 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1683 return (EBADF);
1684
1685 return acc_delete_filter(&hif->hif_classifier,
1686 ap->filter_handle);
1687 }
1688
1689 static int
1690 hfsccmd_class_stats(ap)
1691 struct hfsc_class_stats *ap;
1692 {
1693 struct hfsc_if *hif;
1694 struct hfsc_class *cl;
1695 struct hfsc_basic_class_stats stats, *usp;
1696 int n, nclasses, error;
1697
1698 if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
1699 return (EBADF);
1700
1701 ap->cur_time = read_machclk();
1702 ap->hif_classes = hif->hif_classes;
1703 ap->hif_packets = hif->hif_packets;
1704
1705 /* skip the first N classes in the tree */
1706 nclasses = ap->nskip;
1707 for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
1708 cl = hfsc_nextclass(cl), n++)
1709 ;
1710 if (n != nclasses)
1711 return (EINVAL);
1712
1713 /* then, read the next N classes in the tree */
1714 nclasses = ap->nclasses;
1715 usp = ap->stats;
1716 for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
1717
1718 get_class_stats(&stats, cl);
1719
1720 if ((error = copyout((caddr_t)&stats, (caddr_t)usp++,
1721 sizeof(stats))) != 0)
1722 return (error);
1723 }
1724
1725 ap->nclasses = n;
1726
1727 return (0);
1728 }
1729
1730 static void get_class_stats(sp, cl)
1731 struct hfsc_basic_class_stats *sp;
1732 struct hfsc_class *cl;
1733 {
1734 sp->class_id = cl->cl_id;
1735 sp->class_handle = clp_to_clh(cl);
1736
1737 if (cl->cl_rsc != NULL) {
1738 sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1739 sp->rsc.d = dx2d(cl->cl_rsc->dx);
1740 sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1741 } else {
1742 sp->rsc.m1 = 0;
1743 sp->rsc.d = 0;
1744 sp->rsc.m2 = 0;
1745 }
1746 if (cl->cl_fsc != NULL) {
1747 sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1748 sp->fsc.d = dx2d(cl->cl_fsc->dx);
1749 sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1750 } else {
1751 sp->fsc.m1 = 0;
1752 sp->fsc.d = 0;
1753 sp->fsc.m2 = 0;
1754 }
1755
1756 sp->total = cl->cl_total;
1757 sp->cumul = cl->cl_cumul;
1758
1759 sp->d = cl->cl_d;
1760 sp->e = cl->cl_e;
1761 sp->vt = cl->cl_vt;
1762
1763 sp->qlength = qlen(cl->cl_q);
1764 sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1765 sp->drop_cnt = cl->cl_stats.drop_cnt;
1766 sp->period = cl->cl_stats.period;
1767
1768 sp->qtype = qtype(cl->cl_q);
1769 #ifdef ALTQ_RED
1770 if (q_is_red(cl->cl_q))
1771 red_getstats(cl->cl_red, &sp->red[0]);
1772 #endif
1773 #ifdef ALTQ_RIO
1774 if (q_is_rio(cl->cl_q))
1775 rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1776 #endif
1777 }
1778
1779 /* convert a class handle to the corresponding class pointer */
1780 static struct hfsc_class *
1781 clh_to_clp(hif, chandle)
1782 struct hfsc_if *hif;
1783 u_long chandle;
1784 {
1785 struct hfsc_class *cl;
1786
1787 cl = (struct hfsc_class *)chandle;
1788 if (chandle != ALIGN(cl)) {
1789 #if 1
1790 printf("clh_to_cl: unaligned pointer %p\n", cl);
1791 #endif
1792 return (NULL);
1793 }
1794
1795 if (cl == NULL || cl->cl_handle != chandle || cl->cl_hif != hif)
1796 return (NULL);
1797
1798 return (cl);
1799 }
1800
1801 /* convert a class pointer to the corresponding class handle */
1802 static u_long
1803 clp_to_clh(cl)
1804 struct hfsc_class *cl;
1805 {
1806 if (cl->cl_parent == NULL)
1807 return (HFSC_ROOTCLASS_HANDLE); /* XXX */
1808 return (cl->cl_handle);
1809 }
1810
1811 #ifdef KLD_MODULE
1812
1813 static struct altqsw hfsc_sw =
1814 {"hfsc", hfscopen, hfscclose, hfscioctl};
1815
1816 ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
1817
1818 #endif /* KLD_MODULE */
1819
1820 #endif /* ALTQ_HFSC */
1821