pmap.h revision 1.9
11.9Sperry/*	$NetBSD: pmap.h,v 1.9 2006/02/16 20:17:13 perry Exp $	*/
21.1Sfvdl
31.1Sfvdl/*
41.1Sfvdl *
51.1Sfvdl * Copyright (c) 1997 Charles D. Cranor and Washington University.
61.1Sfvdl * All rights reserved.
71.1Sfvdl *
81.1Sfvdl * Redistribution and use in source and binary forms, with or without
91.1Sfvdl * modification, are permitted provided that the following conditions
101.1Sfvdl * are met:
111.1Sfvdl * 1. Redistributions of source code must retain the above copyright
121.1Sfvdl *    notice, this list of conditions and the following disclaimer.
131.1Sfvdl * 2. Redistributions in binary form must reproduce the above copyright
141.1Sfvdl *    notice, this list of conditions and the following disclaimer in the
151.1Sfvdl *    documentation and/or other materials provided with the distribution.
161.1Sfvdl * 3. All advertising materials mentioning features or use of this software
171.1Sfvdl *    must display the following acknowledgment:
181.1Sfvdl *      This product includes software developed by Charles D. Cranor and
191.1Sfvdl *      Washington University.
201.1Sfvdl * 4. The name of the author may not be used to endorse or promote products
211.1Sfvdl *    derived from this software without specific prior written permission.
221.1Sfvdl *
231.1Sfvdl * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
241.1Sfvdl * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
251.1Sfvdl * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
261.1Sfvdl * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
271.1Sfvdl * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
281.1Sfvdl * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
291.1Sfvdl * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
301.1Sfvdl * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
311.1Sfvdl * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
321.1Sfvdl * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
331.1Sfvdl */
341.1Sfvdl
351.1Sfvdl/*
361.1Sfvdl * Copyright (c) 2001 Wasabi Systems, Inc.
371.1Sfvdl * All rights reserved.
381.1Sfvdl *
391.1Sfvdl * Written by Frank van der Linden for Wasabi Systems, Inc.
401.1Sfvdl *
411.1Sfvdl * Redistribution and use in source and binary forms, with or without
421.1Sfvdl * modification, are permitted provided that the following conditions
431.1Sfvdl * are met:
441.1Sfvdl * 1. Redistributions of source code must retain the above copyright
451.1Sfvdl *    notice, this list of conditions and the following disclaimer.
461.1Sfvdl * 2. Redistributions in binary form must reproduce the above copyright
471.1Sfvdl *    notice, this list of conditions and the following disclaimer in the
481.1Sfvdl *    documentation and/or other materials provided with the distribution.
491.1Sfvdl * 3. All advertising materials mentioning features or use of this software
501.1Sfvdl *    must display the following acknowledgement:
511.1Sfvdl *      This product includes software developed for the NetBSD Project by
521.1Sfvdl *      Wasabi Systems, Inc.
531.1Sfvdl * 4. The name of Wasabi Systems, Inc. may not be used to endorse
541.1Sfvdl *    or promote products derived from this software without specific prior
551.1Sfvdl *    written permission.
561.1Sfvdl *
571.1Sfvdl * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
581.1Sfvdl * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
591.1Sfvdl * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
601.1Sfvdl * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
611.1Sfvdl * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
621.1Sfvdl * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
631.1Sfvdl * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
641.1Sfvdl * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
651.1Sfvdl * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
661.1Sfvdl * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
671.1Sfvdl * POSSIBILITY OF SUCH DAMAGE.
681.1Sfvdl */
691.1Sfvdl
701.1Sfvdl/*
711.1Sfvdl * pmap.h: see pmap.c for the history of this pmap module.
721.1Sfvdl */
731.1Sfvdl
741.1Sfvdl#ifndef	_AMD64_PMAP_H_
751.1Sfvdl#define	_AMD64_PMAP_H_
761.1Sfvdl
771.1Sfvdl#ifndef _LOCORE
781.1Sfvdl#if defined(_KERNEL_OPT)
791.1Sfvdl#include "opt_largepages.h"
801.1Sfvdl#endif
811.1Sfvdl
821.1Sfvdl#include <machine/cpufunc.h>
831.1Sfvdl#include <machine/pte.h>
841.1Sfvdl#include <machine/segments.h>
851.1Sfvdl#include <uvm/uvm_object.h>
861.1Sfvdl#endif
871.1Sfvdl
881.1Sfvdl/*
891.1Sfvdl * The x86_64 pmap module closely resembles the i386 one. It uses
901.1Sfvdl * the same recursive entry scheme, and the same alternate area
911.1Sfvdl * trick for accessing non-current pmaps. See the i386 pmap.h
921.1Sfvdl * for a description. The obvious difference is that 3 extra
931.1Sfvdl * levels of page table need to be dealt with. The level 1 page
941.1Sfvdl * table pages are at:
951.1Sfvdl *
961.1Sfvdl * l1: 0x00007f8000000000 - 0x00007fffffffffff     (39 bits, needs PML4 entry)
971.1Sfvdl *
981.1Sfvdl * The alternate space is at:
991.1Sfvdl *
1001.1Sfvdl * l1: 0xffffff8000000000 - 0xffffffffffffffff     (39 bits, needs PML4 entry)
1011.1Sfvdl *
1021.1Sfvdl * The rest is kept as physical pages in 3 UVM objects, and is
1031.1Sfvdl * temporarily mapped for virtual access when needed.
1041.1Sfvdl *
1051.1Sfvdl * Note that address space is signed, so the layout for 48 bits is:
1061.1Sfvdl *
1071.1Sfvdl *  +---------------------------------+ 0xffffffffffffffff
1081.1Sfvdl *  |                                 |
1091.1Sfvdl *  |    alt.L1 table (PTE pages)     |
1101.1Sfvdl *  |                                 |
1111.1Sfvdl *  +---------------------------------+ 0xffffff8000000000
1121.1Sfvdl *  ~                                 ~
1131.1Sfvdl *  |                                 |
1141.1Sfvdl *  |         Kernel Space            |
1151.1Sfvdl *  |                                 |
1161.1Sfvdl *  |                                 |
1171.4Syamt *  +---------------------------------+ 0xffff800000000000 = 0x0000800000000000
1181.1Sfvdl *  |                                 |
1191.1Sfvdl *  |    alt.L1 table (PTE pages)     |
1201.1Sfvdl *  |                                 |
1211.1Sfvdl *  +---------------------------------+ 0x00007f8000000000
1221.1Sfvdl *  ~                                 ~
1231.1Sfvdl *  |                                 |
1241.1Sfvdl *  |         User Space              |
1251.1Sfvdl *  |                                 |
1261.1Sfvdl *  |                                 |
1271.1Sfvdl *  +---------------------------------+ 0x0000000000000000
1281.1Sfvdl *
1291.4Syamt * In other words, there is a 'VA hole' at 0x0000800000000000 -
1301.1Sfvdl * 0xffff800000000000 which will trap, just as on, for example,
1311.1Sfvdl * sparcv9.
1321.1Sfvdl *
1331.1Sfvdl * The unused space can be used if needed, but it adds a little more
1341.1Sfvdl * complexity to the calculations.
1351.1Sfvdl */
1361.1Sfvdl
1371.1Sfvdl/*
1381.1Sfvdl * The first generation of Hammer processors can use 48 bits of
1391.1Sfvdl * virtual memory, and 40 bits of physical memory. This will be
1401.1Sfvdl * more for later generations. These defines can be changed to
1411.1Sfvdl * variable names containing the # of bits, extracted from an
1421.1Sfvdl * extended cpuid instruction (variables are harder to use during
1431.1Sfvdl * bootstrap, though)
1441.1Sfvdl */
1451.1Sfvdl#define VIRT_BITS	48
1461.1Sfvdl#define PHYS_BITS	40
1471.1Sfvdl
1481.1Sfvdl/*
1491.1Sfvdl * Mask to get rid of the sign-extended part of addresses.
1501.1Sfvdl */
1511.1Sfvdl#define VA_SIGN_MASK		0xffff000000000000
1521.1Sfvdl#define VA_SIGN_NEG(va)		((va) | VA_SIGN_MASK)
1531.1Sfvdl/*
1541.1Sfvdl * XXXfvdl this one's not right.
1551.1Sfvdl */
1561.1Sfvdl#define VA_SIGN_POS(va)		((va) & ~VA_SIGN_MASK)
1571.1Sfvdl
1581.1Sfvdl#define L4_SLOT_PTE		255
1591.1Sfvdl#define L4_SLOT_KERN		256
1601.1Sfvdl#define L4_SLOT_KERNBASE	511
1611.1Sfvdl#define L4_SLOT_APTE		510
1621.1Sfvdl
1631.1Sfvdl#define PDIR_SLOT_KERN	L4_SLOT_KERN
1641.1Sfvdl#define PDIR_SLOT_PTE	L4_SLOT_PTE
1651.1Sfvdl#define PDIR_SLOT_APTE	L4_SLOT_APTE
1661.1Sfvdl
1671.1Sfvdl/*
1681.1Sfvdl * the following defines give the virtual addresses of various MMU
1691.1Sfvdl * data structures:
1701.1Sfvdl * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
1711.1Sfvdl * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
1721.1Sfvdl * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
1731.1Sfvdl *
1741.1Sfvdl */
1751.1Sfvdl
1761.1Sfvdl#define PTE_BASE  ((pt_entry_t *) (L4_SLOT_PTE * NBPD_L4))
1771.1Sfvdl#define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L4_SLOT_APTE * NBPD_L4))))
1781.1Sfvdl
1791.1Sfvdl#define L1_BASE		PTE_BASE
1801.1Sfvdl#define AL1_BASE	APTE_BASE
1811.1Sfvdl
1821.1Sfvdl#define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L4_SLOT_PTE * NBPD_L3))
1831.1Sfvdl#define L3_BASE ((pd_entry_t *)((char *)L2_BASE + L4_SLOT_PTE * NBPD_L2))
1841.1Sfvdl#define L4_BASE ((pd_entry_t *)((char *)L3_BASE + L4_SLOT_PTE * NBPD_L1))
1851.1Sfvdl
1861.1Sfvdl#define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L4_SLOT_PTE * NBPD_L3))
1871.1Sfvdl#define AL3_BASE ((pd_entry_t *)((char *)AL2_BASE + L4_SLOT_PTE * NBPD_L2))
1881.1Sfvdl#define AL4_BASE ((pd_entry_t *)((char *)AL3_BASE + L4_SLOT_PTE * NBPD_L1))
1891.1Sfvdl
1901.1Sfvdl#define PDP_PDE		(L4_BASE + PDIR_SLOT_PTE)
1911.1Sfvdl#define APDP_PDE	(L4_BASE + PDIR_SLOT_APTE)
1921.1Sfvdl
1931.1Sfvdl#define PDP_BASE	L4_BASE
1941.1Sfvdl#define APDP_BASE	AL4_BASE
1951.1Sfvdl
1961.1Sfvdl#define NKL4_MAX_ENTRIES	(unsigned long)1
1971.1Sfvdl#define NKL3_MAX_ENTRIES	(unsigned long)(NKL4_MAX_ENTRIES * 512)
1981.1Sfvdl#define NKL2_MAX_ENTRIES	(unsigned long)(NKL3_MAX_ENTRIES * 512)
1991.1Sfvdl#define NKL1_MAX_ENTRIES	(unsigned long)(NKL2_MAX_ENTRIES * 512)
2001.1Sfvdl
2011.1Sfvdl#define NKL4_KIMG_ENTRIES	1
2021.1Sfvdl#define NKL3_KIMG_ENTRIES	1
2031.1Sfvdl#define NKL2_KIMG_ENTRIES	8
2041.1Sfvdl
2051.1Sfvdl/*
2061.1Sfvdl * Since kva space is below the kernel in its entirety, we start off
2071.1Sfvdl * with zero entries on each level.
2081.1Sfvdl */
2091.1Sfvdl#define NKL4_START_ENTRIES	0
2101.1Sfvdl#define NKL3_START_ENTRIES	0
2111.1Sfvdl#define NKL2_START_ENTRIES	0
2121.1Sfvdl#define NKL1_START_ENTRIES	0	/* XXX */
2131.1Sfvdl
2141.1Sfvdl#define NTOPLEVEL_PDES		(PAGE_SIZE / (sizeof (pd_entry_t)))
2151.1Sfvdl
2161.1Sfvdl#define KERNSPACE		(NKL4_ENTRIES * NBPD_L4)
2171.1Sfvdl
2181.1Sfvdl#define NPDPG			(PAGE_SIZE / sizeof (pd_entry_t))
2191.1Sfvdl
2201.1Sfvdl#define ptei(VA)	(((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
2211.1Sfvdl
2221.1Sfvdl/*
2231.1Sfvdl * pl*_pi: index in the ptp page for a pde mapping a VA.
2241.1Sfvdl * (pl*_i below is the index in the virtual array of all pdes per level)
2251.1Sfvdl */
2261.1Sfvdl#define pl1_pi(VA)	(((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
2271.1Sfvdl#define pl2_pi(VA)	(((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT)
2281.1Sfvdl#define pl3_pi(VA)	(((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT)
2291.1Sfvdl#define pl4_pi(VA)	(((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT)
2301.1Sfvdl
2311.1Sfvdl/*
2321.1Sfvdl * pl*_i: generate index into pde/pte arrays in virtual space
2331.1Sfvdl */
2341.1Sfvdl#define pl1_i(VA)	(((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT)
2351.1Sfvdl#define pl2_i(VA)	(((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT)
2361.1Sfvdl#define pl3_i(VA)	(((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT)
2371.1Sfvdl#define pl4_i(VA)	(((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT)
2381.1Sfvdl#define pl_i(va, lvl) \
2391.1Sfvdl        (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1])
2401.1Sfvdl
2411.1Sfvdl#define PTP_MASK_INITIALIZER	{ L1_FRAME, L2_FRAME, L3_FRAME, L4_FRAME }
2421.1Sfvdl#define PTP_SHIFT_INITIALIZER	{ L1_SHIFT, L2_SHIFT, L3_SHIFT, L4_SHIFT }
2431.1Sfvdl#define NKPTP_INITIALIZER	{ NKL1_START_ENTRIES, NKL2_START_ENTRIES, \
2441.1Sfvdl				  NKL3_START_ENTRIES, NKL4_START_ENTRIES }
2451.1Sfvdl#define NKPTPMAX_INITIALIZER	{ NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES, \
2461.1Sfvdl				  NKL3_MAX_ENTRIES, NKL4_MAX_ENTRIES }
2471.1Sfvdl#define NBPD_INITIALIZER	{ NBPD_L1, NBPD_L2, NBPD_L3, NBPD_L4 }
2481.1Sfvdl#define PDES_INITIALIZER	{ L2_BASE, L3_BASE, L4_BASE }
2491.1Sfvdl#define APDES_INITIALIZER	{ AL2_BASE, AL3_BASE, AL4_BASE }
2501.1Sfvdl
2511.1Sfvdl/*
2521.1Sfvdl * PTP macros:
2531.1Sfvdl *   a PTP's index is the PD index of the PDE that points to it
2541.1Sfvdl *   a PTP's offset is the byte-offset in the PTE space that this PTP is at
2551.1Sfvdl *   a PTP's VA is the first VA mapped by that PTP
2561.1Sfvdl *
2571.1Sfvdl * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
2581.1Sfvdl *           NBPD == number of bytes a PTP can map (4MB)
2591.1Sfvdl */
2601.1Sfvdl
2611.1Sfvdl#define ptp_va2o(va, lvl)	(pl_i(va, (lvl)+1) * PAGE_SIZE)
2621.1Sfvdl
2631.1Sfvdl#define PTP_LEVELS	4
2641.1Sfvdl
2651.1Sfvdl/*
2661.1Sfvdl * PG_AVAIL usage: we make use of the ignored bits of the PTE
2671.1Sfvdl */
2681.1Sfvdl
2691.1Sfvdl#define PG_W		PG_AVAIL1	/* "wired" mapping */
2701.1Sfvdl#define PG_PVLIST	PG_AVAIL2	/* mapping has entry on pvlist */
2711.1Sfvdl/* PG_AVAIL3 not used */
2721.1Sfvdl
2731.1Sfvdl/*
2741.1Sfvdl * Number of PTE's per cache line.  8 byte pte, 64-byte cache line
2751.1Sfvdl * Used to avoid false sharing of cache lines.
2761.1Sfvdl */
2771.1Sfvdl#define NPTECL		8
2781.1Sfvdl
2791.1Sfvdl
2801.1Sfvdl#if defined(_KERNEL) && !defined(_LOCORE)
2811.1Sfvdl/*
2821.1Sfvdl * pmap data structures: see pmap.c for details of locking.
2831.1Sfvdl */
2841.1Sfvdl
2851.1Sfvdlstruct pmap;
2861.1Sfvdltypedef struct pmap *pmap_t;
2871.1Sfvdl
2881.1Sfvdl/*
2891.1Sfvdl * we maintain a list of all non-kernel pmaps
2901.1Sfvdl */
2911.1Sfvdl
2921.1SfvdlLIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
2931.1Sfvdl
2941.1Sfvdl/*
2951.1Sfvdl * the pmap structure
2961.1Sfvdl *
2971.1Sfvdl * note that the pm_obj contains the simple_lock, the reference count,
2981.1Sfvdl * page list, and number of PTPs within the pmap.
2991.1Sfvdl *
3001.1Sfvdl * pm_lock is the same as the spinlock for vm object 0. Changes to
3011.1Sfvdl * the other objects may only be made if that lock has been taken
3021.1Sfvdl * (the other object locks are only used when uvm_pagealloc is called)
3031.1Sfvdl */
3041.1Sfvdl
3051.1Sfvdlstruct pmap {
3061.1Sfvdl	struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */
3071.1Sfvdl#define	pm_lock	pm_obj[0].vmobjlock
3081.1Sfvdl#define pm_obj_l1 pm_obj[0]
3091.1Sfvdl#define pm_obj_l2 pm_obj[1]
3101.1Sfvdl#define pm_obj_l3 pm_obj[2]
3111.1Sfvdl	LIST_ENTRY(pmap) pm_list;	/* list (lck by pm_list lock) */
3121.1Sfvdl	pd_entry_t *pm_pdir;		/* VA of PD (lck by object lock) */
3131.1Sfvdl	paddr_t pm_pdirpa;		/* PA of PD (read-only after create) */
3141.1Sfvdl	struct vm_page *pm_ptphint[PTP_LEVELS-1];
3151.1Sfvdl					/* pointer to a PTP in our pmap */
3161.1Sfvdl	struct pmap_statistics pm_stats;  /* pmap stats (lck by object lock) */
3171.1Sfvdl
3181.1Sfvdl	int pm_flags;			/* see below */
3191.1Sfvdl
3201.1Sfvdl	union descriptor *pm_ldt;	/* user-set LDT */
3211.1Sfvdl	int pm_ldt_len;			/* number of LDT entries */
3221.1Sfvdl	int pm_ldt_sel;			/* LDT selector */
3231.1Sfvdl	u_int32_t pm_cpus;		/* mask of CPUs using pmap */
3241.1Sfvdl};
3251.1Sfvdl
3261.1Sfvdl/* pm_flags */
3271.1Sfvdl#define	PMF_USER_LDT	0x01	/* pmap has user-set LDT */
3281.1Sfvdl
3291.1Sfvdl/*
3301.1Sfvdl * for each managed physical page we maintain a list of <PMAP,VA>'s
3311.1Sfvdl * which it is mapped at.  the list is headed by a pv_head structure.
3321.1Sfvdl * there is one pv_head per managed phys page (allocated at boot time).
3331.1Sfvdl * the pv_head structure points to a list of pv_entry structures (each
3341.1Sfvdl * describes one mapping).
3351.1Sfvdl */
3361.1Sfvdl
3371.2Ssekiyastruct pv_entry {                       /* locked by its list's pvh_lock */
3381.2Ssekiya        SPLAY_ENTRY(pv_entry) pv_node;  /* splay-tree node */
3391.2Ssekiya        struct pmap *pv_pmap;           /* the pmap */
3401.2Ssekiya        vaddr_t pv_va;                  /* the virtual address */
3411.2Ssekiya        struct vm_page *pv_ptp;         /* the vm_page of the PTP */
3421.2Ssekiya};
3431.1Sfvdl
3441.1Sfvdl/*
3451.1Sfvdl * pv_entrys are dynamically allocated in chunks from a single page.
3461.1Sfvdl * we keep track of how many pv_entrys are in use for each page and
3471.1Sfvdl * we can free pv_entry pages if needed.  there is one lock for the
3481.1Sfvdl * entire allocation system.
3491.1Sfvdl */
3501.1Sfvdl
3511.1Sfvdlstruct pv_page_info {
3521.1Sfvdl	TAILQ_ENTRY(pv_page) pvpi_list;
3531.1Sfvdl	struct pv_entry *pvpi_pvfree;
3541.1Sfvdl	int pvpi_nfree;
3551.1Sfvdl};
3561.1Sfvdl
3571.1Sfvdl/*
3581.1Sfvdl * number of pv_entry's in a pv_page
3591.1Sfvdl * (note: won't work on systems where NPBG isn't a constant)
3601.1Sfvdl */
3611.1Sfvdl
3621.1Sfvdl#define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
3631.1Sfvdl			sizeof(struct pv_entry))
3641.1Sfvdl
3651.1Sfvdl/*
3661.1Sfvdl * a pv_page: where pv_entrys are allocated from
3671.1Sfvdl */
3681.1Sfvdl
3691.1Sfvdlstruct pv_page {
3701.1Sfvdl	struct pv_page_info pvinfo;
3711.1Sfvdl	struct pv_entry pvents[PVE_PER_PVPAGE];
3721.1Sfvdl};
3731.1Sfvdl
3741.1Sfvdl/*
3751.1Sfvdl * pmap_remove_record: a record of VAs that have been unmapped, used to
3761.1Sfvdl * flush TLB.  if we have more than PMAP_RR_MAX then we stop recording.
3771.1Sfvdl */
3781.1Sfvdl
3791.1Sfvdl#define PMAP_RR_MAX	16	/* max of 16 pages (64K) */
3801.1Sfvdl
3811.1Sfvdlstruct pmap_remove_record {
3821.1Sfvdl	int prr_npages;
3831.1Sfvdl	vaddr_t prr_vas[PMAP_RR_MAX];
3841.1Sfvdl};
3851.1Sfvdl
3861.1Sfvdl/*
3871.1Sfvdl * global kernel variables
3881.1Sfvdl */
3891.1Sfvdl
3901.1Sfvdl/* PTDpaddr: is the physical address of the kernel's PDP */
3911.1Sfvdlextern u_long PTDpaddr;
3921.1Sfvdl
3931.1Sfvdlextern struct pmap kernel_pmap_store;	/* kernel pmap */
3941.1Sfvdlextern int pmap_pg_g;			/* do we support PG_G? */
3951.1Sfvdl
3961.1Sfvdlextern paddr_t ptp_masks[];
3971.1Sfvdlextern int ptp_shifts[];
3981.1Sfvdlextern long nkptp[], nbpd[], nkptpmax[];
3991.1Sfvdl
4001.1Sfvdl/*
4011.1Sfvdl * macros
4021.1Sfvdl */
4031.1Sfvdl
4041.1Sfvdl#define	pmap_kernel()			(&kernel_pmap_store)
4051.1Sfvdl#define	pmap_resident_count(pmap)	((pmap)->pm_stats.resident_count)
4061.1Sfvdl#define	pmap_wired_count(pmap)		((pmap)->pm_stats.wired_count)
4071.1Sfvdl#define	pmap_update(pmap)		/* nothing (yet) */
4081.1Sfvdl
4091.1Sfvdl#define pmap_clear_modify(pg)		pmap_clear_attrs(pg, PG_M)
4101.1Sfvdl#define pmap_clear_reference(pg)	pmap_clear_attrs(pg, PG_U)
4111.1Sfvdl#define pmap_copy(DP,SP,D,L,S)
4121.1Sfvdl#define pmap_is_modified(pg)		pmap_test_attrs(pg, PG_M)
4131.1Sfvdl#define pmap_is_referenced(pg)		pmap_test_attrs(pg, PG_U)
4141.1Sfvdl#define pmap_move(DP,SP,D,L,S)
4151.1Sfvdl#define pmap_phys_address(ppn)		ptob(ppn)
4161.1Sfvdl#define pmap_valid_entry(E) 		((E) & PG_V) /* is PDE or PTE valid? */
4171.1Sfvdl
4181.1Sfvdl
4191.1Sfvdl/*
4201.1Sfvdl * prototypes
4211.1Sfvdl */
4221.1Sfvdl
4231.1Sfvdlvoid		pmap_activate __P((struct lwp *));
4241.1Sfvdlvoid		pmap_bootstrap __P((vaddr_t));
4251.1Sfvdlboolean_t	pmap_clear_attrs __P((struct vm_page *, unsigned));
4261.1Sfvdlvoid		pmap_deactivate __P((struct lwp *));
4271.1Sfvdlstatic void	pmap_page_protect __P((struct vm_page *, vm_prot_t));
4281.1Sfvdlvoid		pmap_page_remove  __P((struct vm_page *));
4291.1Sfvdlstatic void	pmap_protect __P((struct pmap *, vaddr_t,
4301.1Sfvdl				vaddr_t, vm_prot_t));
4311.1Sfvdlvoid		pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
4321.1Sfvdlboolean_t	pmap_test_attrs __P((struct vm_page *, unsigned));
4331.1Sfvdlstatic void	pmap_update_pg __P((vaddr_t));
4341.1Sfvdlstatic void	pmap_update_2pg __P((vaddr_t,vaddr_t));
4351.1Sfvdlvoid		pmap_write_protect __P((struct pmap *, vaddr_t,
4361.1Sfvdl				vaddr_t, vm_prot_t));
4371.3Sfvdlvoid		pmap_changeprot_local(vaddr_t, vm_prot_t);
4381.1Sfvdl
4391.1Sfvdlvaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
4401.1Sfvdl
4411.1Sfvdlvoid	pmap_tlb_shootdown __P((pmap_t, vaddr_t, pt_entry_t, int32_t *));
4421.1Sfvdlvoid	pmap_tlb_shootnow __P((int32_t));
4431.1Sfvdlvoid	pmap_do_tlb_shootdown __P((struct cpu_info *));
4441.1Sfvdlvoid	pmap_prealloc_lowmem_ptps __P((void));
4451.1Sfvdl
4461.1Sfvdl#define PMAP_GROWKERNEL		/* turn on pmap_growkernel interface */
4471.1Sfvdl
4481.1Sfvdl/*
4491.1Sfvdl * Do idle page zero'ing uncached to avoid polluting the cache.
4501.1Sfvdl */
4511.1Sfvdlboolean_t	pmap_pageidlezero __P((paddr_t));
4521.1Sfvdl#define	PMAP_PAGEIDLEZERO(pa)	pmap_pageidlezero((pa))
4531.1Sfvdl
4541.1Sfvdl/*
4551.1Sfvdl * inline functions
4561.1Sfvdl */
4571.1Sfvdl
4581.9Sperrystatic __inline void
4591.1Sfvdlpmap_remove_all(struct pmap *pmap)
4601.1Sfvdl{
4611.1Sfvdl	/* Nothing. */
4621.1Sfvdl}
4631.1Sfvdl
4641.1Sfvdl/*
4651.1Sfvdl * pmap_update_pg: flush one page from the TLB (or flush the whole thing
4661.1Sfvdl *	if hardware doesn't support one-page flushing)
4671.1Sfvdl */
4681.1Sfvdl
4691.9Sperry__inline static void
4701.1Sfvdlpmap_update_pg(va)
4711.1Sfvdl	vaddr_t va;
4721.1Sfvdl{
4731.1Sfvdl	invlpg(va);
4741.1Sfvdl}
4751.1Sfvdl
4761.1Sfvdl/*
4771.1Sfvdl * pmap_update_2pg: flush two pages from the TLB
4781.1Sfvdl */
4791.1Sfvdl
4801.9Sperry__inline static void
4811.1Sfvdlpmap_update_2pg(va, vb)
4821.1Sfvdl	vaddr_t va, vb;
4831.1Sfvdl{
4841.1Sfvdl	invlpg(va);
4851.1Sfvdl	invlpg(vb);
4861.1Sfvdl}
4871.1Sfvdl
4881.1Sfvdl/*
4891.1Sfvdl * pmap_page_protect: change the protection of all recorded mappings
4901.1Sfvdl *	of a managed page
4911.1Sfvdl *
4921.1Sfvdl * => this function is a frontend for pmap_page_remove/pmap_clear_attrs
4931.1Sfvdl * => we only have to worry about making the page more protected.
4941.1Sfvdl *	unprotecting a page is done on-demand at fault time.
4951.1Sfvdl */
4961.1Sfvdl
4971.9Sperry__inline static void
4981.1Sfvdlpmap_page_protect(struct vm_page *pg, vm_prot_t prot)
4991.1Sfvdl{
5001.1Sfvdl	if ((prot & VM_PROT_WRITE) == 0) {
5011.1Sfvdl		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
5021.1Sfvdl			(void) pmap_clear_attrs(pg, PG_RW);
5031.1Sfvdl		} else {
5041.1Sfvdl			pmap_page_remove(pg);
5051.1Sfvdl		}
5061.1Sfvdl	}
5071.1Sfvdl}
5081.1Sfvdl
5091.1Sfvdl/*
5101.1Sfvdl * pmap_protect: change the protection of pages in a pmap
5111.1Sfvdl *
5121.1Sfvdl * => this function is a frontend for pmap_remove/pmap_write_protect
5131.1Sfvdl * => we only have to worry about making the page more protected.
5141.1Sfvdl *	unprotecting a page is done on-demand at fault time.
5151.1Sfvdl */
5161.1Sfvdl
5171.9Sperry__inline static void
5181.1Sfvdlpmap_protect(pmap, sva, eva, prot)
5191.1Sfvdl	struct pmap *pmap;
5201.1Sfvdl	vaddr_t sva, eva;
5211.1Sfvdl	vm_prot_t prot;
5221.1Sfvdl{
5231.1Sfvdl	if ((prot & VM_PROT_WRITE) == 0) {
5241.1Sfvdl		if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
5251.1Sfvdl			pmap_write_protect(pmap, sva, eva, prot);
5261.1Sfvdl		} else {
5271.1Sfvdl			pmap_remove(pmap, sva, eva);
5281.1Sfvdl		}
5291.1Sfvdl	}
5301.1Sfvdl}
5311.1Sfvdl
5321.1Sfvdl/*
5331.1Sfvdl * various address inlines
5341.1Sfvdl *
5351.1Sfvdl *  vtopte: return a pointer to the PTE mapping a VA, works only for
5361.1Sfvdl *  user and PT addresses
5371.1Sfvdl *
5381.1Sfvdl *  kvtopte: return a pointer to the PTE mapping a kernel VA
5391.1Sfvdl */
5401.1Sfvdl
5411.1Sfvdl#include <lib/libkern/libkern.h>
5421.1Sfvdl
5431.9Sperrystatic __inline pt_entry_t *
5441.1Sfvdlvtopte(vaddr_t va)
5451.1Sfvdl{
5461.1Sfvdl
5471.1Sfvdl	KASSERT(va < (L4_SLOT_KERN * NBPD_L4));
5481.1Sfvdl
5491.1Sfvdl	return (PTE_BASE + pl1_i(va));
5501.1Sfvdl}
5511.1Sfvdl
5521.9Sperrystatic __inline pt_entry_t *
5531.1Sfvdlkvtopte(vaddr_t va)
5541.1Sfvdl{
5551.1Sfvdl
5561.1Sfvdl	KASSERT(va >= (L4_SLOT_KERN * NBPD_L4));
5571.1Sfvdl
5581.1Sfvdl#ifdef LARGEPAGES
5591.1Sfvdl	{
5601.1Sfvdl		pd_entry_t *pde;
5611.1Sfvdl
5621.5Syamt		pde = L2_BASE + pl2_i(va);
5631.1Sfvdl		if (*pde & PG_PS)
5641.1Sfvdl			return ((pt_entry_t *)pde);
5651.1Sfvdl	}
5661.1Sfvdl#endif
5671.1Sfvdl
5681.1Sfvdl	return (PTE_BASE + pl1_i(va));
5691.1Sfvdl}
5701.1Sfvdl
5711.1Sfvdl#define pmap_pte_set(p, n)		x86_atomic_testset_u64(p, n)
5721.1Sfvdl#define pmap_pte_clearbits(p, b)	x86_atomic_clearbits_u64(p, b)
5731.1Sfvdl#define pmap_cpu_has_pg_n()		(1)
5741.1Sfvdl#define pmap_cpu_has_invlpg		(1)
5751.1Sfvdl
5761.1Sfvdlpaddr_t vtophys __P((vaddr_t));
5771.1Sfvdlvaddr_t	pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
5781.1Sfvdl
5791.1Sfvdl#if 0   /* XXXfvdl was USER_LDT, need to check if that can be supported */
5801.1Sfvdlvoid	pmap_ldt_cleanup __P((struct lwp *));
5811.1Sfvdl#define	PMAP_FORK
5821.1Sfvdl#endif /* USER_LDT */
5831.1Sfvdl
5841.1Sfvdl/*
5851.1Sfvdl * Hooks for the pool allocator.
5861.1Sfvdl */
5871.1Sfvdl#define	POOL_VTOPHYS(va)	vtophys((vaddr_t) (va))
5881.1Sfvdl
5891.1Sfvdl#endif /* _KERNEL && !_LOCORE */
5901.1Sfvdl#endif	/* _AMD64_PMAP_H_ */
591