pmap.h revision 1.11
1/* $NetBSD: pmap.h,v 1.11 2007/08/29 23:38:03 ad Exp $ */ 2 3/* 4 * 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgment: 18 * This product includes software developed by Charles D. Cranor and 19 * Washington University. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35/* 36 * Copyright (c) 2001 Wasabi Systems, Inc. 37 * All rights reserved. 38 * 39 * Written by Frank van der Linden for Wasabi Systems, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. All advertising materials mentioning features or use of this software 50 * must display the following acknowledgement: 51 * This product includes software developed for the NetBSD Project by 52 * Wasabi Systems, Inc. 53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 54 * or promote products derived from this software without specific prior 55 * written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 67 * POSSIBILITY OF SUCH DAMAGE. 68 */ 69 70/* 71 * pmap.h: see pmap.c for the history of this pmap module. 72 */ 73 74#ifndef _AMD64_PMAP_H_ 75#define _AMD64_PMAP_H_ 76 77#ifndef _LOCORE 78#if defined(_KERNEL_OPT) 79#include "opt_largepages.h" 80#endif 81 82#include <machine/cpufunc.h> 83#include <machine/pte.h> 84#include <machine/segments.h> 85#include <machine/atomic.h> 86 87#include <uvm/uvm_object.h> 88#endif 89 90/* 91 * The x86_64 pmap module closely resembles the i386 one. It uses 92 * the same recursive entry scheme, and the same alternate area 93 * trick for accessing non-current pmaps. See the i386 pmap.h 94 * for a description. The obvious difference is that 3 extra 95 * levels of page table need to be dealt with. The level 1 page 96 * table pages are at: 97 * 98 * l1: 0x00007f8000000000 - 0x00007fffffffffff (39 bits, needs PML4 entry) 99 * 100 * The alternate space is at: 101 * 102 * l1: 0xffffff8000000000 - 0xffffffffffffffff (39 bits, needs PML4 entry) 103 * 104 * The rest is kept as physical pages in 3 UVM objects, and is 105 * temporarily mapped for virtual access when needed. 106 * 107 * Note that address space is signed, so the layout for 48 bits is: 108 * 109 * +---------------------------------+ 0xffffffffffffffff 110 * | | 111 * | alt.L1 table (PTE pages) | 112 * | | 113 * +---------------------------------+ 0xffffff8000000000 114 * ~ ~ 115 * | | 116 * | Kernel Space | 117 * | | 118 * | | 119 * +---------------------------------+ 0xffff800000000000 = 0x0000800000000000 120 * | | 121 * | alt.L1 table (PTE pages) | 122 * | | 123 * +---------------------------------+ 0x00007f8000000000 124 * ~ ~ 125 * | | 126 * | User Space | 127 * | | 128 * | | 129 * +---------------------------------+ 0x0000000000000000 130 * 131 * In other words, there is a 'VA hole' at 0x0000800000000000 - 132 * 0xffff800000000000 which will trap, just as on, for example, 133 * sparcv9. 134 * 135 * The unused space can be used if needed, but it adds a little more 136 * complexity to the calculations. 137 */ 138 139/* 140 * The first generation of Hammer processors can use 48 bits of 141 * virtual memory, and 40 bits of physical memory. This will be 142 * more for later generations. These defines can be changed to 143 * variable names containing the # of bits, extracted from an 144 * extended cpuid instruction (variables are harder to use during 145 * bootstrap, though) 146 */ 147#define VIRT_BITS 48 148#define PHYS_BITS 40 149 150/* 151 * Mask to get rid of the sign-extended part of addresses. 152 */ 153#define VA_SIGN_MASK 0xffff000000000000 154#define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK) 155/* 156 * XXXfvdl this one's not right. 157 */ 158#define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK) 159 160#define L4_SLOT_PTE 255 161#define L4_SLOT_KERN 256 162#define L4_SLOT_KERNBASE 511 163#define L4_SLOT_APTE 510 164 165#define PDIR_SLOT_KERN L4_SLOT_KERN 166#define PDIR_SLOT_PTE L4_SLOT_PTE 167#define PDIR_SLOT_APTE L4_SLOT_APTE 168 169/* 170 * the following defines give the virtual addresses of various MMU 171 * data structures: 172 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings 173 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD 174 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP 175 * 176 */ 177 178#define PTE_BASE ((pt_entry_t *) (L4_SLOT_PTE * NBPD_L4)) 179#define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L4_SLOT_APTE * NBPD_L4)))) 180 181#define L1_BASE PTE_BASE 182#define AL1_BASE APTE_BASE 183 184#define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L4_SLOT_PTE * NBPD_L3)) 185#define L3_BASE ((pd_entry_t *)((char *)L2_BASE + L4_SLOT_PTE * NBPD_L2)) 186#define L4_BASE ((pd_entry_t *)((char *)L3_BASE + L4_SLOT_PTE * NBPD_L1)) 187 188#define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L4_SLOT_PTE * NBPD_L3)) 189#define AL3_BASE ((pd_entry_t *)((char *)AL2_BASE + L4_SLOT_PTE * NBPD_L2)) 190#define AL4_BASE ((pd_entry_t *)((char *)AL3_BASE + L4_SLOT_PTE * NBPD_L1)) 191 192#define PDP_PDE (L4_BASE + PDIR_SLOT_PTE) 193#define APDP_PDE (L4_BASE + PDIR_SLOT_APTE) 194 195#define PDP_BASE L4_BASE 196#define APDP_BASE AL4_BASE 197 198#define NKL4_MAX_ENTRIES (unsigned long)1 199#define NKL3_MAX_ENTRIES (unsigned long)(NKL4_MAX_ENTRIES * 512) 200#define NKL2_MAX_ENTRIES (unsigned long)(NKL3_MAX_ENTRIES * 512) 201#define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * 512) 202 203#define NKL4_KIMG_ENTRIES 1 204#define NKL3_KIMG_ENTRIES 1 205#define NKL2_KIMG_ENTRIES 8 206 207/* 208 * Since kva space is below the kernel in its entirety, we start off 209 * with zero entries on each level. 210 */ 211#define NKL4_START_ENTRIES 0 212#define NKL3_START_ENTRIES 0 213#define NKL2_START_ENTRIES 0 214#define NKL1_START_ENTRIES 0 /* XXX */ 215 216#define NTOPLEVEL_PDES (PAGE_SIZE / (sizeof (pd_entry_t))) 217 218#define KERNSPACE (NKL4_ENTRIES * NBPD_L4) 219 220#define NPDPG (PAGE_SIZE / sizeof (pd_entry_t)) 221 222#define ptei(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT) 223 224/* 225 * pl*_pi: index in the ptp page for a pde mapping a VA. 226 * (pl*_i below is the index in the virtual array of all pdes per level) 227 */ 228#define pl1_pi(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT) 229#define pl2_pi(VA) (((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT) 230#define pl3_pi(VA) (((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT) 231#define pl4_pi(VA) (((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT) 232 233/* 234 * pl*_i: generate index into pde/pte arrays in virtual space 235 */ 236#define pl1_i(VA) (((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT) 237#define pl2_i(VA) (((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT) 238#define pl3_i(VA) (((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT) 239#define pl4_i(VA) (((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT) 240#define pl_i(va, lvl) \ 241 (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1]) 242 243#define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME, L3_FRAME, L4_FRAME } 244#define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT, L3_SHIFT, L4_SHIFT } 245#define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES, \ 246 NKL3_START_ENTRIES, NKL4_START_ENTRIES } 247#define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES, \ 248 NKL3_MAX_ENTRIES, NKL4_MAX_ENTRIES } 249#define NBPD_INITIALIZER { NBPD_L1, NBPD_L2, NBPD_L3, NBPD_L4 } 250#define PDES_INITIALIZER { L2_BASE, L3_BASE, L4_BASE } 251#define APDES_INITIALIZER { AL2_BASE, AL3_BASE, AL4_BASE } 252 253/* 254 * PTP macros: 255 * a PTP's index is the PD index of the PDE that points to it 256 * a PTP's offset is the byte-offset in the PTE space that this PTP is at 257 * a PTP's VA is the first VA mapped by that PTP 258 * 259 * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries) 260 * NBPD == number of bytes a PTP can map (4MB) 261 */ 262 263#define ptp_va2o(va, lvl) (pl_i(va, (lvl)+1) * PAGE_SIZE) 264 265#define PTP_LEVELS 4 266 267/* 268 * PG_AVAIL usage: we make use of the ignored bits of the PTE 269 */ 270 271#define PG_W PG_AVAIL1 /* "wired" mapping */ 272#define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */ 273/* PG_AVAIL3 not used */ 274 275/* 276 * Number of PTE's per cache line. 8 byte pte, 64-byte cache line 277 * Used to avoid false sharing of cache lines. 278 */ 279#define NPTECL 8 280 281 282#if defined(_KERNEL) && !defined(_LOCORE) 283/* 284 * pmap data structures: see pmap.c for details of locking. 285 */ 286 287struct pmap; 288typedef struct pmap *pmap_t; 289 290/* 291 * we maintain a list of all non-kernel pmaps 292 */ 293 294LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */ 295 296/* 297 * the pmap structure 298 * 299 * note that the pm_obj contains the simple_lock, the reference count, 300 * page list, and number of PTPs within the pmap. 301 * 302 * pm_lock is the same as the spinlock for vm object 0. Changes to 303 * the other objects may only be made if that lock has been taken 304 * (the other object locks are only used when uvm_pagealloc is called) 305 */ 306 307struct pmap { 308 struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */ 309#define pm_lock pm_obj[0].vmobjlock 310#define pm_obj_l1 pm_obj[0] 311#define pm_obj_l2 pm_obj[1] 312#define pm_obj_l3 pm_obj[2] 313 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */ 314 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */ 315 paddr_t pm_pdirpa; /* PA of PD (read-only after create) */ 316 struct vm_page *pm_ptphint[PTP_LEVELS-1]; 317 /* pointer to a PTP in our pmap */ 318 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */ 319 320 int pm_flags; /* see below */ 321 322 union descriptor *pm_ldt; /* user-set LDT */ 323 int pm_ldt_len; /* number of LDT entries */ 324 int pm_ldt_sel; /* LDT selector */ 325 u_int32_t pm_cpus; /* mask of CPUs using pmap */ 326}; 327 328/* pm_flags */ 329#define PMF_USER_LDT 0x01 /* pmap has user-set LDT */ 330 331/* 332 * for each managed physical page we maintain a list of <PMAP,VA>'s 333 * which it is mapped at. the list is headed by a pv_head structure. 334 * there is one pv_head per managed phys page (allocated at boot time). 335 * the pv_head structure points to a list of pv_entry structures (each 336 * describes one mapping). 337 */ 338 339struct pv_entry { /* locked by its list's pvh_lock */ 340 SPLAY_ENTRY(pv_entry) pv_node; /* splay-tree node */ 341 struct pmap *pv_pmap; /* the pmap */ 342 vaddr_t pv_va; /* the virtual address */ 343 struct vm_page *pv_ptp; /* the vm_page of the PTP */ 344 struct pmap_cpu *pv_alloc_cpu; /* CPU allocated from */ 345}; 346 347/* 348 * pv_entrys are dynamically allocated in chunks from a single page. 349 * we keep track of how many pv_entrys are in use for each page and 350 * we can free pv_entry pages if needed. there is one lock for the 351 * entire allocation system. 352 */ 353 354struct pv_page_info { 355 TAILQ_ENTRY(pv_page) pvpi_list; 356 struct pv_entry *pvpi_pvfree; 357 int pvpi_nfree; 358}; 359 360/* 361 * number of pv_entry's in a pv_page 362 * (note: won't work on systems where NPBG isn't a constant) 363 */ 364 365#define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \ 366 sizeof(struct pv_entry)) 367 368/* 369 * a pv_page: where pv_entrys are allocated from 370 */ 371 372struct pv_page { 373 struct pv_page_info pvinfo; 374 struct pv_entry pvents[PVE_PER_PVPAGE]; 375}; 376 377/* 378 * pmap_remove_record: a record of VAs that have been unmapped, used to 379 * flush TLB. if we have more than PMAP_RR_MAX then we stop recording. 380 */ 381 382#define PMAP_RR_MAX 16 /* max of 16 pages (64K) */ 383 384struct pmap_remove_record { 385 int prr_npages; 386 vaddr_t prr_vas[PMAP_RR_MAX]; 387}; 388 389/* 390 * global kernel variables 391 */ 392 393/* PTDpaddr: is the physical address of the kernel's PDP */ 394extern u_long PTDpaddr; 395 396extern struct pmap kernel_pmap_store; /* kernel pmap */ 397extern int pmap_pg_g; /* do we support PG_G? */ 398 399extern paddr_t ptp_masks[]; 400extern int ptp_shifts[]; 401extern long nkptp[], nbpd[], nkptpmax[]; 402 403/* 404 * macros 405 */ 406 407#define pmap_kernel() (&kernel_pmap_store) 408#define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) 409#define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) 410 411#define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M) 412#define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U) 413#define pmap_copy(DP,SP,D,L,S) 414#define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M) 415#define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U) 416#define pmap_move(DP,SP,D,L,S) 417#define pmap_phys_address(ppn) ptob(ppn) 418#define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */ 419 420 421/* 422 * prototypes 423 */ 424 425void pmap_activate __P((struct lwp *)); 426void pmap_bootstrap __P((vaddr_t)); 427bool pmap_clear_attrs __P((struct vm_page *, unsigned)); 428void pmap_deactivate __P((struct lwp *)); 429static void pmap_page_protect __P((struct vm_page *, vm_prot_t)); 430void pmap_page_remove __P((struct vm_page *)); 431static void pmap_protect __P((struct pmap *, vaddr_t, 432 vaddr_t, vm_prot_t)); 433void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t)); 434bool pmap_test_attrs __P((struct vm_page *, unsigned)); 435static void pmap_update_pg __P((vaddr_t)); 436static void pmap_update_2pg __P((vaddr_t,vaddr_t)); 437void pmap_write_protect __P((struct pmap *, vaddr_t, 438 vaddr_t, vm_prot_t)); 439void pmap_changeprot_local(vaddr_t, vm_prot_t); 440 441vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */ 442 443void pmap_tlb_shootdown __P((pmap_t, vaddr_t, vaddr_t, pt_entry_t)); 444void pmap_tlb_shootwait __P((void)); 445void pmap_prealloc_lowmem_ptps __P((void)); 446 447#define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ 448 449/* 450 * Do idle page zero'ing uncached to avoid polluting the cache. 451 */ 452bool pmap_pageidlezero __P((paddr_t)); 453#define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) 454 455/* 456 * inline functions 457 */ 458 459static __inline void 460pmap_remove_all(struct pmap *pmap) 461{ 462 /* Nothing. */ 463} 464 465/* 466 * pmap_update_pg: flush one page from the TLB (or flush the whole thing 467 * if hardware doesn't support one-page flushing) 468 */ 469 470__inline static void 471pmap_update_pg(va) 472 vaddr_t va; 473{ 474 invlpg(va); 475} 476 477/* 478 * pmap_update_2pg: flush two pages from the TLB 479 */ 480 481__inline static void 482pmap_update_2pg(va, vb) 483 vaddr_t va, vb; 484{ 485 invlpg(va); 486 invlpg(vb); 487} 488 489/* 490 * pmap_page_protect: change the protection of all recorded mappings 491 * of a managed page 492 * 493 * => this function is a frontend for pmap_page_remove/pmap_clear_attrs 494 * => we only have to worry about making the page more protected. 495 * unprotecting a page is done on-demand at fault time. 496 */ 497 498__inline static void 499pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 500{ 501 if ((prot & VM_PROT_WRITE) == 0) { 502 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) { 503 (void) pmap_clear_attrs(pg, PG_RW); 504 } else { 505 pmap_page_remove(pg); 506 } 507 } 508} 509 510/* 511 * pmap_protect: change the protection of pages in a pmap 512 * 513 * => this function is a frontend for pmap_remove/pmap_write_protect 514 * => we only have to worry about making the page more protected. 515 * unprotecting a page is done on-demand at fault time. 516 */ 517 518__inline static void 519pmap_protect(pmap, sva, eva, prot) 520 struct pmap *pmap; 521 vaddr_t sva, eva; 522 vm_prot_t prot; 523{ 524 if ((prot & VM_PROT_WRITE) == 0) { 525 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) { 526 pmap_write_protect(pmap, sva, eva, prot); 527 } else { 528 pmap_remove(pmap, sva, eva); 529 } 530 } 531} 532 533/* 534 * various address inlines 535 * 536 * vtopte: return a pointer to the PTE mapping a VA, works only for 537 * user and PT addresses 538 * 539 * kvtopte: return a pointer to the PTE mapping a kernel VA 540 */ 541 542#include <lib/libkern/libkern.h> 543 544static __inline pt_entry_t * 545vtopte(vaddr_t va) 546{ 547 548 KASSERT(va < (L4_SLOT_KERN * NBPD_L4)); 549 550 return (PTE_BASE + pl1_i(va)); 551} 552 553static __inline pt_entry_t * 554kvtopte(vaddr_t va) 555{ 556 557 KASSERT(va >= (L4_SLOT_KERN * NBPD_L4)); 558 559#ifdef LARGEPAGES 560 { 561 pd_entry_t *pde; 562 563 pde = L2_BASE + pl2_i(va); 564 if (*pde & PG_PS) 565 return ((pt_entry_t *)pde); 566 } 567#endif 568 569 return (PTE_BASE + pl1_i(va)); 570} 571 572#define pmap_pte_set(p, n) x86_atomic_testset_u64(p, n) 573#define pmap_pte_setbits(p, b) x86_atomic_setbits_u64(p, b) 574#define pmap_pte_clearbits(p, b) x86_atomic_clearbits_u64(p, b) 575#define pmap_cpu_has_pg_n() (1) 576#define pmap_cpu_has_invlpg (1) 577 578paddr_t vtophys __P((vaddr_t)); 579vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t)); 580void pmap_cpu_init_early(struct cpu_info *); 581void pmap_cpu_init_late(struct cpu_info *); 582void sse2_zero_page(void *); 583void sse2_copy_page(void *, void *); 584 585#if 0 /* XXXfvdl was USER_LDT, need to check if that can be supported */ 586void pmap_ldt_cleanup __P((struct lwp *)); 587#define PMAP_FORK 588#endif /* USER_LDT */ 589 590/* 591 * Hooks for the pool allocator. 592 */ 593#define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) 594 595/* 596 * TLB shootdown mailbox. 597 */ 598 599struct pmap_mbox { 600 volatile void *mb_pointer; 601 volatile uintptr_t mb_addr1; 602 volatile uintptr_t mb_addr2; 603 volatile uintptr_t mb_head; 604 volatile uintptr_t mb_tail; 605 volatile uintptr_t mb_global; 606}; 607 608#endif /* _KERNEL && !_LOCORE */ 609#endif /* _AMD64_PMAP_H_ */ 610