pmap.h revision 1.12
1/* $NetBSD: pmap.h,v 1.12 2007/09/27 01:10:11 ad Exp $ */ 2 3/* 4 * 5 * Copyright (c) 1997 Charles D. Cranor and Washington University. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgment: 18 * This product includes software developed by Charles D. Cranor and 19 * Washington University. 20 * 4. The name of the author may not be used to endorse or promote products 21 * derived from this software without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35/* 36 * Copyright (c) 2001 Wasabi Systems, Inc. 37 * All rights reserved. 38 * 39 * Written by Frank van der Linden for Wasabi Systems, Inc. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. All advertising materials mentioning features or use of this software 50 * must display the following acknowledgement: 51 * This product includes software developed for the NetBSD Project by 52 * Wasabi Systems, Inc. 53 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 54 * or promote products derived from this software without specific prior 55 * written permission. 56 * 57 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 58 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 59 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 60 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 61 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 62 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 63 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 64 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 65 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 66 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 67 * POSSIBILITY OF SUCH DAMAGE. 68 */ 69 70/* 71 * pmap.h: see pmap.c for the history of this pmap module. 72 */ 73 74#ifndef _AMD64_PMAP_H_ 75#define _AMD64_PMAP_H_ 76 77#ifndef _LOCORE 78#if defined(_KERNEL_OPT) 79#include "opt_largepages.h" 80#endif 81 82#include <machine/pte.h> 83#include <machine/segments.h> 84#include <machine/atomic.h> 85#ifdef _KERNEL 86#include <machine/cpufunc.h> 87#endif 88 89#include <uvm/uvm_object.h> 90#endif 91 92/* 93 * The x86_64 pmap module closely resembles the i386 one. It uses 94 * the same recursive entry scheme, and the same alternate area 95 * trick for accessing non-current pmaps. See the i386 pmap.h 96 * for a description. The obvious difference is that 3 extra 97 * levels of page table need to be dealt with. The level 1 page 98 * table pages are at: 99 * 100 * l1: 0x00007f8000000000 - 0x00007fffffffffff (39 bits, needs PML4 entry) 101 * 102 * The alternate space is at: 103 * 104 * l1: 0xffffff8000000000 - 0xffffffffffffffff (39 bits, needs PML4 entry) 105 * 106 * The rest is kept as physical pages in 3 UVM objects, and is 107 * temporarily mapped for virtual access when needed. 108 * 109 * Note that address space is signed, so the layout for 48 bits is: 110 * 111 * +---------------------------------+ 0xffffffffffffffff 112 * | | 113 * | alt.L1 table (PTE pages) | 114 * | | 115 * +---------------------------------+ 0xffffff8000000000 116 * ~ ~ 117 * | | 118 * | Kernel Space | 119 * | | 120 * | | 121 * +---------------------------------+ 0xffff800000000000 = 0x0000800000000000 122 * | | 123 * | alt.L1 table (PTE pages) | 124 * | | 125 * +---------------------------------+ 0x00007f8000000000 126 * ~ ~ 127 * | | 128 * | User Space | 129 * | | 130 * | | 131 * +---------------------------------+ 0x0000000000000000 132 * 133 * In other words, there is a 'VA hole' at 0x0000800000000000 - 134 * 0xffff800000000000 which will trap, just as on, for example, 135 * sparcv9. 136 * 137 * The unused space can be used if needed, but it adds a little more 138 * complexity to the calculations. 139 */ 140 141/* 142 * The first generation of Hammer processors can use 48 bits of 143 * virtual memory, and 40 bits of physical memory. This will be 144 * more for later generations. These defines can be changed to 145 * variable names containing the # of bits, extracted from an 146 * extended cpuid instruction (variables are harder to use during 147 * bootstrap, though) 148 */ 149#define VIRT_BITS 48 150#define PHYS_BITS 40 151 152/* 153 * Mask to get rid of the sign-extended part of addresses. 154 */ 155#define VA_SIGN_MASK 0xffff000000000000 156#define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK) 157/* 158 * XXXfvdl this one's not right. 159 */ 160#define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK) 161 162#define L4_SLOT_PTE 255 163#define L4_SLOT_KERN 256 164#define L4_SLOT_KERNBASE 511 165#define L4_SLOT_APTE 510 166 167#define PDIR_SLOT_KERN L4_SLOT_KERN 168#define PDIR_SLOT_PTE L4_SLOT_PTE 169#define PDIR_SLOT_APTE L4_SLOT_APTE 170 171/* 172 * the following defines give the virtual addresses of various MMU 173 * data structures: 174 * PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings 175 * PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD 176 * PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP 177 * 178 */ 179 180#define PTE_BASE ((pt_entry_t *) (L4_SLOT_PTE * NBPD_L4)) 181#define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L4_SLOT_APTE * NBPD_L4)))) 182 183#define L1_BASE PTE_BASE 184#define AL1_BASE APTE_BASE 185 186#define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L4_SLOT_PTE * NBPD_L3)) 187#define L3_BASE ((pd_entry_t *)((char *)L2_BASE + L4_SLOT_PTE * NBPD_L2)) 188#define L4_BASE ((pd_entry_t *)((char *)L3_BASE + L4_SLOT_PTE * NBPD_L1)) 189 190#define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L4_SLOT_PTE * NBPD_L3)) 191#define AL3_BASE ((pd_entry_t *)((char *)AL2_BASE + L4_SLOT_PTE * NBPD_L2)) 192#define AL4_BASE ((pd_entry_t *)((char *)AL3_BASE + L4_SLOT_PTE * NBPD_L1)) 193 194#define PDP_PDE (L4_BASE + PDIR_SLOT_PTE) 195#define APDP_PDE (L4_BASE + PDIR_SLOT_APTE) 196 197#define PDP_BASE L4_BASE 198#define APDP_BASE AL4_BASE 199 200#define NKL4_MAX_ENTRIES (unsigned long)1 201#define NKL3_MAX_ENTRIES (unsigned long)(NKL4_MAX_ENTRIES * 512) 202#define NKL2_MAX_ENTRIES (unsigned long)(NKL3_MAX_ENTRIES * 512) 203#define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * 512) 204 205#define NKL4_KIMG_ENTRIES 1 206#define NKL3_KIMG_ENTRIES 1 207#define NKL2_KIMG_ENTRIES 8 208 209/* 210 * Since kva space is below the kernel in its entirety, we start off 211 * with zero entries on each level. 212 */ 213#define NKL4_START_ENTRIES 0 214#define NKL3_START_ENTRIES 0 215#define NKL2_START_ENTRIES 0 216#define NKL1_START_ENTRIES 0 /* XXX */ 217 218#define NTOPLEVEL_PDES (PAGE_SIZE / (sizeof (pd_entry_t))) 219 220#define KERNSPACE (NKL4_ENTRIES * NBPD_L4) 221 222#define NPDPG (PAGE_SIZE / sizeof (pd_entry_t)) 223 224#define ptei(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT) 225 226/* 227 * pl*_pi: index in the ptp page for a pde mapping a VA. 228 * (pl*_i below is the index in the virtual array of all pdes per level) 229 */ 230#define pl1_pi(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT) 231#define pl2_pi(VA) (((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT) 232#define pl3_pi(VA) (((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT) 233#define pl4_pi(VA) (((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT) 234 235/* 236 * pl*_i: generate index into pde/pte arrays in virtual space 237 */ 238#define pl1_i(VA) (((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT) 239#define pl2_i(VA) (((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT) 240#define pl3_i(VA) (((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT) 241#define pl4_i(VA) (((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT) 242#define pl_i(va, lvl) \ 243 (((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1]) 244 245#define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME, L3_FRAME, L4_FRAME } 246#define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT, L3_SHIFT, L4_SHIFT } 247#define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES, \ 248 NKL3_START_ENTRIES, NKL4_START_ENTRIES } 249#define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES, \ 250 NKL3_MAX_ENTRIES, NKL4_MAX_ENTRIES } 251#define NBPD_INITIALIZER { NBPD_L1, NBPD_L2, NBPD_L3, NBPD_L4 } 252#define PDES_INITIALIZER { L2_BASE, L3_BASE, L4_BASE } 253#define APDES_INITIALIZER { AL2_BASE, AL3_BASE, AL4_BASE } 254 255/* 256 * PTP macros: 257 * a PTP's index is the PD index of the PDE that points to it 258 * a PTP's offset is the byte-offset in the PTE space that this PTP is at 259 * a PTP's VA is the first VA mapped by that PTP 260 * 261 * note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries) 262 * NBPD == number of bytes a PTP can map (4MB) 263 */ 264 265#define ptp_va2o(va, lvl) (pl_i(va, (lvl)+1) * PAGE_SIZE) 266 267#define PTP_LEVELS 4 268 269/* 270 * PG_AVAIL usage: we make use of the ignored bits of the PTE 271 */ 272 273#define PG_W PG_AVAIL1 /* "wired" mapping */ 274#define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */ 275/* PG_AVAIL3 not used */ 276 277/* 278 * Number of PTE's per cache line. 8 byte pte, 64-byte cache line 279 * Used to avoid false sharing of cache lines. 280 */ 281#define NPTECL 8 282 283 284#if defined(_KERNEL) && !defined(_LOCORE) 285/* 286 * pmap data structures: see pmap.c for details of locking. 287 */ 288 289struct pmap; 290typedef struct pmap *pmap_t; 291 292/* 293 * we maintain a list of all non-kernel pmaps 294 */ 295 296LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */ 297 298/* 299 * the pmap structure 300 * 301 * note that the pm_obj contains the simple_lock, the reference count, 302 * page list, and number of PTPs within the pmap. 303 * 304 * pm_lock is the same as the spinlock for vm object 0. Changes to 305 * the other objects may only be made if that lock has been taken 306 * (the other object locks are only used when uvm_pagealloc is called) 307 */ 308 309struct pmap { 310 struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */ 311#define pm_lock pm_obj[0].vmobjlock 312#define pm_obj_l1 pm_obj[0] 313#define pm_obj_l2 pm_obj[1] 314#define pm_obj_l3 pm_obj[2] 315 LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */ 316 pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */ 317 paddr_t pm_pdirpa; /* PA of PD (read-only after create) */ 318 struct vm_page *pm_ptphint[PTP_LEVELS-1]; 319 /* pointer to a PTP in our pmap */ 320 struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */ 321 322 int pm_flags; /* see below */ 323 324 union descriptor *pm_ldt; /* user-set LDT */ 325 int pm_ldt_len; /* number of LDT entries */ 326 int pm_ldt_sel; /* LDT selector */ 327 u_int32_t pm_cpus; /* mask of CPUs using pmap */ 328}; 329 330/* pm_flags */ 331#define PMF_USER_LDT 0x01 /* pmap has user-set LDT */ 332 333/* 334 * for each managed physical page we maintain a list of <PMAP,VA>'s 335 * which it is mapped at. the list is headed by a pv_head structure. 336 * there is one pv_head per managed phys page (allocated at boot time). 337 * the pv_head structure points to a list of pv_entry structures (each 338 * describes one mapping). 339 */ 340 341struct pv_entry { /* locked by its list's pvh_lock */ 342 SPLAY_ENTRY(pv_entry) pv_node; /* splay-tree node */ 343 struct pmap *pv_pmap; /* the pmap */ 344 vaddr_t pv_va; /* the virtual address */ 345 struct vm_page *pv_ptp; /* the vm_page of the PTP */ 346 struct pmap_cpu *pv_alloc_cpu; /* CPU allocated from */ 347}; 348 349/* 350 * pv_entrys are dynamically allocated in chunks from a single page. 351 * we keep track of how many pv_entrys are in use for each page and 352 * we can free pv_entry pages if needed. there is one lock for the 353 * entire allocation system. 354 */ 355 356struct pv_page_info { 357 TAILQ_ENTRY(pv_page) pvpi_list; 358 struct pv_entry *pvpi_pvfree; 359 int pvpi_nfree; 360}; 361 362/* 363 * number of pv_entry's in a pv_page 364 * (note: won't work on systems where NPBG isn't a constant) 365 */ 366 367#define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \ 368 sizeof(struct pv_entry)) 369 370/* 371 * a pv_page: where pv_entrys are allocated from 372 */ 373 374struct pv_page { 375 struct pv_page_info pvinfo; 376 struct pv_entry pvents[PVE_PER_PVPAGE]; 377}; 378 379/* 380 * pmap_remove_record: a record of VAs that have been unmapped, used to 381 * flush TLB. if we have more than PMAP_RR_MAX then we stop recording. 382 */ 383 384#define PMAP_RR_MAX 16 /* max of 16 pages (64K) */ 385 386struct pmap_remove_record { 387 int prr_npages; 388 vaddr_t prr_vas[PMAP_RR_MAX]; 389}; 390 391/* 392 * global kernel variables 393 */ 394 395/* PTDpaddr: is the physical address of the kernel's PDP */ 396extern u_long PTDpaddr; 397 398extern struct pmap kernel_pmap_store; /* kernel pmap */ 399extern int pmap_pg_g; /* do we support PG_G? */ 400 401extern paddr_t ptp_masks[]; 402extern int ptp_shifts[]; 403extern long nkptp[], nbpd[], nkptpmax[]; 404 405/* 406 * macros 407 */ 408 409#define pmap_kernel() (&kernel_pmap_store) 410#define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count) 411#define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count) 412 413#define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M) 414#define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U) 415#define pmap_copy(DP,SP,D,L,S) 416#define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M) 417#define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U) 418#define pmap_move(DP,SP,D,L,S) 419#define pmap_phys_address(ppn) ptob(ppn) 420#define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */ 421 422 423/* 424 * prototypes 425 */ 426 427void pmap_activate __P((struct lwp *)); 428void pmap_bootstrap __P((vaddr_t)); 429bool pmap_clear_attrs __P((struct vm_page *, unsigned)); 430void pmap_deactivate __P((struct lwp *)); 431static void pmap_page_protect __P((struct vm_page *, vm_prot_t)); 432void pmap_page_remove __P((struct vm_page *)); 433static void pmap_protect __P((struct pmap *, vaddr_t, 434 vaddr_t, vm_prot_t)); 435void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t)); 436bool pmap_test_attrs __P((struct vm_page *, unsigned)); 437static void pmap_update_pg __P((vaddr_t)); 438static void pmap_update_2pg __P((vaddr_t,vaddr_t)); 439void pmap_write_protect __P((struct pmap *, vaddr_t, 440 vaddr_t, vm_prot_t)); 441void pmap_changeprot_local(vaddr_t, vm_prot_t); 442 443vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */ 444 445void pmap_tlb_shootdown __P((pmap_t, vaddr_t, vaddr_t, pt_entry_t)); 446void pmap_tlb_shootwait __P((void)); 447void pmap_prealloc_lowmem_ptps __P((void)); 448 449#define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */ 450 451/* 452 * Do idle page zero'ing uncached to avoid polluting the cache. 453 */ 454bool pmap_pageidlezero __P((paddr_t)); 455#define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa)) 456 457/* 458 * inline functions 459 */ 460 461static __inline void 462pmap_remove_all(struct pmap *pmap) 463{ 464 /* Nothing. */ 465} 466 467/* 468 * pmap_update_pg: flush one page from the TLB (or flush the whole thing 469 * if hardware doesn't support one-page flushing) 470 */ 471 472__inline static void 473pmap_update_pg(va) 474 vaddr_t va; 475{ 476 invlpg(va); 477} 478 479/* 480 * pmap_update_2pg: flush two pages from the TLB 481 */ 482 483__inline static void 484pmap_update_2pg(va, vb) 485 vaddr_t va, vb; 486{ 487 invlpg(va); 488 invlpg(vb); 489} 490 491/* 492 * pmap_page_protect: change the protection of all recorded mappings 493 * of a managed page 494 * 495 * => this function is a frontend for pmap_page_remove/pmap_clear_attrs 496 * => we only have to worry about making the page more protected. 497 * unprotecting a page is done on-demand at fault time. 498 */ 499 500__inline static void 501pmap_page_protect(struct vm_page *pg, vm_prot_t prot) 502{ 503 if ((prot & VM_PROT_WRITE) == 0) { 504 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) { 505 (void) pmap_clear_attrs(pg, PG_RW); 506 } else { 507 pmap_page_remove(pg); 508 } 509 } 510} 511 512/* 513 * pmap_protect: change the protection of pages in a pmap 514 * 515 * => this function is a frontend for pmap_remove/pmap_write_protect 516 * => we only have to worry about making the page more protected. 517 * unprotecting a page is done on-demand at fault time. 518 */ 519 520__inline static void 521pmap_protect(pmap, sva, eva, prot) 522 struct pmap *pmap; 523 vaddr_t sva, eva; 524 vm_prot_t prot; 525{ 526 if ((prot & VM_PROT_WRITE) == 0) { 527 if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) { 528 pmap_write_protect(pmap, sva, eva, prot); 529 } else { 530 pmap_remove(pmap, sva, eva); 531 } 532 } 533} 534 535/* 536 * various address inlines 537 * 538 * vtopte: return a pointer to the PTE mapping a VA, works only for 539 * user and PT addresses 540 * 541 * kvtopte: return a pointer to the PTE mapping a kernel VA 542 */ 543 544#include <lib/libkern/libkern.h> 545 546static __inline pt_entry_t * 547vtopte(vaddr_t va) 548{ 549 550 KASSERT(va < (L4_SLOT_KERN * NBPD_L4)); 551 552 return (PTE_BASE + pl1_i(va)); 553} 554 555static __inline pt_entry_t * 556kvtopte(vaddr_t va) 557{ 558 559 KASSERT(va >= (L4_SLOT_KERN * NBPD_L4)); 560 561#ifdef LARGEPAGES 562 { 563 pd_entry_t *pde; 564 565 pde = L2_BASE + pl2_i(va); 566 if (*pde & PG_PS) 567 return ((pt_entry_t *)pde); 568 } 569#endif 570 571 return (PTE_BASE + pl1_i(va)); 572} 573 574#define pmap_pte_set(p, n) x86_atomic_testset_u64(p, n) 575#define pmap_pte_setbits(p, b) x86_atomic_setbits_u64(p, b) 576#define pmap_pte_clearbits(p, b) x86_atomic_clearbits_u64(p, b) 577#define pmap_cpu_has_pg_n() (1) 578#define pmap_cpu_has_invlpg (1) 579 580paddr_t vtophys __P((vaddr_t)); 581vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t)); 582void pmap_cpu_init_early(struct cpu_info *); 583void pmap_cpu_init_late(struct cpu_info *); 584void sse2_zero_page(void *); 585void sse2_copy_page(void *, void *); 586 587#if 0 /* XXXfvdl was USER_LDT, need to check if that can be supported */ 588void pmap_ldt_cleanup __P((struct lwp *)); 589#define PMAP_FORK 590#endif /* USER_LDT */ 591 592/* 593 * Hooks for the pool allocator. 594 */ 595#define POOL_VTOPHYS(va) vtophys((vaddr_t) (va)) 596 597/* 598 * TLB shootdown mailbox. 599 */ 600 601struct pmap_mbox { 602 volatile void *mb_pointer; 603 volatile uintptr_t mb_addr1; 604 volatile uintptr_t mb_addr2; 605 volatile uintptr_t mb_head; 606 volatile uintptr_t mb_tail; 607 volatile uintptr_t mb_global; 608}; 609 610#endif /* _KERNEL && !_LOCORE */ 611#endif /* _AMD64_PMAP_H_ */ 612