1 1.18 jmcneill /* $NetBSD: cpu_acpi.c,v 1.18 2025/01/30 00:43:56 jmcneill Exp $ */ 2 1.1 jmcneill 3 1.1 jmcneill /*- 4 1.1 jmcneill * Copyright (c) 2018 The NetBSD Foundation, Inc. 5 1.1 jmcneill * All rights reserved. 6 1.1 jmcneill * 7 1.1 jmcneill * This code is derived from software contributed to The NetBSD Foundation 8 1.1 jmcneill * by Jared McNeill <jmcneill (at) invisible.ca>. 9 1.1 jmcneill * 10 1.1 jmcneill * Redistribution and use in source and binary forms, with or without 11 1.1 jmcneill * modification, are permitted provided that the following conditions 12 1.1 jmcneill * are met: 13 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright 14 1.1 jmcneill * notice, this list of conditions and the following disclaimer. 15 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the 17 1.1 jmcneill * documentation and/or other materials provided with the distribution. 18 1.1 jmcneill * 19 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 jmcneill * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 jmcneill * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 jmcneill * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 jmcneill * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 jmcneill * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 jmcneill * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 jmcneill * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 jmcneill * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 jmcneill * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 jmcneill * POSSIBILITY OF SUCH DAMAGE. 30 1.1 jmcneill */ 31 1.1 jmcneill 32 1.5 jmcneill #include "tprof.h" 33 1.6 ryo #include "opt_multiprocessor.h" 34 1.5 jmcneill 35 1.1 jmcneill #include <sys/cdefs.h> 36 1.18 jmcneill __KERNEL_RCSID(0, "$NetBSD: cpu_acpi.c,v 1.18 2025/01/30 00:43:56 jmcneill Exp $"); 37 1.1 jmcneill 38 1.1 jmcneill #include <sys/param.h> 39 1.1 jmcneill #include <sys/bus.h> 40 1.1 jmcneill #include <sys/cpu.h> 41 1.1 jmcneill #include <sys/device.h> 42 1.5 jmcneill #include <sys/interrupt.h> 43 1.5 jmcneill #include <sys/kcpuset.h> 44 1.17 jmcneill #include <sys/kmem.h> 45 1.7 jmcneill #include <sys/reboot.h> 46 1.1 jmcneill 47 1.1 jmcneill #include <dev/acpi/acpireg.h> 48 1.1 jmcneill #include <dev/acpi/acpivar.h> 49 1.16 jmcneill #include <dev/acpi/acpi_srat.h> 50 1.17 jmcneill #include <external/bsd/acpica/dist/include/amlresrc.h> 51 1.1 jmcneill 52 1.1 jmcneill #include <arm/armreg.h> 53 1.1 jmcneill #include <arm/cpu.h> 54 1.1 jmcneill #include <arm/cpufunc.h> 55 1.8 skrll #include <arm/cpuvar.h> 56 1.1 jmcneill #include <arm/locore.h> 57 1.1 jmcneill 58 1.1 jmcneill #include <arm/arm/psci.h> 59 1.1 jmcneill 60 1.17 jmcneill #define LPI_IDLE_FACTOR 3 61 1.17 jmcneill 62 1.5 jmcneill #if NTPROF > 0 63 1.5 jmcneill #include <dev/tprof/tprof_armv8.h> 64 1.5 jmcneill #endif 65 1.5 jmcneill 66 1.1 jmcneill static int cpu_acpi_match(device_t, cfdata_t, void *); 67 1.1 jmcneill static void cpu_acpi_attach(device_t, device_t, void *); 68 1.1 jmcneill 69 1.17 jmcneill static void cpu_acpi_probe_lpi(device_t, struct cpu_info *ci); 70 1.17 jmcneill void cpu_acpi_lpi_idle(void); 71 1.17 jmcneill 72 1.5 jmcneill #if NTPROF > 0 73 1.5 jmcneill static void cpu_acpi_tprof_init(device_t); 74 1.5 jmcneill #endif 75 1.5 jmcneill 76 1.15 pho CFATTACH_DECL2_NEW(cpu_acpi, 0, 77 1.15 pho cpu_acpi_match, cpu_acpi_attach, NULL, NULL, 78 1.15 pho cpu_rescan, cpu_childdetached); 79 1.1 jmcneill 80 1.6 ryo #ifdef MULTIPROCESSOR 81 1.1 jmcneill static register_t 82 1.1 jmcneill cpu_acpi_mpstart_pa(void) 83 1.1 jmcneill { 84 1.3 skrll 85 1.3 skrll return (register_t)KERN_VTOPHYS((vaddr_t)cpu_mpstart); 86 1.1 jmcneill } 87 1.6 ryo #endif /* MULTIPROCESSOR */ 88 1.1 jmcneill 89 1.1 jmcneill static int 90 1.1 jmcneill cpu_acpi_match(device_t parent, cfdata_t cf, void *aux) 91 1.1 jmcneill { 92 1.1 jmcneill ACPI_SUBTABLE_HEADER *hdrp = aux; 93 1.2 jmcneill ACPI_MADT_GENERIC_INTERRUPT *gicc; 94 1.1 jmcneill 95 1.2 jmcneill if (hdrp->Type != ACPI_MADT_TYPE_GENERIC_INTERRUPT) 96 1.2 jmcneill return 0; 97 1.2 jmcneill 98 1.2 jmcneill gicc = (ACPI_MADT_GENERIC_INTERRUPT *)hdrp; 99 1.2 jmcneill 100 1.2 jmcneill return (gicc->Flags & ACPI_MADT_ENABLED) != 0; 101 1.1 jmcneill } 102 1.1 jmcneill 103 1.1 jmcneill static void 104 1.1 jmcneill cpu_acpi_attach(device_t parent, device_t self, void *aux) 105 1.1 jmcneill { 106 1.12 jmcneill prop_dictionary_t dict = device_properties(self); 107 1.1 jmcneill ACPI_MADT_GENERIC_INTERRUPT *gicc = aux; 108 1.1 jmcneill const uint64_t mpidr = gicc->ArmMpidr; 109 1.4 jmcneill const int unit = device_unit(self); 110 1.4 jmcneill struct cpu_info *ci = &cpu_info_store[unit]; 111 1.16 jmcneill struct acpisrat_node *node; 112 1.1 jmcneill 113 1.6 ryo #ifdef MULTIPROCESSOR 114 1.7 jmcneill if (cpu_mpidr_aff_read() != mpidr && (boothowto & RB_MD1) == 0) { 115 1.1 jmcneill const u_int cpuindex = device_unit(self); 116 1.6 ryo int error; 117 1.1 jmcneill 118 1.1 jmcneill cpu_mpidr[cpuindex] = mpidr; 119 1.10 jmcneill cpu_dcache_wb_range((vaddr_t)&cpu_mpidr[cpuindex], 120 1.10 jmcneill sizeof(cpu_mpidr[cpuindex])); 121 1.1 jmcneill 122 1.1 jmcneill /* XXX support spin table */ 123 1.1 jmcneill error = psci_cpu_on(mpidr, cpu_acpi_mpstart_pa(), 0); 124 1.1 jmcneill if (error != PSCI_SUCCESS) { 125 1.1 jmcneill aprint_error_dev(self, "failed to start CPU\n"); 126 1.1 jmcneill return; 127 1.1 jmcneill } 128 1.1 jmcneill 129 1.9 skrll sev(); 130 1.1 jmcneill 131 1.1 jmcneill for (u_int i = 0x10000000; i > 0; i--) { 132 1.7 jmcneill if (cpu_hatched_p(cpuindex)) 133 1.7 jmcneill break; 134 1.1 jmcneill } 135 1.1 jmcneill } 136 1.6 ryo #endif /* MULTIPROCESSOR */ 137 1.1 jmcneill 138 1.12 jmcneill /* Assume that less efficient processors are faster. */ 139 1.12 jmcneill prop_dictionary_set_uint32(dict, "capacity_dmips_mhz", 140 1.12 jmcneill gicc->EfficiencyClass); 141 1.12 jmcneill 142 1.4 jmcneill /* Store the ACPI Processor UID in cpu_info */ 143 1.4 jmcneill ci->ci_acpiid = gicc->Uid; 144 1.4 jmcneill 145 1.16 jmcneill /* Scan SRAT for NUMA info. */ 146 1.16 jmcneill if (cpu_mpidr_aff_read() == mpidr) { 147 1.16 jmcneill acpisrat_init(); 148 1.16 jmcneill } 149 1.16 jmcneill node = acpisrat_get_node(gicc->Uid); 150 1.16 jmcneill if (node != NULL) { 151 1.16 jmcneill ci->ci_numa_id = node->nodeid; 152 1.16 jmcneill } 153 1.16 jmcneill 154 1.1 jmcneill /* Attach the CPU */ 155 1.1 jmcneill cpu_attach(self, mpidr); 156 1.5 jmcneill 157 1.18 jmcneill if (ci->ci_dev == NULL) { 158 1.18 jmcneill /* Not configured */ 159 1.18 jmcneill return; 160 1.18 jmcneill } 161 1.18 jmcneill 162 1.17 jmcneill /* Probe for low-power idle states. */ 163 1.17 jmcneill cpu_acpi_probe_lpi(self, ci); 164 1.17 jmcneill 165 1.5 jmcneill #if NTPROF > 0 166 1.14 jmcneill if (cpu_mpidr_aff_read() == mpidr && armv8_pmu_detect()) 167 1.5 jmcneill config_interrupts(self, cpu_acpi_tprof_init); 168 1.5 jmcneill #endif 169 1.5 jmcneill } 170 1.5 jmcneill 171 1.17 jmcneill static void 172 1.17 jmcneill cpu_acpi_probe_lpi(device_t dev, struct cpu_info *ci) 173 1.17 jmcneill { 174 1.17 jmcneill ACPI_HANDLE hdl; 175 1.17 jmcneill ACPI_BUFFER buf; 176 1.17 jmcneill ACPI_OBJECT *obj, *lpi; 177 1.17 jmcneill ACPI_STATUS rv; 178 1.17 jmcneill uint32_t levelid; 179 1.17 jmcneill uint32_t numlpi; 180 1.17 jmcneill uint32_t n; 181 1.17 jmcneill int enable_lpi; 182 1.17 jmcneill 183 1.17 jmcneill if (get_bootconf_option(boot_args, "nolpi", 184 1.17 jmcneill BOOTOPT_TYPE_BOOLEAN, &enable_lpi) && 185 1.17 jmcneill !enable_lpi) { 186 1.17 jmcneill return; 187 1.17 jmcneill } 188 1.17 jmcneill 189 1.17 jmcneill hdl = acpi_match_cpu_info(ci); 190 1.17 jmcneill if (hdl == NULL) { 191 1.17 jmcneill return; 192 1.17 jmcneill } 193 1.17 jmcneill rv = AcpiGetHandle(hdl, "_LPI", &hdl); 194 1.17 jmcneill if (ACPI_FAILURE(rv)) { 195 1.17 jmcneill return; 196 1.17 jmcneill } 197 1.17 jmcneill rv = acpi_eval_struct(hdl, NULL, &buf); 198 1.17 jmcneill if (ACPI_FAILURE(rv)) { 199 1.17 jmcneill return; 200 1.17 jmcneill } 201 1.17 jmcneill 202 1.17 jmcneill obj = buf.Pointer; 203 1.17 jmcneill if (obj->Type != ACPI_TYPE_PACKAGE || 204 1.17 jmcneill obj->Package.Count < 3 || 205 1.17 jmcneill obj->Package.Elements[1].Type != ACPI_TYPE_INTEGER || 206 1.17 jmcneill obj->Package.Elements[2].Type != ACPI_TYPE_INTEGER) { 207 1.17 jmcneill goto out; 208 1.17 jmcneill } 209 1.17 jmcneill levelid = obj->Package.Elements[1].Integer.Value; 210 1.17 jmcneill if (levelid != 0) { 211 1.17 jmcneill /* We depend on platform coordination for now. */ 212 1.17 jmcneill goto out; 213 1.17 jmcneill } 214 1.17 jmcneill numlpi = obj->Package.Elements[2].Integer.Value; 215 1.17 jmcneill if (obj->Package.Count < 3 + numlpi || numlpi == 0) { 216 1.17 jmcneill goto out; 217 1.17 jmcneill } 218 1.17 jmcneill ci->ci_lpi = kmem_zalloc(sizeof(*ci->ci_lpi) * numlpi, KM_SLEEP); 219 1.17 jmcneill for (n = 0; n < numlpi; n++) { 220 1.17 jmcneill lpi = &obj->Package.Elements[3 + n]; 221 1.17 jmcneill if (lpi->Type != ACPI_TYPE_PACKAGE || 222 1.17 jmcneill lpi->Package.Count < 10 || 223 1.17 jmcneill lpi->Package.Elements[0].Type != ACPI_TYPE_INTEGER || 224 1.17 jmcneill lpi->Package.Elements[1].Type != ACPI_TYPE_INTEGER || 225 1.17 jmcneill lpi->Package.Elements[2].Type != ACPI_TYPE_INTEGER || 226 1.17 jmcneill lpi->Package.Elements[3].Type != ACPI_TYPE_INTEGER || 227 1.17 jmcneill !(lpi->Package.Elements[6].Type == ACPI_TYPE_BUFFER || 228 1.17 jmcneill lpi->Package.Elements[6].Type == ACPI_TYPE_INTEGER)) { 229 1.17 jmcneill continue; 230 1.17 jmcneill } 231 1.17 jmcneill 232 1.17 jmcneill if ((lpi->Package.Elements[2].Integer.Value & 1) == 0) { 233 1.17 jmcneill /* LPI state is not enabled */ 234 1.17 jmcneill continue; 235 1.17 jmcneill } 236 1.17 jmcneill 237 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].min_res 238 1.17 jmcneill = lpi->Package.Elements[0].Integer.Value; 239 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].wakeup_latency = 240 1.17 jmcneill lpi->Package.Elements[1].Integer.Value; 241 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].save_restore_flags = 242 1.17 jmcneill lpi->Package.Elements[3].Integer.Value; 243 1.17 jmcneill if (ci->ci_lpi[ci->ci_nlpi].save_restore_flags != 0) { 244 1.17 jmcneill /* Not implemented yet */ 245 1.17 jmcneill continue; 246 1.17 jmcneill } 247 1.17 jmcneill if (lpi->Package.Elements[6].Type == ACPI_TYPE_INTEGER) { 248 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].reg_addr = 249 1.17 jmcneill lpi->Package.Elements[6].Integer.Value; 250 1.17 jmcneill } else { 251 1.17 jmcneill ACPI_GENERIC_ADDRESS addr; 252 1.17 jmcneill 253 1.17 jmcneill KASSERT(lpi->Package.Elements[6].Type == 254 1.17 jmcneill ACPI_TYPE_BUFFER); 255 1.17 jmcneill 256 1.17 jmcneill if (lpi->Package.Elements[6].Buffer.Length < 257 1.17 jmcneill sizeof(AML_RESOURCE_GENERIC_REGISTER)) { 258 1.17 jmcneill continue; 259 1.17 jmcneill } 260 1.17 jmcneill memcpy(&addr, lpi->Package.Elements[6].Buffer.Pointer + 261 1.17 jmcneill sizeof(AML_RESOURCE_LARGE_HEADER), sizeof(addr)); 262 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].reg_addr = addr.Address; 263 1.17 jmcneill } 264 1.17 jmcneill 265 1.17 jmcneill if (lpi->Package.Elements[9].Type == ACPI_TYPE_STRING) { 266 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].name = 267 1.17 jmcneill kmem_asprintf("LPI state %s", 268 1.17 jmcneill lpi->Package.Elements[9].String.Pointer); 269 1.17 jmcneill } else { 270 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].name = 271 1.17 jmcneill kmem_asprintf("LPI state %u", n + 1); 272 1.17 jmcneill } 273 1.17 jmcneill 274 1.17 jmcneill aprint_verbose_dev(ci->ci_dev, 275 1.17 jmcneill "%s: min res %u, wakeup latency %u, flags %#x, " 276 1.17 jmcneill "register %#x\n", 277 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].name, 278 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].min_res, 279 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].wakeup_latency, 280 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].save_restore_flags, 281 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].reg_addr); 282 1.17 jmcneill 283 1.17 jmcneill evcnt_attach_dynamic(&ci->ci_lpi[ci->ci_nlpi].events, 284 1.17 jmcneill EVCNT_TYPE_MISC, NULL, ci->ci_cpuname, 285 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].name); 286 1.17 jmcneill 287 1.17 jmcneill ci->ci_nlpi++; 288 1.17 jmcneill } 289 1.17 jmcneill 290 1.17 jmcneill if (ci->ci_nlpi > 0) { 291 1.17 jmcneill extern void (*arm_cpu_idle)(void); 292 1.17 jmcneill arm_cpu_idle = cpu_acpi_lpi_idle; 293 1.17 jmcneill } 294 1.17 jmcneill 295 1.17 jmcneill out: 296 1.17 jmcneill ACPI_FREE(buf.Pointer); 297 1.17 jmcneill } 298 1.17 jmcneill 299 1.17 jmcneill static inline void 300 1.17 jmcneill cpu_acpi_idle(uint32_t addr) 301 1.17 jmcneill { 302 1.17 jmcneill if (addr == LPI_REG_ADDR_WFI) { 303 1.17 jmcneill asm volatile("dsb sy; wfi"); 304 1.17 jmcneill } else { 305 1.17 jmcneill psci_cpu_suspend(addr); 306 1.17 jmcneill } 307 1.17 jmcneill } 308 1.17 jmcneill 309 1.17 jmcneill void 310 1.17 jmcneill cpu_acpi_lpi_idle(void) 311 1.17 jmcneill { 312 1.17 jmcneill struct cpu_info *ci = curcpu(); 313 1.17 jmcneill struct timeval start, end; 314 1.17 jmcneill int n; 315 1.17 jmcneill 316 1.17 jmcneill DISABLE_INTERRUPT(); 317 1.17 jmcneill 318 1.17 jmcneill microuptime(&start); 319 1.17 jmcneill for (n = ci->ci_nlpi - 1; n >= 0; n--) { 320 1.17 jmcneill if (ci->ci_last_idle > 321 1.17 jmcneill LPI_IDLE_FACTOR * ci->ci_lpi[n].min_res) { 322 1.17 jmcneill cpu_acpi_idle(ci->ci_lpi[n].reg_addr); 323 1.17 jmcneill ci->ci_lpi[n].events.ev_count++; 324 1.17 jmcneill break; 325 1.17 jmcneill } 326 1.17 jmcneill } 327 1.17 jmcneill if (n == -1) { 328 1.17 jmcneill /* Nothing in _LPI, let's just WFI. */ 329 1.17 jmcneill cpu_acpi_idle(LPI_REG_ADDR_WFI); 330 1.17 jmcneill } 331 1.17 jmcneill microuptime(&end); 332 1.17 jmcneill timersub(&end, &start, &end); 333 1.17 jmcneill 334 1.17 jmcneill ci->ci_last_idle = end.tv_sec * 1000000 + end.tv_usec; 335 1.17 jmcneill 336 1.17 jmcneill ENABLE_INTERRUPT(); 337 1.17 jmcneill } 338 1.17 jmcneill 339 1.5 jmcneill #if NTPROF > 0 340 1.5 jmcneill static struct cpu_info * 341 1.5 jmcneill cpu_acpi_find_processor(UINT32 uid) 342 1.5 jmcneill { 343 1.5 jmcneill CPU_INFO_ITERATOR cii; 344 1.5 jmcneill struct cpu_info *ci; 345 1.5 jmcneill 346 1.5 jmcneill for (CPU_INFO_FOREACH(cii, ci)) { 347 1.5 jmcneill if (ci->ci_acpiid == uid) 348 1.5 jmcneill return ci; 349 1.5 jmcneill } 350 1.5 jmcneill 351 1.5 jmcneill return NULL; 352 1.5 jmcneill } 353 1.5 jmcneill 354 1.5 jmcneill static ACPI_STATUS 355 1.5 jmcneill cpu_acpi_tprof_intr_establish(ACPI_SUBTABLE_HEADER *hdrp, void *aux) 356 1.5 jmcneill { 357 1.5 jmcneill device_t dev = aux; 358 1.5 jmcneill ACPI_MADT_GENERIC_INTERRUPT *gicc; 359 1.5 jmcneill struct cpu_info *ci; 360 1.5 jmcneill char xname[16]; 361 1.5 jmcneill kcpuset_t *set; 362 1.5 jmcneill int error; 363 1.5 jmcneill void *ih; 364 1.5 jmcneill 365 1.5 jmcneill if (hdrp->Type != ACPI_MADT_TYPE_GENERIC_INTERRUPT) 366 1.5 jmcneill return AE_OK; 367 1.5 jmcneill 368 1.5 jmcneill gicc = (ACPI_MADT_GENERIC_INTERRUPT *)hdrp; 369 1.5 jmcneill if ((gicc->Flags & ACPI_MADT_ENABLED) == 0) 370 1.5 jmcneill return AE_OK; 371 1.5 jmcneill 372 1.11 jmcneill const bool cpu_primary_p = cpu_info_store[0].ci_cpuid == gicc->ArmMpidr; 373 1.5 jmcneill const bool intr_ppi_p = gicc->PerformanceInterrupt < 32; 374 1.10 jmcneill const int type = (gicc->Flags & ACPI_MADT_PERFORMANCE_IRQ_MODE) ? 375 1.10 jmcneill IST_EDGE : IST_LEVEL; 376 1.5 jmcneill 377 1.5 jmcneill if (intr_ppi_p && !cpu_primary_p) 378 1.5 jmcneill return AE_OK; 379 1.5 jmcneill 380 1.5 jmcneill ci = cpu_acpi_find_processor(gicc->Uid); 381 1.5 jmcneill if (ci == NULL) { 382 1.10 jmcneill aprint_error_dev(dev, "couldn't find processor %#x\n", 383 1.10 jmcneill gicc->Uid); 384 1.5 jmcneill return AE_OK; 385 1.5 jmcneill } 386 1.5 jmcneill 387 1.5 jmcneill if (intr_ppi_p) { 388 1.5 jmcneill strlcpy(xname, "pmu", sizeof(xname)); 389 1.5 jmcneill } else { 390 1.5 jmcneill snprintf(xname, sizeof(xname), "pmu %s", cpu_name(ci)); 391 1.5 jmcneill } 392 1.5 jmcneill 393 1.10 jmcneill ih = intr_establish_xname(gicc->PerformanceInterrupt, IPL_HIGH, 394 1.10 jmcneill type | IST_MPSAFE, armv8_pmu_intr, NULL, xname); 395 1.5 jmcneill if (ih == NULL) { 396 1.10 jmcneill aprint_error_dev(dev, "couldn't establish %s interrupt\n", 397 1.10 jmcneill xname); 398 1.5 jmcneill return AE_OK; 399 1.5 jmcneill } 400 1.5 jmcneill 401 1.5 jmcneill if (!intr_ppi_p) { 402 1.5 jmcneill kcpuset_create(&set, true); 403 1.5 jmcneill kcpuset_set(set, cpu_index(ci)); 404 1.5 jmcneill error = interrupt_distribute(ih, set, NULL); 405 1.5 jmcneill kcpuset_destroy(set); 406 1.5 jmcneill 407 1.5 jmcneill if (error) { 408 1.10 jmcneill aprint_error_dev(dev, 409 1.10 jmcneill "failed to distribute %s interrupt: %d\n", 410 1.5 jmcneill xname, error); 411 1.5 jmcneill return AE_OK; 412 1.5 jmcneill } 413 1.5 jmcneill } 414 1.5 jmcneill 415 1.10 jmcneill aprint_normal("%s: PMU interrupting on irq %d\n", cpu_name(ci), 416 1.10 jmcneill gicc->PerformanceInterrupt); 417 1.5 jmcneill 418 1.5 jmcneill return AE_OK; 419 1.5 jmcneill } 420 1.5 jmcneill 421 1.5 jmcneill static void 422 1.5 jmcneill cpu_acpi_tprof_init(device_t self) 423 1.5 jmcneill { 424 1.13 skrll int err = armv8_pmu_init(); 425 1.13 skrll if (err) { 426 1.13 skrll aprint_error_dev(self, 427 1.13 skrll "failed to initialize PMU event counter\n"); 428 1.13 skrll return; 429 1.13 skrll } 430 1.5 jmcneill 431 1.5 jmcneill if (acpi_madt_map() != AE_OK) { 432 1.10 jmcneill aprint_error_dev(self, 433 1.10 jmcneill "failed to map MADT, performance counters not available\n"); 434 1.5 jmcneill return; 435 1.5 jmcneill } 436 1.5 jmcneill acpi_madt_walk(cpu_acpi_tprof_intr_establish, self); 437 1.5 jmcneill acpi_madt_unmap(); 438 1.1 jmcneill } 439 1.5 jmcneill #endif 440