cpu_acpi.c revision 1.18 1 1.18 jmcneill /* $NetBSD: cpu_acpi.c,v 1.18 2025/01/30 00:43:56 jmcneill Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2018 The NetBSD Foundation, Inc.
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * This code is derived from software contributed to The NetBSD Foundation
8 1.1 jmcneill * by Jared McNeill <jmcneill (at) invisible.ca>.
9 1.1 jmcneill *
10 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
11 1.1 jmcneill * modification, are permitted provided that the following conditions
12 1.1 jmcneill * are met:
13 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
14 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
15 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
17 1.1 jmcneill * documentation and/or other materials provided with the distribution.
18 1.1 jmcneill *
19 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 jmcneill * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 jmcneill * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 jmcneill * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 jmcneill * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 jmcneill * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 jmcneill * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 jmcneill * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 jmcneill * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 jmcneill * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 jmcneill * POSSIBILITY OF SUCH DAMAGE.
30 1.1 jmcneill */
31 1.1 jmcneill
32 1.5 jmcneill #include "tprof.h"
33 1.6 ryo #include "opt_multiprocessor.h"
34 1.5 jmcneill
35 1.1 jmcneill #include <sys/cdefs.h>
36 1.18 jmcneill __KERNEL_RCSID(0, "$NetBSD: cpu_acpi.c,v 1.18 2025/01/30 00:43:56 jmcneill Exp $");
37 1.1 jmcneill
38 1.1 jmcneill #include <sys/param.h>
39 1.1 jmcneill #include <sys/bus.h>
40 1.1 jmcneill #include <sys/cpu.h>
41 1.1 jmcneill #include <sys/device.h>
42 1.5 jmcneill #include <sys/interrupt.h>
43 1.5 jmcneill #include <sys/kcpuset.h>
44 1.17 jmcneill #include <sys/kmem.h>
45 1.7 jmcneill #include <sys/reboot.h>
46 1.1 jmcneill
47 1.1 jmcneill #include <dev/acpi/acpireg.h>
48 1.1 jmcneill #include <dev/acpi/acpivar.h>
49 1.16 jmcneill #include <dev/acpi/acpi_srat.h>
50 1.17 jmcneill #include <external/bsd/acpica/dist/include/amlresrc.h>
51 1.1 jmcneill
52 1.1 jmcneill #include <arm/armreg.h>
53 1.1 jmcneill #include <arm/cpu.h>
54 1.1 jmcneill #include <arm/cpufunc.h>
55 1.8 skrll #include <arm/cpuvar.h>
56 1.1 jmcneill #include <arm/locore.h>
57 1.1 jmcneill
58 1.1 jmcneill #include <arm/arm/psci.h>
59 1.1 jmcneill
60 1.17 jmcneill #define LPI_IDLE_FACTOR 3
61 1.17 jmcneill
62 1.5 jmcneill #if NTPROF > 0
63 1.5 jmcneill #include <dev/tprof/tprof_armv8.h>
64 1.5 jmcneill #endif
65 1.5 jmcneill
66 1.1 jmcneill static int cpu_acpi_match(device_t, cfdata_t, void *);
67 1.1 jmcneill static void cpu_acpi_attach(device_t, device_t, void *);
68 1.1 jmcneill
69 1.17 jmcneill static void cpu_acpi_probe_lpi(device_t, struct cpu_info *ci);
70 1.17 jmcneill void cpu_acpi_lpi_idle(void);
71 1.17 jmcneill
72 1.5 jmcneill #if NTPROF > 0
73 1.5 jmcneill static void cpu_acpi_tprof_init(device_t);
74 1.5 jmcneill #endif
75 1.5 jmcneill
76 1.15 pho CFATTACH_DECL2_NEW(cpu_acpi, 0,
77 1.15 pho cpu_acpi_match, cpu_acpi_attach, NULL, NULL,
78 1.15 pho cpu_rescan, cpu_childdetached);
79 1.1 jmcneill
80 1.6 ryo #ifdef MULTIPROCESSOR
81 1.1 jmcneill static register_t
82 1.1 jmcneill cpu_acpi_mpstart_pa(void)
83 1.1 jmcneill {
84 1.3 skrll
85 1.3 skrll return (register_t)KERN_VTOPHYS((vaddr_t)cpu_mpstart);
86 1.1 jmcneill }
87 1.6 ryo #endif /* MULTIPROCESSOR */
88 1.1 jmcneill
89 1.1 jmcneill static int
90 1.1 jmcneill cpu_acpi_match(device_t parent, cfdata_t cf, void *aux)
91 1.1 jmcneill {
92 1.1 jmcneill ACPI_SUBTABLE_HEADER *hdrp = aux;
93 1.2 jmcneill ACPI_MADT_GENERIC_INTERRUPT *gicc;
94 1.1 jmcneill
95 1.2 jmcneill if (hdrp->Type != ACPI_MADT_TYPE_GENERIC_INTERRUPT)
96 1.2 jmcneill return 0;
97 1.2 jmcneill
98 1.2 jmcneill gicc = (ACPI_MADT_GENERIC_INTERRUPT *)hdrp;
99 1.2 jmcneill
100 1.2 jmcneill return (gicc->Flags & ACPI_MADT_ENABLED) != 0;
101 1.1 jmcneill }
102 1.1 jmcneill
103 1.1 jmcneill static void
104 1.1 jmcneill cpu_acpi_attach(device_t parent, device_t self, void *aux)
105 1.1 jmcneill {
106 1.12 jmcneill prop_dictionary_t dict = device_properties(self);
107 1.1 jmcneill ACPI_MADT_GENERIC_INTERRUPT *gicc = aux;
108 1.1 jmcneill const uint64_t mpidr = gicc->ArmMpidr;
109 1.4 jmcneill const int unit = device_unit(self);
110 1.4 jmcneill struct cpu_info *ci = &cpu_info_store[unit];
111 1.16 jmcneill struct acpisrat_node *node;
112 1.1 jmcneill
113 1.6 ryo #ifdef MULTIPROCESSOR
114 1.7 jmcneill if (cpu_mpidr_aff_read() != mpidr && (boothowto & RB_MD1) == 0) {
115 1.1 jmcneill const u_int cpuindex = device_unit(self);
116 1.6 ryo int error;
117 1.1 jmcneill
118 1.1 jmcneill cpu_mpidr[cpuindex] = mpidr;
119 1.10 jmcneill cpu_dcache_wb_range((vaddr_t)&cpu_mpidr[cpuindex],
120 1.10 jmcneill sizeof(cpu_mpidr[cpuindex]));
121 1.1 jmcneill
122 1.1 jmcneill /* XXX support spin table */
123 1.1 jmcneill error = psci_cpu_on(mpidr, cpu_acpi_mpstart_pa(), 0);
124 1.1 jmcneill if (error != PSCI_SUCCESS) {
125 1.1 jmcneill aprint_error_dev(self, "failed to start CPU\n");
126 1.1 jmcneill return;
127 1.1 jmcneill }
128 1.1 jmcneill
129 1.9 skrll sev();
130 1.1 jmcneill
131 1.1 jmcneill for (u_int i = 0x10000000; i > 0; i--) {
132 1.7 jmcneill if (cpu_hatched_p(cpuindex))
133 1.7 jmcneill break;
134 1.1 jmcneill }
135 1.1 jmcneill }
136 1.6 ryo #endif /* MULTIPROCESSOR */
137 1.1 jmcneill
138 1.12 jmcneill /* Assume that less efficient processors are faster. */
139 1.12 jmcneill prop_dictionary_set_uint32(dict, "capacity_dmips_mhz",
140 1.12 jmcneill gicc->EfficiencyClass);
141 1.12 jmcneill
142 1.4 jmcneill /* Store the ACPI Processor UID in cpu_info */
143 1.4 jmcneill ci->ci_acpiid = gicc->Uid;
144 1.4 jmcneill
145 1.16 jmcneill /* Scan SRAT for NUMA info. */
146 1.16 jmcneill if (cpu_mpidr_aff_read() == mpidr) {
147 1.16 jmcneill acpisrat_init();
148 1.16 jmcneill }
149 1.16 jmcneill node = acpisrat_get_node(gicc->Uid);
150 1.16 jmcneill if (node != NULL) {
151 1.16 jmcneill ci->ci_numa_id = node->nodeid;
152 1.16 jmcneill }
153 1.16 jmcneill
154 1.1 jmcneill /* Attach the CPU */
155 1.1 jmcneill cpu_attach(self, mpidr);
156 1.5 jmcneill
157 1.18 jmcneill if (ci->ci_dev == NULL) {
158 1.18 jmcneill /* Not configured */
159 1.18 jmcneill return;
160 1.18 jmcneill }
161 1.18 jmcneill
162 1.17 jmcneill /* Probe for low-power idle states. */
163 1.17 jmcneill cpu_acpi_probe_lpi(self, ci);
164 1.17 jmcneill
165 1.5 jmcneill #if NTPROF > 0
166 1.14 jmcneill if (cpu_mpidr_aff_read() == mpidr && armv8_pmu_detect())
167 1.5 jmcneill config_interrupts(self, cpu_acpi_tprof_init);
168 1.5 jmcneill #endif
169 1.5 jmcneill }
170 1.5 jmcneill
171 1.17 jmcneill static void
172 1.17 jmcneill cpu_acpi_probe_lpi(device_t dev, struct cpu_info *ci)
173 1.17 jmcneill {
174 1.17 jmcneill ACPI_HANDLE hdl;
175 1.17 jmcneill ACPI_BUFFER buf;
176 1.17 jmcneill ACPI_OBJECT *obj, *lpi;
177 1.17 jmcneill ACPI_STATUS rv;
178 1.17 jmcneill uint32_t levelid;
179 1.17 jmcneill uint32_t numlpi;
180 1.17 jmcneill uint32_t n;
181 1.17 jmcneill int enable_lpi;
182 1.17 jmcneill
183 1.17 jmcneill if (get_bootconf_option(boot_args, "nolpi",
184 1.17 jmcneill BOOTOPT_TYPE_BOOLEAN, &enable_lpi) &&
185 1.17 jmcneill !enable_lpi) {
186 1.17 jmcneill return;
187 1.17 jmcneill }
188 1.17 jmcneill
189 1.17 jmcneill hdl = acpi_match_cpu_info(ci);
190 1.17 jmcneill if (hdl == NULL) {
191 1.17 jmcneill return;
192 1.17 jmcneill }
193 1.17 jmcneill rv = AcpiGetHandle(hdl, "_LPI", &hdl);
194 1.17 jmcneill if (ACPI_FAILURE(rv)) {
195 1.17 jmcneill return;
196 1.17 jmcneill }
197 1.17 jmcneill rv = acpi_eval_struct(hdl, NULL, &buf);
198 1.17 jmcneill if (ACPI_FAILURE(rv)) {
199 1.17 jmcneill return;
200 1.17 jmcneill }
201 1.17 jmcneill
202 1.17 jmcneill obj = buf.Pointer;
203 1.17 jmcneill if (obj->Type != ACPI_TYPE_PACKAGE ||
204 1.17 jmcneill obj->Package.Count < 3 ||
205 1.17 jmcneill obj->Package.Elements[1].Type != ACPI_TYPE_INTEGER ||
206 1.17 jmcneill obj->Package.Elements[2].Type != ACPI_TYPE_INTEGER) {
207 1.17 jmcneill goto out;
208 1.17 jmcneill }
209 1.17 jmcneill levelid = obj->Package.Elements[1].Integer.Value;
210 1.17 jmcneill if (levelid != 0) {
211 1.17 jmcneill /* We depend on platform coordination for now. */
212 1.17 jmcneill goto out;
213 1.17 jmcneill }
214 1.17 jmcneill numlpi = obj->Package.Elements[2].Integer.Value;
215 1.17 jmcneill if (obj->Package.Count < 3 + numlpi || numlpi == 0) {
216 1.17 jmcneill goto out;
217 1.17 jmcneill }
218 1.17 jmcneill ci->ci_lpi = kmem_zalloc(sizeof(*ci->ci_lpi) * numlpi, KM_SLEEP);
219 1.17 jmcneill for (n = 0; n < numlpi; n++) {
220 1.17 jmcneill lpi = &obj->Package.Elements[3 + n];
221 1.17 jmcneill if (lpi->Type != ACPI_TYPE_PACKAGE ||
222 1.17 jmcneill lpi->Package.Count < 10 ||
223 1.17 jmcneill lpi->Package.Elements[0].Type != ACPI_TYPE_INTEGER ||
224 1.17 jmcneill lpi->Package.Elements[1].Type != ACPI_TYPE_INTEGER ||
225 1.17 jmcneill lpi->Package.Elements[2].Type != ACPI_TYPE_INTEGER ||
226 1.17 jmcneill lpi->Package.Elements[3].Type != ACPI_TYPE_INTEGER ||
227 1.17 jmcneill !(lpi->Package.Elements[6].Type == ACPI_TYPE_BUFFER ||
228 1.17 jmcneill lpi->Package.Elements[6].Type == ACPI_TYPE_INTEGER)) {
229 1.17 jmcneill continue;
230 1.17 jmcneill }
231 1.17 jmcneill
232 1.17 jmcneill if ((lpi->Package.Elements[2].Integer.Value & 1) == 0) {
233 1.17 jmcneill /* LPI state is not enabled */
234 1.17 jmcneill continue;
235 1.17 jmcneill }
236 1.17 jmcneill
237 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].min_res
238 1.17 jmcneill = lpi->Package.Elements[0].Integer.Value;
239 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].wakeup_latency =
240 1.17 jmcneill lpi->Package.Elements[1].Integer.Value;
241 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].save_restore_flags =
242 1.17 jmcneill lpi->Package.Elements[3].Integer.Value;
243 1.17 jmcneill if (ci->ci_lpi[ci->ci_nlpi].save_restore_flags != 0) {
244 1.17 jmcneill /* Not implemented yet */
245 1.17 jmcneill continue;
246 1.17 jmcneill }
247 1.17 jmcneill if (lpi->Package.Elements[6].Type == ACPI_TYPE_INTEGER) {
248 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].reg_addr =
249 1.17 jmcneill lpi->Package.Elements[6].Integer.Value;
250 1.17 jmcneill } else {
251 1.17 jmcneill ACPI_GENERIC_ADDRESS addr;
252 1.17 jmcneill
253 1.17 jmcneill KASSERT(lpi->Package.Elements[6].Type ==
254 1.17 jmcneill ACPI_TYPE_BUFFER);
255 1.17 jmcneill
256 1.17 jmcneill if (lpi->Package.Elements[6].Buffer.Length <
257 1.17 jmcneill sizeof(AML_RESOURCE_GENERIC_REGISTER)) {
258 1.17 jmcneill continue;
259 1.17 jmcneill }
260 1.17 jmcneill memcpy(&addr, lpi->Package.Elements[6].Buffer.Pointer +
261 1.17 jmcneill sizeof(AML_RESOURCE_LARGE_HEADER), sizeof(addr));
262 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].reg_addr = addr.Address;
263 1.17 jmcneill }
264 1.17 jmcneill
265 1.17 jmcneill if (lpi->Package.Elements[9].Type == ACPI_TYPE_STRING) {
266 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].name =
267 1.17 jmcneill kmem_asprintf("LPI state %s",
268 1.17 jmcneill lpi->Package.Elements[9].String.Pointer);
269 1.17 jmcneill } else {
270 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].name =
271 1.17 jmcneill kmem_asprintf("LPI state %u", n + 1);
272 1.17 jmcneill }
273 1.17 jmcneill
274 1.17 jmcneill aprint_verbose_dev(ci->ci_dev,
275 1.17 jmcneill "%s: min res %u, wakeup latency %u, flags %#x, "
276 1.17 jmcneill "register %#x\n",
277 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].name,
278 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].min_res,
279 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].wakeup_latency,
280 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].save_restore_flags,
281 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].reg_addr);
282 1.17 jmcneill
283 1.17 jmcneill evcnt_attach_dynamic(&ci->ci_lpi[ci->ci_nlpi].events,
284 1.17 jmcneill EVCNT_TYPE_MISC, NULL, ci->ci_cpuname,
285 1.17 jmcneill ci->ci_lpi[ci->ci_nlpi].name);
286 1.17 jmcneill
287 1.17 jmcneill ci->ci_nlpi++;
288 1.17 jmcneill }
289 1.17 jmcneill
290 1.17 jmcneill if (ci->ci_nlpi > 0) {
291 1.17 jmcneill extern void (*arm_cpu_idle)(void);
292 1.17 jmcneill arm_cpu_idle = cpu_acpi_lpi_idle;
293 1.17 jmcneill }
294 1.17 jmcneill
295 1.17 jmcneill out:
296 1.17 jmcneill ACPI_FREE(buf.Pointer);
297 1.17 jmcneill }
298 1.17 jmcneill
299 1.17 jmcneill static inline void
300 1.17 jmcneill cpu_acpi_idle(uint32_t addr)
301 1.17 jmcneill {
302 1.17 jmcneill if (addr == LPI_REG_ADDR_WFI) {
303 1.17 jmcneill asm volatile("dsb sy; wfi");
304 1.17 jmcneill } else {
305 1.17 jmcneill psci_cpu_suspend(addr);
306 1.17 jmcneill }
307 1.17 jmcneill }
308 1.17 jmcneill
309 1.17 jmcneill void
310 1.17 jmcneill cpu_acpi_lpi_idle(void)
311 1.17 jmcneill {
312 1.17 jmcneill struct cpu_info *ci = curcpu();
313 1.17 jmcneill struct timeval start, end;
314 1.17 jmcneill int n;
315 1.17 jmcneill
316 1.17 jmcneill DISABLE_INTERRUPT();
317 1.17 jmcneill
318 1.17 jmcneill microuptime(&start);
319 1.17 jmcneill for (n = ci->ci_nlpi - 1; n >= 0; n--) {
320 1.17 jmcneill if (ci->ci_last_idle >
321 1.17 jmcneill LPI_IDLE_FACTOR * ci->ci_lpi[n].min_res) {
322 1.17 jmcneill cpu_acpi_idle(ci->ci_lpi[n].reg_addr);
323 1.17 jmcneill ci->ci_lpi[n].events.ev_count++;
324 1.17 jmcneill break;
325 1.17 jmcneill }
326 1.17 jmcneill }
327 1.17 jmcneill if (n == -1) {
328 1.17 jmcneill /* Nothing in _LPI, let's just WFI. */
329 1.17 jmcneill cpu_acpi_idle(LPI_REG_ADDR_WFI);
330 1.17 jmcneill }
331 1.17 jmcneill microuptime(&end);
332 1.17 jmcneill timersub(&end, &start, &end);
333 1.17 jmcneill
334 1.17 jmcneill ci->ci_last_idle = end.tv_sec * 1000000 + end.tv_usec;
335 1.17 jmcneill
336 1.17 jmcneill ENABLE_INTERRUPT();
337 1.17 jmcneill }
338 1.17 jmcneill
339 1.5 jmcneill #if NTPROF > 0
340 1.5 jmcneill static struct cpu_info *
341 1.5 jmcneill cpu_acpi_find_processor(UINT32 uid)
342 1.5 jmcneill {
343 1.5 jmcneill CPU_INFO_ITERATOR cii;
344 1.5 jmcneill struct cpu_info *ci;
345 1.5 jmcneill
346 1.5 jmcneill for (CPU_INFO_FOREACH(cii, ci)) {
347 1.5 jmcneill if (ci->ci_acpiid == uid)
348 1.5 jmcneill return ci;
349 1.5 jmcneill }
350 1.5 jmcneill
351 1.5 jmcneill return NULL;
352 1.5 jmcneill }
353 1.5 jmcneill
354 1.5 jmcneill static ACPI_STATUS
355 1.5 jmcneill cpu_acpi_tprof_intr_establish(ACPI_SUBTABLE_HEADER *hdrp, void *aux)
356 1.5 jmcneill {
357 1.5 jmcneill device_t dev = aux;
358 1.5 jmcneill ACPI_MADT_GENERIC_INTERRUPT *gicc;
359 1.5 jmcneill struct cpu_info *ci;
360 1.5 jmcneill char xname[16];
361 1.5 jmcneill kcpuset_t *set;
362 1.5 jmcneill int error;
363 1.5 jmcneill void *ih;
364 1.5 jmcneill
365 1.5 jmcneill if (hdrp->Type != ACPI_MADT_TYPE_GENERIC_INTERRUPT)
366 1.5 jmcneill return AE_OK;
367 1.5 jmcneill
368 1.5 jmcneill gicc = (ACPI_MADT_GENERIC_INTERRUPT *)hdrp;
369 1.5 jmcneill if ((gicc->Flags & ACPI_MADT_ENABLED) == 0)
370 1.5 jmcneill return AE_OK;
371 1.5 jmcneill
372 1.11 jmcneill const bool cpu_primary_p = cpu_info_store[0].ci_cpuid == gicc->ArmMpidr;
373 1.5 jmcneill const bool intr_ppi_p = gicc->PerformanceInterrupt < 32;
374 1.10 jmcneill const int type = (gicc->Flags & ACPI_MADT_PERFORMANCE_IRQ_MODE) ?
375 1.10 jmcneill IST_EDGE : IST_LEVEL;
376 1.5 jmcneill
377 1.5 jmcneill if (intr_ppi_p && !cpu_primary_p)
378 1.5 jmcneill return AE_OK;
379 1.5 jmcneill
380 1.5 jmcneill ci = cpu_acpi_find_processor(gicc->Uid);
381 1.5 jmcneill if (ci == NULL) {
382 1.10 jmcneill aprint_error_dev(dev, "couldn't find processor %#x\n",
383 1.10 jmcneill gicc->Uid);
384 1.5 jmcneill return AE_OK;
385 1.5 jmcneill }
386 1.5 jmcneill
387 1.5 jmcneill if (intr_ppi_p) {
388 1.5 jmcneill strlcpy(xname, "pmu", sizeof(xname));
389 1.5 jmcneill } else {
390 1.5 jmcneill snprintf(xname, sizeof(xname), "pmu %s", cpu_name(ci));
391 1.5 jmcneill }
392 1.5 jmcneill
393 1.10 jmcneill ih = intr_establish_xname(gicc->PerformanceInterrupt, IPL_HIGH,
394 1.10 jmcneill type | IST_MPSAFE, armv8_pmu_intr, NULL, xname);
395 1.5 jmcneill if (ih == NULL) {
396 1.10 jmcneill aprint_error_dev(dev, "couldn't establish %s interrupt\n",
397 1.10 jmcneill xname);
398 1.5 jmcneill return AE_OK;
399 1.5 jmcneill }
400 1.5 jmcneill
401 1.5 jmcneill if (!intr_ppi_p) {
402 1.5 jmcneill kcpuset_create(&set, true);
403 1.5 jmcneill kcpuset_set(set, cpu_index(ci));
404 1.5 jmcneill error = interrupt_distribute(ih, set, NULL);
405 1.5 jmcneill kcpuset_destroy(set);
406 1.5 jmcneill
407 1.5 jmcneill if (error) {
408 1.10 jmcneill aprint_error_dev(dev,
409 1.10 jmcneill "failed to distribute %s interrupt: %d\n",
410 1.5 jmcneill xname, error);
411 1.5 jmcneill return AE_OK;
412 1.5 jmcneill }
413 1.5 jmcneill }
414 1.5 jmcneill
415 1.10 jmcneill aprint_normal("%s: PMU interrupting on irq %d\n", cpu_name(ci),
416 1.10 jmcneill gicc->PerformanceInterrupt);
417 1.5 jmcneill
418 1.5 jmcneill return AE_OK;
419 1.5 jmcneill }
420 1.5 jmcneill
421 1.5 jmcneill static void
422 1.5 jmcneill cpu_acpi_tprof_init(device_t self)
423 1.5 jmcneill {
424 1.13 skrll int err = armv8_pmu_init();
425 1.13 skrll if (err) {
426 1.13 skrll aprint_error_dev(self,
427 1.13 skrll "failed to initialize PMU event counter\n");
428 1.13 skrll return;
429 1.13 skrll }
430 1.5 jmcneill
431 1.5 jmcneill if (acpi_madt_map() != AE_OK) {
432 1.10 jmcneill aprint_error_dev(self,
433 1.10 jmcneill "failed to map MADT, performance counters not available\n");
434 1.5 jmcneill return;
435 1.5 jmcneill }
436 1.5 jmcneill acpi_madt_walk(cpu_acpi_tprof_intr_establish, self);
437 1.5 jmcneill acpi_madt_unmap();
438 1.1 jmcneill }
439 1.5 jmcneill #endif
440