Home | History | Annotate | Line # | Download | only in arm32
      1  1.69     skrll /*	$NetBSD: arm32_kvminit.c,v 1.69 2022/04/02 11:16:07 skrll Exp $	*/
      2   1.1      matt 
      3   1.1      matt /*
      4   1.1      matt  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5   1.1      matt  * Written by Hiroyuki Bessho for Genetec Corporation.
      6   1.1      matt  *
      7   1.1      matt  * Redistribution and use in source and binary forms, with or without
      8   1.1      matt  * modification, are permitted provided that the following conditions
      9   1.1      matt  * are met:
     10   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     11   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     12   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      matt  *    documentation and/or other materials provided with the distribution.
     15   1.1      matt  * 3. The name of Genetec Corporation may not be used to endorse or
     16   1.1      matt  *    promote products derived from this software without specific prior
     17   1.1      matt  *    written permission.
     18   1.1      matt  *
     19   1.1      matt  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20   1.1      matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23   1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1      matt  *
     31   1.1      matt  * Copyright (c) 2001 Wasabi Systems, Inc.
     32   1.1      matt  * All rights reserved.
     33   1.1      matt  *
     34   1.1      matt  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35   1.1      matt  *
     36   1.1      matt  * Redistribution and use in source and binary forms, with or without
     37   1.1      matt  * modification, are permitted provided that the following conditions
     38   1.1      matt  * are met:
     39   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     40   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     41   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     42   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     43   1.1      matt  *    documentation and/or other materials provided with the distribution.
     44   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     45   1.1      matt  *    must display the following acknowledgement:
     46   1.1      matt  *	This product includes software developed for the NetBSD Project by
     47   1.1      matt  *	Wasabi Systems, Inc.
     48   1.1      matt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49   1.1      matt  *    or promote products derived from this software without specific prior
     50   1.1      matt  *    written permission.
     51   1.1      matt  *
     52   1.1      matt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53   1.1      matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54   1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55   1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56   1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57   1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58   1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59   1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60   1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61   1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62   1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     63   1.1      matt  *
     64   1.1      matt  * Copyright (c) 1997,1998 Mark Brinicombe.
     65   1.1      matt  * Copyright (c) 1997,1998 Causality Limited.
     66   1.1      matt  * All rights reserved.
     67   1.1      matt  *
     68   1.1      matt  * Redistribution and use in source and binary forms, with or without
     69   1.1      matt  * modification, are permitted provided that the following conditions
     70   1.1      matt  * are met:
     71   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     72   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     73   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     74   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     75   1.1      matt  *    documentation and/or other materials provided with the distribution.
     76   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     77   1.1      matt  *    must display the following acknowledgement:
     78   1.1      matt  *	This product includes software developed by Mark Brinicombe
     79   1.1      matt  *	for the NetBSD Project.
     80   1.1      matt  * 4. The name of the company nor the name of the author may be used to
     81   1.1      matt  *    endorse or promote products derived from this software without specific
     82   1.1      matt  *    prior written permission.
     83   1.1      matt  *
     84   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85   1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86   1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87   1.1      matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88   1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89   1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90   1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91   1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92   1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93   1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94   1.1      matt  * SUCH DAMAGE.
     95   1.1      matt  *
     96   1.1      matt  * Copyright (c) 2007 Microsoft
     97   1.1      matt  * All rights reserved.
     98   1.1      matt  *
     99   1.1      matt  * Redistribution and use in source and binary forms, with or without
    100   1.1      matt  * modification, are permitted provided that the following conditions
    101   1.1      matt  * are met:
    102   1.1      matt  * 1. Redistributions of source code must retain the above copyright
    103   1.1      matt  *    notice, this list of conditions and the following disclaimer.
    104   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
    105   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
    106   1.1      matt  *    documentation and/or other materials provided with the distribution.
    107   1.1      matt  * 3. All advertising materials mentioning features or use of this software
    108   1.1      matt  *    must display the following acknowledgement:
    109   1.1      matt  *	This product includes software developed by Microsoft
    110   1.1      matt  *
    111   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112   1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113   1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114   1.1      matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115   1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116   1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117   1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118   1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119   1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120   1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121   1.1      matt  * SUCH DAMAGE.
    122   1.1      matt  */
    123   1.1      matt 
    124  1.42     skrll #include "opt_arm_debug.h"
    125  1.46     skrll #include "opt_arm_start.h"
    126  1.69     skrll #include "opt_efi.h"
    127  1.41     skrll #include "opt_fdt.h"
    128  1.32     skrll #include "opt_multiprocessor.h"
    129  1.32     skrll 
    130   1.1      matt #include <sys/cdefs.h>
    131  1.69     skrll __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.69 2022/04/02 11:16:07 skrll Exp $");
    132   1.1      matt 
    133   1.1      matt #include <sys/param.h>
    134  1.59     skrll 
    135  1.64     skrll #include <sys/asan.h>
    136  1.58     skrll #include <sys/bus.h>
    137   1.1      matt #include <sys/device.h>
    138   1.1      matt #include <sys/kernel.h>
    139   1.1      matt #include <sys/reboot.h>
    140   1.1      matt 
    141   1.1      matt #include <dev/cons.h>
    142   1.1      matt 
    143   1.1      matt #include <uvm/uvm_extern.h>
    144   1.1      matt 
    145  1.58     skrll #include <arm/arm32/machdep.h>
    146  1.58     skrll #include <arm/bootconfig.h>
    147  1.58     skrll #include <arm/db_machdep.h>
    148  1.24      matt #include <arm/locore.h>
    149   1.1      matt #include <arm/undefined.h>
    150   1.1      matt 
    151  1.41     skrll #if defined(FDT)
    152  1.41     skrll #include <arch/evbarm/fdt/platform.h>
    153  1.46     skrll #include <arm/fdt/arm_fdtvar.h>
    154  1.67     skrll #include <dev/fdt/fdt_memory.h>
    155  1.41     skrll #endif
    156  1.41     skrll 
    157  1.39     skrll #ifdef MULTIPROCESSOR
    158  1.39     skrll #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    159  1.39     skrll #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
    160  1.39     skrll #endif
    161  1.39     skrll #endif
    162  1.39     skrll 
    163  1.42     skrll #ifdef VERBOSE_INIT_ARM
    164  1.42     skrll #define VPRINTF(...)	printf(__VA_ARGS__)
    165  1.42     skrll #else
    166  1.45     skrll #define VPRINTF(...)	__nothing
    167  1.42     skrll #endif
    168  1.42     skrll 
    169  1.68     skrll #if defined(__HAVE_GENERIC_START)
    170  1.68     skrll #if defined(KERNEL_BASE_VOFFSET)
    171  1.68     skrll #error KERNEL_BASE_VOFFSET should not be defined with __HAVE_GENERIC_START
    172  1.68     skrll #endif
    173  1.68     skrll #endif
    174  1.68     skrll 
    175  1.69     skrll #if defined(EFI_RUNTIME)
    176  1.69     skrll #if !defined(ARM_MMU_EXTENDED)
    177  1.69     skrll #error EFI_RUNTIME is only supported with ARM_MMU_EXTENDED
    178  1.69     skrll #endif
    179  1.69     skrll #endif
    180  1.69     skrll 
    181   1.1      matt struct bootmem_info bootmem_info;
    182   1.1      matt 
    183  1.27      matt extern void *msgbufaddr;
    184   1.1      matt paddr_t msgbufphys;
    185   1.1      matt paddr_t physical_start;
    186   1.1      matt paddr_t physical_end;
    187   1.1      matt 
    188   1.1      matt extern char etext[];
    189   1.1      matt extern char __data_start[], _edata[];
    190   1.1      matt extern char __bss_start[], __bss_end__[];
    191   1.1      matt extern char _end[];
    192   1.1      matt 
    193   1.1      matt /* Page tables for mapping kernel VM */
    194   1.1      matt #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    195   1.1      matt 
    196  1.64     skrll #ifdef KASAN
    197  1.64     skrll vaddr_t kasan_kernelstart;
    198  1.64     skrll vaddr_t kasan_kernelsize;
    199  1.64     skrll 
    200  1.64     skrll #define	KERNEL_L2PT_KASAN_NUM	howmany(VM_KERNEL_KASAN_SIZE, L2_S_SEGSIZE)
    201  1.65     skrll bool kasan_l2pts_created  __attribute__((__section__(".data"))) = false;
    202  1.64     skrll pv_addr_t kasan_l2pt[KERNEL_L2PT_KASAN_NUM];
    203  1.64     skrll #else
    204  1.64     skrll #define KERNEL_L2PT_KASAN_NUM	0
    205  1.64     skrll #endif
    206  1.64     skrll 
    207  1.44     skrll u_long kern_vtopdiff __attribute__((__section__(".data")));
    208   1.1      matt 
    209   1.1      matt void
    210   1.1      matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    211   1.1      matt {
    212   1.1      matt 	struct bootmem_info * const bmi = &bootmem_info;
    213   1.1      matt 	pv_addr_t *pv = bmi->bmi_freeblocks;
    214   1.1      matt 
    215  1.44     skrll 	/*
    216  1.46     skrll 	 * FDT/generic start fills in kern_vtopdiff early
    217  1.44     skrll 	 */
    218  1.46     skrll #if defined(__HAVE_GENERIC_START)
    219  1.46     skrll 	extern char KERNEL_BASE_virt[];
    220  1.52     skrll 	extern char const __stop__init_memory[];
    221  1.46     skrll 
    222  1.46     skrll 	VPRINTF("%s: kern_vtopdiff=%#lx\n", __func__, kern_vtopdiff);
    223  1.46     skrll 
    224  1.46     skrll 	vaddr_t kstartva = trunc_page((vaddr_t)KERNEL_BASE_virt);
    225  1.52     skrll 	vaddr_t kendva = round_page((vaddr_t)__stop__init_memory);
    226  1.46     skrll 
    227  1.46     skrll 	kernelstart = KERN_VTOPHYS(kstartva);
    228  1.46     skrll 
    229  1.46     skrll 	VPRINTF("%s: kstartva=%#lx, kernelstart=%#lx\n", __func__, kstartva, kernelstart);
    230  1.46     skrll #else
    231  1.46     skrll 	vaddr_t kendva = round_page((vaddr_t)_end);
    232  1.46     skrll 
    233  1.44     skrll #if defined(KERNEL_BASE_VOFFSET)
    234  1.44     skrll 	kern_vtopdiff = KERNEL_BASE_VOFFSET;
    235  1.44     skrll #else
    236  1.44     skrll 	KASSERT(memstart == kernelstart);
    237  1.44     skrll 	kern_vtopdiff = KERNEL_BASE + memstart;
    238  1.44     skrll #endif
    239  1.46     skrll #endif
    240  1.46     skrll 	paddr_t kernelend = KERN_VTOPHYS(kendva);
    241  1.44     skrll 
    242  1.51     skrll 	VPRINTF("%s: memstart=%#lx, memsize=%#lx\n", __func__,
    243  1.51     skrll 	    memstart, memsize);
    244  1.46     skrll 	VPRINTF("%s: kernelstart=%#lx, kernelend=%#lx\n", __func__,
    245  1.46     skrll 	    kernelstart, kernelend);
    246   1.1      matt 
    247   1.1      matt 	physical_start = bmi->bmi_start = memstart;
    248   1.1      matt 	physical_end = bmi->bmi_end = memstart + memsize;
    249  1.33      matt #ifndef ARM_HAS_LPAE
    250  1.33      matt 	if (physical_end == 0) {
    251  1.33      matt 		physical_end = -PAGE_SIZE;
    252  1.33      matt 		memsize -= PAGE_SIZE;
    253  1.34      matt 		bmi->bmi_end -= PAGE_SIZE;
    254  1.42     skrll 		VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    255  1.33      matt 		    __func__);
    256  1.33      matt 	}
    257  1.33      matt #endif
    258   1.1      matt 	physmem = memsize / PAGE_SIZE;
    259   1.1      matt 
    260   1.1      matt 	/*
    261   1.1      matt 	 * Let's record where the kernel lives.
    262   1.1      matt 	 */
    263  1.46     skrll 
    264   1.1      matt 	bmi->bmi_kernelstart = kernelstart;
    265  1.46     skrll 	bmi->bmi_kernelend = kernelend;
    266   1.1      matt 
    267  1.41     skrll #if defined(FDT)
    268  1.67     skrll 	fdt_memory_remove_range(bmi->bmi_kernelstart,
    269  1.41     skrll 	    bmi->bmi_kernelend - bmi->bmi_kernelstart);
    270  1.41     skrll #endif
    271  1.41     skrll 
    272  1.46     skrll 	VPRINTF("%s: kernel phys start %#lx end %#lx\n", __func__, kernelstart,
    273  1.46     skrll 	    kernelend);
    274   1.1      matt 
    275  1.46     skrll #if 0
    276  1.46     skrll 	// XXX Makes RPI abort
    277  1.46     skrll 	KASSERT((kernelstart & (L2_S_SEGSIZE - 1)) == 0);
    278  1.46     skrll #endif
    279   1.1      matt 	/*
    280   1.1      matt 	 * Now the rest of the free memory must be after the kernel.
    281   1.1      matt 	 */
    282   1.1      matt 	pv->pv_pa = bmi->bmi_kernelend;
    283  1.44     skrll 	pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    284   1.1      matt 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    285   1.1      matt 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    286  1.42     skrll 	VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    287   1.1      matt 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    288   1.1      matt 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    289   1.1      matt 	pv++;
    290   1.1      matt 
    291   1.1      matt 	/*
    292   1.1      matt 	 * Add a free block for any memory before the kernel.
    293   1.1      matt 	 */
    294   1.1      matt 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    295   1.1      matt 		pv->pv_pa = bmi->bmi_start;
    296  1.44     skrll 		pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    297  1.33      matt 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    298   1.1      matt 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    299  1.42     skrll 		VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    300   1.1      matt 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    301   1.1      matt 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    302   1.1      matt 		pv++;
    303   1.1      matt 	}
    304   1.1      matt 
    305   1.1      matt 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    306  1.36     skrll 
    307   1.1      matt 	SLIST_INIT(&bmi->bmi_freechunks);
    308   1.1      matt 	SLIST_INIT(&bmi->bmi_chunks);
    309   1.1      matt }
    310   1.1      matt 
    311   1.1      matt static bool
    312   1.1      matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    313   1.1      matt {
    314   1.1      matt 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    315   1.1      matt 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    316   1.1      matt 	    && acc_pv->pv_prot == pv->pv_prot
    317   1.1      matt 	    && acc_pv->pv_cache == pv->pv_cache) {
    318  1.46     skrll #if 0
    319  1.42     skrll 		VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    320  1.46     skrll 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size,
    321  1.46     skrll 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size);
    322  1.46     skrll #endif
    323   1.1      matt 		acc_pv->pv_size += pv->pv_size;
    324   1.1      matt 		return true;
    325   1.1      matt 	}
    326   1.1      matt 
    327   1.1      matt 	return false;
    328   1.1      matt }
    329   1.1      matt 
    330   1.1      matt static void
    331   1.1      matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    332   1.1      matt {
    333   1.1      matt 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    334  1.14     skrll 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    335   1.1      matt 		pv_addr_t * const pv0 = (*pvp);
    336   1.1      matt 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    337   1.1      matt 		if (concat_pvaddr(pv0, pv)) {
    338  1.42     skrll 			VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    339   1.1      matt 			    __func__, "appending", pv,
    340   1.1      matt 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    341   1.1      matt 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    342   1.1      matt 			pv = SLIST_NEXT(pv0, pv_list);
    343   1.1      matt 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    344  1.42     skrll 				VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    345   1.1      matt 				    __func__, "merging", pv,
    346   1.1      matt 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    347   1.1      matt 				    pv0->pv_pa,
    348   1.1      matt 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    349   1.1      matt 				SLIST_REMOVE_AFTER(pv0, pv_list);
    350   1.1      matt 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    351   1.1      matt 			}
    352   1.1      matt 			return;
    353   1.1      matt 		}
    354   1.1      matt 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    355   1.1      matt 		pvp = &SLIST_NEXT(*pvp, pv_list);
    356   1.1      matt 	}
    357   1.1      matt 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    358   1.1      matt 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    359   1.1      matt 	KASSERT(new_pv != NULL);
    360   1.1      matt 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    361   1.1      matt 	*new_pv = *pv;
    362   1.1      matt 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    363   1.1      matt 	(*pvp) = new_pv;
    364  1.42     skrll 
    365  1.42     skrll 	VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    366   1.1      matt 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    367   1.1      matt 	    new_pv->pv_size / PAGE_SIZE);
    368  1.42     skrll 	if (SLIST_NEXT(new_pv, pv_list)) {
    369  1.42     skrll 		VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    370  1.42     skrll 	} else {
    371  1.42     skrll 		VPRINTF("at tail\n");
    372  1.42     skrll 	}
    373   1.1      matt }
    374   1.1      matt 
    375   1.1      matt static void
    376   1.1      matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    377  1.61     skrll     int prot, int cache, bool zero_p)
    378   1.1      matt {
    379   1.1      matt 	size_t nbytes = npages * PAGE_SIZE;
    380   1.1      matt 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    381   1.1      matt 	size_t free_idx = 0;
    382   1.1      matt 	static bool l1pt_found;
    383   1.1      matt 
    384  1.23      matt 	KASSERT(npages > 0);
    385  1.23      matt 
    386   1.1      matt 	/*
    387   1.6     skrll 	 * If we haven't allocated the kernel L1 page table and we are aligned
    388   1.1      matt 	 * at a L1 table boundary, alloc the memory for it.
    389   1.1      matt 	 */
    390   1.1      matt 	if (!l1pt_found
    391   1.1      matt 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    392   1.1      matt 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    393   1.1      matt 		l1pt_found = true;
    394  1.46     skrll 		VPRINTF(" l1pt");
    395  1.46     skrll 
    396   1.1      matt 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    397  1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    398   1.1      matt 		add_pages(bmi, &kernel_l1pt);
    399  1.69     skrll #if defined(EFI_RUNTIME)
    400  1.69     skrll 		valloc_pages(bmi, &efirt_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    401  1.69     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    402  1.69     skrll 		add_pages(bmi, &efirt_l1pt);
    403  1.69     skrll #endif
    404   1.1      matt 	}
    405   1.1      matt 
    406   1.1      matt 	while (nbytes > free_pv->pv_size) {
    407   1.1      matt 		free_pv++;
    408   1.1      matt 		free_idx++;
    409   1.1      matt 		if (free_idx == bmi->bmi_nfreeblocks) {
    410   1.1      matt 			panic("%s: could not allocate %zu bytes",
    411   1.1      matt 			    __func__, nbytes);
    412   1.1      matt 		}
    413   1.1      matt 	}
    414   1.1      matt 
    415  1.12     skrll 	/*
    416  1.12     skrll 	 * As we allocate the memory, make sure that we don't walk over
    417  1.12     skrll 	 * our current first level translation table.
    418  1.12     skrll 	 */
    419  1.12     skrll 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    420  1.12     skrll 
    421  1.41     skrll #if defined(FDT)
    422  1.67     skrll 	fdt_memory_remove_range(free_pv->pv_pa, nbytes);
    423  1.41     skrll #endif
    424   1.1      matt 	pv->pv_pa = free_pv->pv_pa;
    425   1.1      matt 	pv->pv_va = free_pv->pv_va;
    426   1.1      matt 	pv->pv_size = nbytes;
    427   1.1      matt 	pv->pv_prot = prot;
    428   1.1      matt 	pv->pv_cache = cache;
    429   1.1      matt 
    430   1.1      matt 	/*
    431   1.1      matt 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    432   1.1      matt 	 * just use PTE_CACHE.
    433   1.1      matt 	 */
    434   1.1      matt 	if (cache == PTE_PAGETABLE
    435   1.1      matt 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    436   1.1      matt 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    437   1.1      matt 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    438   1.1      matt 		pv->pv_cache = PTE_CACHE;
    439   1.1      matt 
    440   1.1      matt 	free_pv->pv_pa += nbytes;
    441   1.1      matt 	free_pv->pv_va += nbytes;
    442   1.1      matt 	free_pv->pv_size -= nbytes;
    443   1.1      matt 	if (free_pv->pv_size == 0) {
    444   1.1      matt 		--bmi->bmi_nfreeblocks;
    445   1.1      matt 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    446   1.1      matt 			free_pv[0] = free_pv[1];
    447   1.1      matt 		}
    448   1.1      matt 	}
    449   1.1      matt 
    450   1.1      matt 	bmi->bmi_freepages -= npages;
    451   1.1      matt 
    452  1.18      matt 	if (zero_p)
    453  1.18      matt 		memset((void *)pv->pv_va, 0, nbytes);
    454   1.1      matt }
    455   1.1      matt 
    456   1.1      matt void
    457   1.1      matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    458  1.61     skrll     const struct pmap_devmap *devmap, bool mapallmem_p)
    459   1.1      matt {
    460   1.1      matt 	struct bootmem_info * const bmi = &bootmem_info;
    461   1.1      matt #ifdef MULTIPROCESSOR
    462  1.25      matt 	const size_t cpu_num = arm_cpu_max;
    463   1.1      matt #else
    464   1.1      matt 	const size_t cpu_num = 1;
    465   1.1      matt #endif
    466  1.46     skrll 
    467  1.20      matt #ifdef ARM_HAS_VBAR
    468  1.20      matt 	const bool map_vectors_p = false;
    469  1.20      matt #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    470  1.21      matt 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    471  1.21      matt 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    472  1.19      matt #else
    473  1.19      matt 	const bool map_vectors_p = true;
    474  1.19      matt #endif
    475   1.1      matt 
    476  1.15      matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    477  1.15      matt 	KASSERT(mapallmem_p);
    478  1.28      matt #ifdef ARM_MMU_EXTENDED
    479  1.28      matt 	/*
    480  1.35      matt 	 * The direct map VA space ends at the start of the kernel VM space.
    481  1.28      matt 	 */
    482  1.34      matt 	pmap_directlimit = kernel_vm_base;
    483  1.28      matt #else
    484  1.28      matt 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    485  1.28      matt #endif /* ARM_MMU_EXTENDED */
    486  1.28      matt #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    487  1.15      matt 
    488   1.1      matt 	/*
    489   1.1      matt 	 * Calculate the number of L2 pages needed for mapping the
    490  1.11     skrll 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    491  1.11     skrll 	 * and 1 for IO
    492   1.1      matt 	 */
    493   1.1      matt 	size_t kernel_size = bmi->bmi_kernelend;
    494   1.1      matt 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    495  1.56     skrll 	kernel_size += L1_TABLE_SIZE;
    496  1.23      matt 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    497  1.64     skrll 	kernel_size += PAGE_SIZE * KERNEL_L2PT_KASAN_NUM;
    498  1.23      matt 	if (map_vectors_p) {
    499  1.23      matt 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    500  1.23      matt 	}
    501  1.23      matt 	if (iovbase) {
    502  1.23      matt 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    503  1.23      matt 	}
    504   1.1      matt 	kernel_size +=
    505   1.1      matt 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    506   1.1      matt 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    507  1.11     skrll 	kernel_size += round_page(MSGBUFSIZE);
    508   1.1      matt 	kernel_size += 0x10000;	/* slop */
    509  1.23      matt 	if (!mapallmem_p) {
    510  1.23      matt 		kernel_size += PAGE_SIZE
    511  1.62     skrll 		    * howmany(kernel_size, L2_S_SEGSIZE);
    512  1.23      matt 	}
    513   1.1      matt 	kernel_size = round_page(kernel_size);
    514   1.1      matt 
    515   1.1      matt 	/*
    516  1.37     skrll 	 * Now we know how many L2 pages it will take.
    517   1.1      matt 	 */
    518  1.37     skrll 	const size_t KERNEL_L2PT_KERNEL_NUM =
    519  1.62     skrll 	    howmany(kernel_size, L2_S_SEGSIZE);
    520   1.1      matt 
    521  1.42     skrll 	VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    522   1.1      matt 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    523   1.1      matt 
    524   1.1      matt 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    525   1.1      matt 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    526   1.1      matt 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    527   1.1      matt 	pv_addr_t msgbuf;
    528   1.1      matt 	pv_addr_t text;
    529   1.1      matt 	pv_addr_t data;
    530  1.60     skrll 	pv_addr_t chunks[__arraycount(bmi->bmi_l2pts) + 11];
    531   1.1      matt #if ARM_MMU_XSCALE == 1
    532   1.1      matt 	pv_addr_t minidataclean;
    533   1.1      matt #endif
    534   1.1      matt 
    535   1.1      matt 	/*
    536   1.1      matt 	 * We need to allocate some fixed page tables to get the kernel going.
    537   1.1      matt 	 *
    538   1.1      matt 	 * We are going to allocate our bootstrap pages from the beginning of
    539   1.1      matt 	 * the free space that we just calculated.  We allocate one page
    540   1.1      matt 	 * directory and a number of page tables and store the physical
    541  1.10     skrll 	 * addresses in the bmi_l2pts array in bootmem_info.
    542   1.1      matt 	 *
    543   1.1      matt 	 * The kernel page directory must be on a 16K boundary.  The page
    544   1.1      matt 	 * tables must be on 4K boundaries.  What we do is allocate the
    545   1.1      matt 	 * page directory on the first 16K boundary that we encounter, and
    546   1.1      matt 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    547   1.1      matt 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    548   1.1      matt 	 * least one 16K aligned region.
    549   1.1      matt 	 */
    550   1.1      matt 
    551  1.42     skrll 	VPRINTF("%s: allocating page tables for", __func__);
    552   1.1      matt 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    553   1.1      matt 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    554   1.1      matt 	}
    555   1.1      matt 
    556   1.1      matt 	kernel_l1pt.pv_pa = 0;
    557   1.1      matt 	kernel_l1pt.pv_va = 0;
    558   1.1      matt 
    559  1.69     skrll #if defined(EFI_RUNTIME)
    560  1.69     skrll 	efirt_l1pt.pv_pa = 0;
    561  1.69     skrll 	efirt_l1pt.pv_va = 0;
    562  1.69     skrll #endif
    563   1.1      matt 	/*
    564  1.10     skrll 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    565  1.10     skrll 	 * an L1 page table, we will allocate the pages for it first and then
    566  1.10     skrll 	 * allocate the L2 page.
    567  1.10     skrll 	 */
    568  1.10     skrll 
    569  1.19      matt 	if (map_vectors_p) {
    570  1.19      matt 		/*
    571  1.19      matt 		 * First allocate L2 page for the vectors.
    572  1.19      matt 		 */
    573  1.42     skrll 		VPRINTF(" vector");
    574  1.23      matt 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    575  1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    576  1.19      matt 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    577  1.19      matt 	}
    578   1.1      matt 
    579   1.1      matt 	/*
    580  1.10     skrll 	 * Now allocate L2 pages for the kernel
    581   1.1      matt 	 */
    582  1.42     skrll 	VPRINTF(" kernel");
    583   1.8     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    584  1.23      matt 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    585  1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    586   1.1      matt 		add_pages(bmi, &kernel_l2pt[idx]);
    587   1.1      matt 	}
    588  1.10     skrll 
    589  1.10     skrll 	/*
    590  1.10     skrll 	 * Now allocate L2 pages for the initial kernel VA space.
    591  1.10     skrll 	 */
    592  1.42     skrll 	VPRINTF(" vm");
    593   1.8     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    594  1.23      matt 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    595  1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    596   1.1      matt 		add_pages(bmi, &vmdata_l2pt[idx]);
    597   1.1      matt 	}
    598   1.1      matt 
    599  1.64     skrll #ifdef KASAN
    600  1.64     skrll 	/*
    601  1.64     skrll 	 * Now allocate L2 pages for the KASAN shadow map l2pt VA space.
    602  1.64     skrll 	 */
    603  1.64     skrll 	VPRINTF(" kasan");
    604  1.64     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; ++idx) {
    605  1.64     skrll 		valloc_pages(bmi, &kasan_l2pt[idx], 1,
    606  1.64     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    607  1.64     skrll 		add_pages(bmi, &kasan_l2pt[idx]);
    608  1.64     skrll 	}
    609  1.64     skrll 
    610  1.64     skrll #endif
    611   1.1      matt 	/*
    612   1.1      matt 	 * If someone wanted a L2 page for I/O, allocate it now.
    613   1.1      matt 	 */
    614  1.23      matt 	if (iovbase) {
    615  1.42     skrll 		VPRINTF(" io");
    616  1.23      matt 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    617  1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    618   1.1      matt 		add_pages(bmi, &bmi->bmi_io_l2pt);
    619   1.1      matt 	}
    620   1.1      matt 
    621  1.42     skrll 	VPRINTF("%s: allocating stacks\n", __func__);
    622   1.1      matt 
    623  1.10     skrll 	/* Allocate stacks for all modes and CPUs */
    624   1.1      matt 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    625  1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    626   1.1      matt 	add_pages(bmi, &abtstack);
    627   1.1      matt 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    628  1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    629   1.1      matt 	add_pages(bmi, &fiqstack);
    630   1.1      matt 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    631  1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    632   1.1      matt 	add_pages(bmi, &irqstack);
    633   1.1      matt 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    634  1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    635   1.1      matt 	add_pages(bmi, &undstack);
    636   1.1      matt 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    637  1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    638   1.1      matt 	add_pages(bmi, &idlestack);
    639   1.1      matt 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    640  1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    641   1.1      matt 	add_pages(bmi, &kernelstack);
    642   1.1      matt 
    643   1.1      matt 	/* Allocate the message buffer from the end of memory. */
    644   1.1      matt 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    645   1.1      matt 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    646  1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, false);
    647   1.1      matt 	add_pages(bmi, &msgbuf);
    648   1.1      matt 	msgbufphys = msgbuf.pv_pa;
    649  1.27      matt 	msgbufaddr = (void *)msgbuf.pv_va;
    650   1.1      matt 
    651  1.64     skrll #ifdef KASAN
    652  1.64     skrll 	kasan_kernelstart = KERNEL_BASE;
    653  1.64     skrll 	kasan_kernelsize = (msgbuf.pv_va + round_page(MSGBUFSIZE)) - KERNEL_BASE;
    654  1.64     skrll #endif
    655  1.64     skrll 
    656  1.19      matt 	if (map_vectors_p) {
    657  1.19      matt 		/*
    658  1.19      matt 		 * Allocate a page for the system vector page.
    659  1.19      matt 		 * This page will just contain the system vectors and can be
    660  1.19      matt 		 * shared by all processes.
    661  1.19      matt 		 */
    662  1.46     skrll 		VPRINTF(" vector");
    663  1.46     skrll 
    664  1.61     skrll 		valloc_pages(bmi, &systempage, 1,
    665  1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE,
    666  1.19      matt 		    PTE_CACHE, true);
    667  1.19      matt 	}
    668   1.1      matt 	systempage.pv_va = vectors;
    669   1.1      matt 
    670   1.1      matt 	/*
    671   1.1      matt 	 * If the caller needed a few extra pages for some reason, allocate
    672   1.1      matt 	 * them now.
    673   1.1      matt 	 */
    674   1.1      matt #if ARM_MMU_XSCALE == 1
    675   1.1      matt #if (ARM_NMMUS > 1)
    676   1.1      matt 	if (xscale_use_minidata)
    677  1.36     skrll #endif
    678  1.30  kiyohara 		valloc_pages(bmi, &minidataclean, 1,
    679  1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, 0, true);
    680   1.1      matt #endif
    681   1.1      matt 
    682   1.1      matt 	/*
    683   1.1      matt 	 * Ok we have allocated physical pages for the primary kernel
    684   1.1      matt 	 * page tables and stacks.  Let's just confirm that.
    685   1.1      matt 	 */
    686   1.1      matt 	if (kernel_l1pt.pv_va == 0
    687   1.1      matt 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    688   1.1      matt 		panic("%s: Failed to allocate or align the kernel "
    689   1.1      matt 		    "page directory", __func__);
    690   1.1      matt 
    691  1.46     skrll 	VPRINTF("Creating L1 page table at 0x%08lx/0x%08lx\n",
    692  1.46     skrll 	    kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
    693   1.1      matt 
    694   1.1      matt 	/*
    695   1.1      matt 	 * Now we start construction of the L1 page table
    696   1.1      matt 	 * We start by mapping the L2 page tables into the L1.
    697   1.1      matt 	 * This means that we can replace L1 mappings later on if necessary
    698   1.1      matt 	 */
    699   1.1      matt 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    700   1.1      matt 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    701   1.1      matt 
    702  1.19      matt 	if (map_vectors_p) {
    703  1.19      matt 		/* Map the L2 pages tables in the L1 page table */
    704  1.63     skrll 		const vaddr_t va = systempage.pv_va & -L2_S_SEGSIZE;
    705  1.63     skrll 
    706  1.63     skrll 		pmap_link_l2pt(l1pt_va, va,  &bmi->bmi_vector_l2pt);
    707  1.63     skrll 
    708  1.63     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    709  1.19      matt 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    710  1.63     skrll 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va, "(vectors)");
    711  1.19      matt 	}
    712   1.1      matt 
    713  1.46     skrll 	/*
    714  1.57     skrll 	 * This enforces an alignment requirement of L2_S_SEGSIZE for kernel
    715  1.46     skrll 	 * start PA
    716  1.46     skrll 	 */
    717   1.1      matt 	const vaddr_t kernel_base =
    718  1.44     skrll 	    KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    719  1.46     skrll 
    720  1.46     skrll 	VPRINTF("%s: kernel_base %lx KERNEL_L2PT_KERNEL_NUM %zu\n", __func__,
    721  1.46     skrll 	    kernel_base, KERNEL_L2PT_KERNEL_NUM);
    722  1.46     skrll 
    723   1.1      matt 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    724  1.63     skrll 		const vaddr_t va = kernel_base + idx * L2_S_SEGSIZE;
    725  1.63     skrll 
    726  1.63     skrll 		pmap_link_l2pt(l1pt_va, va, &kernel_l2pt[idx]);
    727  1.63     skrll 
    728  1.63     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    729  1.63     skrll 		    __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
    730  1.63     skrll 		    va, "(kernel)");
    731   1.1      matt 	}
    732   1.1      matt 
    733  1.49     skrll 	VPRINTF("%s: kernel_vm_base %lx KERNEL_L2PT_VMDATA_NUM %d\n", __func__,
    734  1.49     skrll 	    kernel_vm_base, KERNEL_L2PT_VMDATA_NUM);
    735  1.46     skrll 
    736   1.1      matt 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    737  1.63     skrll 		const vaddr_t va = kernel_vm_base + idx * L2_S_SEGSIZE;
    738  1.63     skrll 
    739  1.63     skrll 		pmap_link_l2pt(l1pt_va, va, &vmdata_l2pt[idx]);
    740  1.63     skrll 
    741  1.63     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    742   1.1      matt 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    743  1.63     skrll 		    va, "(vm)");
    744   1.1      matt 	}
    745   1.1      matt 	if (iovbase) {
    746  1.63     skrll 		const vaddr_t va = iovbase & -L2_S_SEGSIZE;
    747  1.63     skrll 
    748  1.63     skrll 		pmap_link_l2pt(l1pt_va, va, &bmi->bmi_io_l2pt);
    749  1.63     skrll 
    750  1.63     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    751   1.1      matt 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    752  1.63     skrll 		    va, "(io)");
    753   1.1      matt 	}
    754   1.1      matt 
    755  1.64     skrll #ifdef KASAN
    756  1.64     skrll 	VPRINTF("%s: kasan_shadow_base %x KERNEL_L2PT_KASAN_NUM %d\n", __func__,
    757  1.64     skrll 	    VM_KERNEL_KASAN_BASE, KERNEL_L2PT_KASAN_NUM);
    758  1.64     skrll 
    759  1.64     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; idx++) {
    760  1.64     skrll 		const vaddr_t va = VM_KERNEL_KASAN_BASE  + idx * L2_S_SEGSIZE;
    761  1.64     skrll 
    762  1.64     skrll 		pmap_link_l2pt(l1pt_va, va, &kasan_l2pt[idx]);
    763  1.64     skrll 
    764  1.64     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    765  1.64     skrll 		    __func__, kasan_l2pt[idx].pv_va, kasan_l2pt[idx].pv_pa,
    766  1.64     skrll 		    va, "(kasan)");
    767  1.64     skrll 	}
    768  1.65     skrll 	kasan_l2pts_created = true;
    769  1.64     skrll #endif
    770  1.64     skrll 
    771   1.1      matt 	/* update the top of the kernel VM */
    772   1.1      matt 	pmap_curmaxkvaddr =
    773   1.1      matt 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    774   1.1      matt 
    775  1.46     skrll 	// This could be done earlier and then the kernel data and pages
    776  1.46     skrll 	// allocated above would get merged (concatentated)
    777  1.46     skrll 
    778  1.42     skrll 	VPRINTF("Mapping kernel\n");
    779   1.1      matt 
    780  1.44     skrll 	extern char etext[];
    781   1.1      matt 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    782  1.44     skrll 	size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
    783   1.1      matt 
    784   1.1      matt 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    785   1.1      matt 
    786   1.1      matt 	/* start at offset of kernel in RAM */
    787   1.1      matt 
    788   1.1      matt 	text.pv_pa = bmi->bmi_kernelstart;
    789  1.44     skrll 	text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
    790   1.1      matt 	text.pv_size = textsize;
    791  1.40     skrll 	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
    792   1.1      matt 	text.pv_cache = PTE_CACHE;
    793   1.1      matt 
    794  1.42     skrll 	VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    795   1.1      matt 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    796   1.1      matt 
    797   1.1      matt 	add_pages(bmi, &text);
    798   1.1      matt 
    799   1.1      matt 	data.pv_pa = text.pv_pa + textsize;
    800   1.1      matt 	data.pv_va = text.pv_va + textsize;
    801   1.1      matt 	data.pv_size = totalsize - textsize;
    802  1.51     skrll 	data.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    803   1.1      matt 	data.pv_cache = PTE_CACHE;
    804   1.1      matt 
    805  1.42     skrll 	VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    806   1.1      matt 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    807   1.1      matt 
    808   1.1      matt 	add_pages(bmi, &data);
    809   1.1      matt 
    810  1.42     skrll 	VPRINTF("Listing Chunks\n");
    811  1.26     skrll 
    812  1.26     skrll 	pv_addr_t *lpv;
    813  1.26     skrll 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    814  1.42     skrll 		VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
    815  1.26     skrll 		    "(PA %#lx, prot %d, cache %d)\n",
    816  1.26     skrll 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    817  1.26     skrll 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    818   1.1      matt 	}
    819  1.42     skrll 	VPRINTF("\nMapping Chunks\n");
    820   1.1      matt 
    821   1.1      matt 	pv_addr_t cur_pv;
    822   1.1      matt 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    823   1.1      matt 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    824   1.1      matt 		cur_pv = *pv;
    825  1.35      matt 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    826   1.1      matt 		pv = SLIST_NEXT(pv, pv_list);
    827   1.1      matt 	} else {
    828  1.13      matt 		cur_pv.pv_va = KERNEL_BASE;
    829  1.44     skrll 		cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
    830  1.35      matt 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    831   1.1      matt 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    832   1.1      matt 		cur_pv.pv_cache = PTE_CACHE;
    833   1.1      matt 	}
    834   1.1      matt 	while (pv != NULL) {
    835  1.54     skrll 		if (mapallmem_p) {
    836  1.54     skrll 			if (concat_pvaddr(&cur_pv, pv)) {
    837  1.54     skrll 				pv = SLIST_NEXT(pv, pv_list);
    838  1.54     skrll 				continue;
    839  1.54     skrll 			}
    840   1.1      matt 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    841   1.1      matt 				/*
    842   1.1      matt 				 * See if we can extend the current pv to emcompass the
    843   1.1      matt 				 * hole, and if so do it and retry the concatenation.
    844   1.1      matt 				 */
    845  1.61     skrll 				if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    846   1.1      matt 				    && cur_pv.pv_cache == PTE_CACHE) {
    847   1.1      matt 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    848   1.1      matt 					continue;
    849   1.1      matt 				}
    850   1.1      matt 
    851   1.1      matt 				/*
    852   1.1      matt 				 * We couldn't so emit the current chunk and then
    853   1.1      matt 				 */
    854  1.42     skrll 				VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    855   1.1      matt 				    "(PA %#lx, prot %d, cache %d)\n",
    856   1.1      matt 				    __func__,
    857   1.1      matt 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    858   1.1      matt 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    859   1.1      matt 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    860   1.1      matt 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    861   1.1      matt 
    862   1.1      matt 				/*
    863   1.1      matt 				 * set the current chunk to the hole and try again.
    864   1.1      matt 				 */
    865   1.1      matt 				cur_pv.pv_pa += cur_pv.pv_size;
    866   1.1      matt 				cur_pv.pv_va += cur_pv.pv_size;
    867   1.1      matt 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    868   1.1      matt 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    869   1.1      matt 				cur_pv.pv_cache = PTE_CACHE;
    870   1.1      matt 				continue;
    871   1.1      matt 			}
    872   1.1      matt 		}
    873   1.1      matt 
    874   1.1      matt 		/*
    875   1.1      matt 		 * The new pv didn't concatenate so emit the current one
    876   1.1      matt 		 * and use the new pv as the current pv.
    877   1.1      matt 		 */
    878  1.42     skrll 		VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    879   1.1      matt 		    "(PA %#lx, prot %d, cache %d)\n",
    880   1.1      matt 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    881   1.1      matt 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    882   1.1      matt 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    883   1.1      matt 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    884   1.1      matt 		cur_pv = *pv;
    885   1.1      matt 		pv = SLIST_NEXT(pv, pv_list);
    886   1.1      matt 	}
    887   1.1      matt 
    888   1.1      matt 	/*
    889   1.1      matt 	 * If we are mapping all of memory, let's map the rest of memory.
    890   1.1      matt 	 */
    891   1.1      matt 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    892   1.1      matt 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    893   1.1      matt 		    && cur_pv.pv_cache == PTE_CACHE) {
    894   1.1      matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    895   1.1      matt 		} else {
    896  1.34      matt 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    897  1.34      matt 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    898  1.34      matt 			    kernel_vm_base);
    899  1.42     skrll 			VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    900   1.1      matt 			    "(PA %#lx, prot %d, cache %d)\n",
    901   1.1      matt 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    902   1.1      matt 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    903   1.1      matt 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    904   1.1      matt 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    905   1.1      matt 			cur_pv.pv_pa += cur_pv.pv_size;
    906   1.1      matt 			cur_pv.pv_va += cur_pv.pv_size;
    907   1.1      matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    908   1.1      matt 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    909   1.1      matt 			cur_pv.pv_cache = PTE_CACHE;
    910   1.1      matt 		}
    911   1.1      matt 	}
    912   1.1      matt 
    913  1.50     skrll 	/*
    914  1.50     skrll 	 * The amount we can direct map is limited by the start of the
    915  1.50     skrll 	 * virtual part of the kernel address space.  Don't overrun
    916  1.50     skrll 	 * into it.
    917  1.50     skrll 	 */
    918  1.34      matt 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    919  1.34      matt 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    920  1.34      matt 	}
    921  1.34      matt 
    922   1.1      matt 	/*
    923   1.1      matt 	 * Now we map the final chunk.
    924   1.1      matt 	 */
    925  1.42     skrll 	VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    926   1.1      matt 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    927   1.1      matt 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    928   1.1      matt 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    929   1.1      matt 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    930   1.1      matt 
    931   1.1      matt 	/*
    932   1.1      matt 	 * Now we map the stuff that isn't directly after the kernel
    933   1.1      matt 	 */
    934  1.19      matt 	if (map_vectors_p) {
    935  1.19      matt 		/* Map the vector page. */
    936  1.19      matt 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    937  1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE, PTE_CACHE);
    938  1.19      matt 	}
    939   1.1      matt 
    940  1.36     skrll 	/* Map the Mini-Data cache clean area. */
    941   1.1      matt #if ARM_MMU_XSCALE == 1
    942   1.1      matt #if (ARM_NMMUS > 1)
    943   1.1      matt 	if (xscale_use_minidata)
    944  1.36     skrll #endif
    945  1.30  kiyohara 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    946  1.36     skrll 		    minidataclean.pv_pa);
    947   1.1      matt #endif
    948   1.1      matt 
    949   1.1      matt 	/*
    950   1.1      matt 	 * Map integrated peripherals at same address in first level page
    951   1.1      matt 	 * table so that we can continue to use console.
    952   1.1      matt 	 */
    953   1.1      matt 	if (devmap)
    954   1.1      matt 		pmap_devmap_bootstrap(l1pt_va, devmap);
    955   1.1      matt 
    956   1.1      matt 	/* Tell the user about where all the bits and pieces live. */
    957  1.42     skrll 	VPRINTF("%22s       Physical              Virtual        Num\n", " ");
    958  1.42     skrll 	VPRINTF("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    959   1.1      matt 
    960  1.43    martin #ifdef VERBOSE_INIT_ARM
    961   1.1      matt 	static const char mem_fmt[] =
    962   1.1      matt 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    963   1.1      matt 	static const char mem_fmt_nov[] =
    964   1.1      matt 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    965  1.43    martin #endif
    966   1.1      matt 
    967  1.46     skrll #if 0
    968  1.46     skrll 	// XXX Doesn't make sense if kernel not at bottom of RAM
    969  1.42     skrll 	VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    970  1.44     skrll 	    KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
    971  1.38     skrll 	    (int)physmem);
    972  1.46     skrll #endif
    973  1.42     skrll 	VPRINTF(mem_fmt, "text section",
    974   1.1      matt 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    975   1.1      matt 	       text.pv_va, text.pv_va + text.pv_size - 1,
    976   1.1      matt 	       (int)(text.pv_size / PAGE_SIZE));
    977  1.42     skrll 	VPRINTF(mem_fmt, "data section",
    978  1.44     skrll 	       KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
    979   1.1      matt 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    980   1.1      matt 	       (int)((round_page((vaddr_t)_edata)
    981   1.1      matt 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    982  1.42     skrll 	VPRINTF(mem_fmt, "bss section",
    983  1.44     skrll 	       KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
    984   1.1      matt 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    985   1.1      matt 	       (int)((round_page((vaddr_t)__bss_end__)
    986   1.1      matt 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    987  1.42     skrll 	VPRINTF(mem_fmt, "L1 page directory",
    988   1.1      matt 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    989   1.1      matt 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    990   1.1      matt 	    L1_TABLE_SIZE / PAGE_SIZE);
    991  1.69     skrll #if defined(EFI_RUNTIME)
    992  1.69     skrll 	VPRINTF(mem_fmt, "EFI L1 page directory",
    993  1.69     skrll 	    efirt_l1pt.pv_pa, efirt_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    994  1.69     skrll 	    efirt_l1pt.pv_va, efirt_l1pt.pv_va + L1_TABLE_SIZE - 1,
    995  1.69     skrll 	    L1_TABLE_SIZE / PAGE_SIZE);
    996  1.69     skrll #endif
    997  1.42     skrll 	VPRINTF(mem_fmt, "ABT stack (CPU 0)",
    998   1.7     skrll 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    999   1.7     skrll 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
   1000   1.7     skrll 	    ABT_STACK_SIZE);
   1001  1.42     skrll 	VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
   1002   1.1      matt 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
   1003   1.1      matt 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
   1004   1.1      matt 	    FIQ_STACK_SIZE);
   1005  1.42     skrll 	VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
   1006   1.1      matt 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
   1007   1.1      matt 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
   1008   1.1      matt 	    IRQ_STACK_SIZE);
   1009  1.42     skrll 	VPRINTF(mem_fmt, "UND stack (CPU 0)",
   1010   1.1      matt 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
   1011   1.1      matt 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
   1012   1.1      matt 	    UND_STACK_SIZE);
   1013  1.42     skrll 	VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
   1014   1.1      matt 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
   1015   1.1      matt 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
   1016   1.1      matt 	    UPAGES);
   1017  1.42     skrll 	VPRINTF(mem_fmt, "SVC stack",
   1018   1.1      matt 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
   1019   1.1      matt 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
   1020   1.1      matt 	    UPAGES);
   1021  1.42     skrll 	VPRINTF(mem_fmt, "Message Buffer",
   1022   1.9     skrll 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
   1023   1.9     skrll 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
   1024   1.9     skrll 	    (int)msgbuf_pgs);
   1025  1.19      matt 	if (map_vectors_p) {
   1026  1.42     skrll 		VPRINTF(mem_fmt, "Exception Vectors",
   1027  1.19      matt 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
   1028  1.19      matt 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
   1029  1.19      matt 		    1);
   1030  1.19      matt 	}
   1031   1.1      matt 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
   1032   1.1      matt 		pv = &bmi->bmi_freeblocks[i];
   1033   1.1      matt 
   1034  1.42     skrll 		VPRINTF(mem_fmt_nov, "Free Memory",
   1035   1.1      matt 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
   1036   1.1      matt 		    pv->pv_size / PAGE_SIZE);
   1037   1.1      matt 	}
   1038   1.1      matt 	/*
   1039   1.1      matt 	 * Now we have the real page tables in place so we can switch to them.
   1040   1.1      matt 	 * Once this is done we will be running with the REAL kernel page
   1041   1.1      matt 	 * tables.
   1042   1.1      matt 	 */
   1043   1.1      matt 
   1044  1.42     skrll 	VPRINTF("TTBR0=%#x", armreg_ttbr_read());
   1045   1.2      matt #ifdef _ARM_ARCH_6
   1046  1.42     skrll 	VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
   1047  1.25      matt 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
   1048  1.25      matt 	    armreg_contextidr_read());
   1049   1.2      matt #endif
   1050  1.42     skrll 	VPRINTF("\n");
   1051   1.2      matt 
   1052   1.1      matt 	/* Switch tables */
   1053  1.46     skrll 	VPRINTF("switching to new L1 page table @%#lx...\n", l1pt_pa);
   1054  1.46     skrll 
   1055  1.46     skrll 	cpu_ttb = l1pt_pa;
   1056  1.46     skrll 
   1057  1.46     skrll 	cpu_domains(DOMAIN_DEFAULT);
   1058  1.46     skrll 
   1059  1.46     skrll 	cpu_idcache_wbinv_all();
   1060  1.46     skrll 
   1061  1.46     skrll #ifdef __HAVE_GENERIC_START
   1062   1.1      matt 
   1063  1.46     skrll 	/*
   1064  1.46     skrll 	 * Turn on caches and set SCTLR/ACTLR
   1065  1.46     skrll 	 */
   1066  1.46     skrll 	cpu_setup(boot_args);
   1067  1.23      matt #endif
   1068  1.46     skrll 
   1069  1.42     skrll 	VPRINTF(" ttb");
   1070  1.46     skrll 
   1071  1.17      matt #ifdef ARM_MMU_EXTENDED
   1072  1.23      matt 	/*
   1073  1.23      matt 	 * TTBCR should have been initialized by the MD start code.
   1074  1.23      matt 	 */
   1075  1.25      matt 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
   1076  1.23      matt 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
   1077  1.24      matt 	/*
   1078  1.24      matt 	 * Disable lookups via TTBR0 until there is an activated pmap.
   1079  1.24      matt 	 */
   1080  1.24      matt 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
   1081  1.17      matt 	cpu_setttb(l1pt_pa, KERNEL_PID);
   1082  1.66     skrll 	isb();
   1083  1.17      matt #else
   1084   1.4      matt 	cpu_setttb(l1pt_pa, true);
   1085  1.17      matt #endif
   1086  1.46     skrll 
   1087   1.1      matt 	cpu_tlb_flushID();
   1088   1.1      matt 
   1089  1.64     skrll #ifdef KASAN
   1090  1.64     skrll 	extern uint8_t start_stacks_bottom[];
   1091  1.64     skrll 	kasan_early_init((void *)start_stacks_bottom);
   1092  1.64     skrll #endif
   1093  1.64     skrll 
   1094  1.23      matt #ifdef ARM_MMU_EXTENDED
   1095  1.46     skrll 	VPRINTF("\nsctlr=%#x actlr=%#x\n",
   1096  1.46     skrll 	    armreg_sctlr_read(), armreg_auxctl_read());
   1097  1.23      matt #else
   1098  1.42     skrll 	VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
   1099  1.25      matt #endif
   1100  1.25      matt 
   1101  1.25      matt #ifdef MULTIPROCESSOR
   1102  1.46     skrll #ifndef __HAVE_GENERIC_START
   1103  1.25      matt 	/*
   1104  1.25      matt 	 * Kick the secondaries to load the TTB.  After which they'll go
   1105  1.25      matt 	 * back to sleep to wait for the final kick so they will hatch.
   1106  1.25      matt 	 */
   1107  1.42     skrll 	VPRINTF(" hatchlings");
   1108  1.25      matt 	cpu_boot_secondary_processors();
   1109  1.25      matt #endif
   1110  1.46     skrll #endif
   1111  1.25      matt 
   1112  1.42     skrll 	VPRINTF(" OK\n");
   1113   1.1      matt }
   1114