Home | History | Annotate | Line # | Download | only in arm32
      1 /*	$NetBSD: arm32_kvminit.c,v 1.69 2022/04/02 11:16:07 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include "opt_arm_debug.h"
    125 #include "opt_arm_start.h"
    126 #include "opt_efi.h"
    127 #include "opt_fdt.h"
    128 #include "opt_multiprocessor.h"
    129 
    130 #include <sys/cdefs.h>
    131 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.69 2022/04/02 11:16:07 skrll Exp $");
    132 
    133 #include <sys/param.h>
    134 
    135 #include <sys/asan.h>
    136 #include <sys/bus.h>
    137 #include <sys/device.h>
    138 #include <sys/kernel.h>
    139 #include <sys/reboot.h>
    140 
    141 #include <dev/cons.h>
    142 
    143 #include <uvm/uvm_extern.h>
    144 
    145 #include <arm/arm32/machdep.h>
    146 #include <arm/bootconfig.h>
    147 #include <arm/db_machdep.h>
    148 #include <arm/locore.h>
    149 #include <arm/undefined.h>
    150 
    151 #if defined(FDT)
    152 #include <arch/evbarm/fdt/platform.h>
    153 #include <arm/fdt/arm_fdtvar.h>
    154 #include <dev/fdt/fdt_memory.h>
    155 #endif
    156 
    157 #ifdef MULTIPROCESSOR
    158 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    159 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
    160 #endif
    161 #endif
    162 
    163 #ifdef VERBOSE_INIT_ARM
    164 #define VPRINTF(...)	printf(__VA_ARGS__)
    165 #else
    166 #define VPRINTF(...)	__nothing
    167 #endif
    168 
    169 #if defined(__HAVE_GENERIC_START)
    170 #if defined(KERNEL_BASE_VOFFSET)
    171 #error KERNEL_BASE_VOFFSET should not be defined with __HAVE_GENERIC_START
    172 #endif
    173 #endif
    174 
    175 #if defined(EFI_RUNTIME)
    176 #if !defined(ARM_MMU_EXTENDED)
    177 #error EFI_RUNTIME is only supported with ARM_MMU_EXTENDED
    178 #endif
    179 #endif
    180 
    181 struct bootmem_info bootmem_info;
    182 
    183 extern void *msgbufaddr;
    184 paddr_t msgbufphys;
    185 paddr_t physical_start;
    186 paddr_t physical_end;
    187 
    188 extern char etext[];
    189 extern char __data_start[], _edata[];
    190 extern char __bss_start[], __bss_end__[];
    191 extern char _end[];
    192 
    193 /* Page tables for mapping kernel VM */
    194 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    195 
    196 #ifdef KASAN
    197 vaddr_t kasan_kernelstart;
    198 vaddr_t kasan_kernelsize;
    199 
    200 #define	KERNEL_L2PT_KASAN_NUM	howmany(VM_KERNEL_KASAN_SIZE, L2_S_SEGSIZE)
    201 bool kasan_l2pts_created  __attribute__((__section__(".data"))) = false;
    202 pv_addr_t kasan_l2pt[KERNEL_L2PT_KASAN_NUM];
    203 #else
    204 #define KERNEL_L2PT_KASAN_NUM	0
    205 #endif
    206 
    207 u_long kern_vtopdiff __attribute__((__section__(".data")));
    208 
    209 void
    210 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    211 {
    212 	struct bootmem_info * const bmi = &bootmem_info;
    213 	pv_addr_t *pv = bmi->bmi_freeblocks;
    214 
    215 	/*
    216 	 * FDT/generic start fills in kern_vtopdiff early
    217 	 */
    218 #if defined(__HAVE_GENERIC_START)
    219 	extern char KERNEL_BASE_virt[];
    220 	extern char const __stop__init_memory[];
    221 
    222 	VPRINTF("%s: kern_vtopdiff=%#lx\n", __func__, kern_vtopdiff);
    223 
    224 	vaddr_t kstartva = trunc_page((vaddr_t)KERNEL_BASE_virt);
    225 	vaddr_t kendva = round_page((vaddr_t)__stop__init_memory);
    226 
    227 	kernelstart = KERN_VTOPHYS(kstartva);
    228 
    229 	VPRINTF("%s: kstartva=%#lx, kernelstart=%#lx\n", __func__, kstartva, kernelstart);
    230 #else
    231 	vaddr_t kendva = round_page((vaddr_t)_end);
    232 
    233 #if defined(KERNEL_BASE_VOFFSET)
    234 	kern_vtopdiff = KERNEL_BASE_VOFFSET;
    235 #else
    236 	KASSERT(memstart == kernelstart);
    237 	kern_vtopdiff = KERNEL_BASE + memstart;
    238 #endif
    239 #endif
    240 	paddr_t kernelend = KERN_VTOPHYS(kendva);
    241 
    242 	VPRINTF("%s: memstart=%#lx, memsize=%#lx\n", __func__,
    243 	    memstart, memsize);
    244 	VPRINTF("%s: kernelstart=%#lx, kernelend=%#lx\n", __func__,
    245 	    kernelstart, kernelend);
    246 
    247 	physical_start = bmi->bmi_start = memstart;
    248 	physical_end = bmi->bmi_end = memstart + memsize;
    249 #ifndef ARM_HAS_LPAE
    250 	if (physical_end == 0) {
    251 		physical_end = -PAGE_SIZE;
    252 		memsize -= PAGE_SIZE;
    253 		bmi->bmi_end -= PAGE_SIZE;
    254 		VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    255 		    __func__);
    256 	}
    257 #endif
    258 	physmem = memsize / PAGE_SIZE;
    259 
    260 	/*
    261 	 * Let's record where the kernel lives.
    262 	 */
    263 
    264 	bmi->bmi_kernelstart = kernelstart;
    265 	bmi->bmi_kernelend = kernelend;
    266 
    267 #if defined(FDT)
    268 	fdt_memory_remove_range(bmi->bmi_kernelstart,
    269 	    bmi->bmi_kernelend - bmi->bmi_kernelstart);
    270 #endif
    271 
    272 	VPRINTF("%s: kernel phys start %#lx end %#lx\n", __func__, kernelstart,
    273 	    kernelend);
    274 
    275 #if 0
    276 	// XXX Makes RPI abort
    277 	KASSERT((kernelstart & (L2_S_SEGSIZE - 1)) == 0);
    278 #endif
    279 	/*
    280 	 * Now the rest of the free memory must be after the kernel.
    281 	 */
    282 	pv->pv_pa = bmi->bmi_kernelend;
    283 	pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    284 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    285 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    286 	VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    287 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    288 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    289 	pv++;
    290 
    291 	/*
    292 	 * Add a free block for any memory before the kernel.
    293 	 */
    294 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    295 		pv->pv_pa = bmi->bmi_start;
    296 		pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    297 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    298 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    299 		VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    300 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    301 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    302 		pv++;
    303 	}
    304 
    305 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    306 
    307 	SLIST_INIT(&bmi->bmi_freechunks);
    308 	SLIST_INIT(&bmi->bmi_chunks);
    309 }
    310 
    311 static bool
    312 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    313 {
    314 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    315 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    316 	    && acc_pv->pv_prot == pv->pv_prot
    317 	    && acc_pv->pv_cache == pv->pv_cache) {
    318 #if 0
    319 		VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    320 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size,
    321 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size);
    322 #endif
    323 		acc_pv->pv_size += pv->pv_size;
    324 		return true;
    325 	}
    326 
    327 	return false;
    328 }
    329 
    330 static void
    331 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    332 {
    333 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    334 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    335 		pv_addr_t * const pv0 = (*pvp);
    336 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    337 		if (concat_pvaddr(pv0, pv)) {
    338 			VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    339 			    __func__, "appending", pv,
    340 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    341 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    342 			pv = SLIST_NEXT(pv0, pv_list);
    343 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    344 				VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    345 				    __func__, "merging", pv,
    346 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    347 				    pv0->pv_pa,
    348 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    349 				SLIST_REMOVE_AFTER(pv0, pv_list);
    350 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    351 			}
    352 			return;
    353 		}
    354 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    355 		pvp = &SLIST_NEXT(*pvp, pv_list);
    356 	}
    357 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    358 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    359 	KASSERT(new_pv != NULL);
    360 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    361 	*new_pv = *pv;
    362 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    363 	(*pvp) = new_pv;
    364 
    365 	VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    366 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    367 	    new_pv->pv_size / PAGE_SIZE);
    368 	if (SLIST_NEXT(new_pv, pv_list)) {
    369 		VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    370 	} else {
    371 		VPRINTF("at tail\n");
    372 	}
    373 }
    374 
    375 static void
    376 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    377     int prot, int cache, bool zero_p)
    378 {
    379 	size_t nbytes = npages * PAGE_SIZE;
    380 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    381 	size_t free_idx = 0;
    382 	static bool l1pt_found;
    383 
    384 	KASSERT(npages > 0);
    385 
    386 	/*
    387 	 * If we haven't allocated the kernel L1 page table and we are aligned
    388 	 * at a L1 table boundary, alloc the memory for it.
    389 	 */
    390 	if (!l1pt_found
    391 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    392 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    393 		l1pt_found = true;
    394 		VPRINTF(" l1pt");
    395 
    396 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    397 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    398 		add_pages(bmi, &kernel_l1pt);
    399 #if defined(EFI_RUNTIME)
    400 		valloc_pages(bmi, &efirt_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    401 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    402 		add_pages(bmi, &efirt_l1pt);
    403 #endif
    404 	}
    405 
    406 	while (nbytes > free_pv->pv_size) {
    407 		free_pv++;
    408 		free_idx++;
    409 		if (free_idx == bmi->bmi_nfreeblocks) {
    410 			panic("%s: could not allocate %zu bytes",
    411 			    __func__, nbytes);
    412 		}
    413 	}
    414 
    415 	/*
    416 	 * As we allocate the memory, make sure that we don't walk over
    417 	 * our current first level translation table.
    418 	 */
    419 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    420 
    421 #if defined(FDT)
    422 	fdt_memory_remove_range(free_pv->pv_pa, nbytes);
    423 #endif
    424 	pv->pv_pa = free_pv->pv_pa;
    425 	pv->pv_va = free_pv->pv_va;
    426 	pv->pv_size = nbytes;
    427 	pv->pv_prot = prot;
    428 	pv->pv_cache = cache;
    429 
    430 	/*
    431 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    432 	 * just use PTE_CACHE.
    433 	 */
    434 	if (cache == PTE_PAGETABLE
    435 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    436 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    437 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    438 		pv->pv_cache = PTE_CACHE;
    439 
    440 	free_pv->pv_pa += nbytes;
    441 	free_pv->pv_va += nbytes;
    442 	free_pv->pv_size -= nbytes;
    443 	if (free_pv->pv_size == 0) {
    444 		--bmi->bmi_nfreeblocks;
    445 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    446 			free_pv[0] = free_pv[1];
    447 		}
    448 	}
    449 
    450 	bmi->bmi_freepages -= npages;
    451 
    452 	if (zero_p)
    453 		memset((void *)pv->pv_va, 0, nbytes);
    454 }
    455 
    456 void
    457 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    458     const struct pmap_devmap *devmap, bool mapallmem_p)
    459 {
    460 	struct bootmem_info * const bmi = &bootmem_info;
    461 #ifdef MULTIPROCESSOR
    462 	const size_t cpu_num = arm_cpu_max;
    463 #else
    464 	const size_t cpu_num = 1;
    465 #endif
    466 
    467 #ifdef ARM_HAS_VBAR
    468 	const bool map_vectors_p = false;
    469 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    470 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    471 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    472 #else
    473 	const bool map_vectors_p = true;
    474 #endif
    475 
    476 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    477 	KASSERT(mapallmem_p);
    478 #ifdef ARM_MMU_EXTENDED
    479 	/*
    480 	 * The direct map VA space ends at the start of the kernel VM space.
    481 	 */
    482 	pmap_directlimit = kernel_vm_base;
    483 #else
    484 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    485 #endif /* ARM_MMU_EXTENDED */
    486 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    487 
    488 	/*
    489 	 * Calculate the number of L2 pages needed for mapping the
    490 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    491 	 * and 1 for IO
    492 	 */
    493 	size_t kernel_size = bmi->bmi_kernelend;
    494 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    495 	kernel_size += L1_TABLE_SIZE;
    496 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    497 	kernel_size += PAGE_SIZE * KERNEL_L2PT_KASAN_NUM;
    498 	if (map_vectors_p) {
    499 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    500 	}
    501 	if (iovbase) {
    502 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    503 	}
    504 	kernel_size +=
    505 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    506 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    507 	kernel_size += round_page(MSGBUFSIZE);
    508 	kernel_size += 0x10000;	/* slop */
    509 	if (!mapallmem_p) {
    510 		kernel_size += PAGE_SIZE
    511 		    * howmany(kernel_size, L2_S_SEGSIZE);
    512 	}
    513 	kernel_size = round_page(kernel_size);
    514 
    515 	/*
    516 	 * Now we know how many L2 pages it will take.
    517 	 */
    518 	const size_t KERNEL_L2PT_KERNEL_NUM =
    519 	    howmany(kernel_size, L2_S_SEGSIZE);
    520 
    521 	VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    522 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    523 
    524 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    525 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    526 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    527 	pv_addr_t msgbuf;
    528 	pv_addr_t text;
    529 	pv_addr_t data;
    530 	pv_addr_t chunks[__arraycount(bmi->bmi_l2pts) + 11];
    531 #if ARM_MMU_XSCALE == 1
    532 	pv_addr_t minidataclean;
    533 #endif
    534 
    535 	/*
    536 	 * We need to allocate some fixed page tables to get the kernel going.
    537 	 *
    538 	 * We are going to allocate our bootstrap pages from the beginning of
    539 	 * the free space that we just calculated.  We allocate one page
    540 	 * directory and a number of page tables and store the physical
    541 	 * addresses in the bmi_l2pts array in bootmem_info.
    542 	 *
    543 	 * The kernel page directory must be on a 16K boundary.  The page
    544 	 * tables must be on 4K boundaries.  What we do is allocate the
    545 	 * page directory on the first 16K boundary that we encounter, and
    546 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    547 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    548 	 * least one 16K aligned region.
    549 	 */
    550 
    551 	VPRINTF("%s: allocating page tables for", __func__);
    552 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    553 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    554 	}
    555 
    556 	kernel_l1pt.pv_pa = 0;
    557 	kernel_l1pt.pv_va = 0;
    558 
    559 #if defined(EFI_RUNTIME)
    560 	efirt_l1pt.pv_pa = 0;
    561 	efirt_l1pt.pv_va = 0;
    562 #endif
    563 	/*
    564 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    565 	 * an L1 page table, we will allocate the pages for it first and then
    566 	 * allocate the L2 page.
    567 	 */
    568 
    569 	if (map_vectors_p) {
    570 		/*
    571 		 * First allocate L2 page for the vectors.
    572 		 */
    573 		VPRINTF(" vector");
    574 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    575 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    576 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    577 	}
    578 
    579 	/*
    580 	 * Now allocate L2 pages for the kernel
    581 	 */
    582 	VPRINTF(" kernel");
    583 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    584 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    585 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    586 		add_pages(bmi, &kernel_l2pt[idx]);
    587 	}
    588 
    589 	/*
    590 	 * Now allocate L2 pages for the initial kernel VA space.
    591 	 */
    592 	VPRINTF(" vm");
    593 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    594 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    595 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    596 		add_pages(bmi, &vmdata_l2pt[idx]);
    597 	}
    598 
    599 #ifdef KASAN
    600 	/*
    601 	 * Now allocate L2 pages for the KASAN shadow map l2pt VA space.
    602 	 */
    603 	VPRINTF(" kasan");
    604 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; ++idx) {
    605 		valloc_pages(bmi, &kasan_l2pt[idx], 1,
    606 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    607 		add_pages(bmi, &kasan_l2pt[idx]);
    608 	}
    609 
    610 #endif
    611 	/*
    612 	 * If someone wanted a L2 page for I/O, allocate it now.
    613 	 */
    614 	if (iovbase) {
    615 		VPRINTF(" io");
    616 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    617 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    618 		add_pages(bmi, &bmi->bmi_io_l2pt);
    619 	}
    620 
    621 	VPRINTF("%s: allocating stacks\n", __func__);
    622 
    623 	/* Allocate stacks for all modes and CPUs */
    624 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    625 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    626 	add_pages(bmi, &abtstack);
    627 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    628 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    629 	add_pages(bmi, &fiqstack);
    630 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    631 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    632 	add_pages(bmi, &irqstack);
    633 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    634 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    635 	add_pages(bmi, &undstack);
    636 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    637 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    638 	add_pages(bmi, &idlestack);
    639 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    640 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    641 	add_pages(bmi, &kernelstack);
    642 
    643 	/* Allocate the message buffer from the end of memory. */
    644 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    645 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    646 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, false);
    647 	add_pages(bmi, &msgbuf);
    648 	msgbufphys = msgbuf.pv_pa;
    649 	msgbufaddr = (void *)msgbuf.pv_va;
    650 
    651 #ifdef KASAN
    652 	kasan_kernelstart = KERNEL_BASE;
    653 	kasan_kernelsize = (msgbuf.pv_va + round_page(MSGBUFSIZE)) - KERNEL_BASE;
    654 #endif
    655 
    656 	if (map_vectors_p) {
    657 		/*
    658 		 * Allocate a page for the system vector page.
    659 		 * This page will just contain the system vectors and can be
    660 		 * shared by all processes.
    661 		 */
    662 		VPRINTF(" vector");
    663 
    664 		valloc_pages(bmi, &systempage, 1,
    665 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE,
    666 		    PTE_CACHE, true);
    667 	}
    668 	systempage.pv_va = vectors;
    669 
    670 	/*
    671 	 * If the caller needed a few extra pages for some reason, allocate
    672 	 * them now.
    673 	 */
    674 #if ARM_MMU_XSCALE == 1
    675 #if (ARM_NMMUS > 1)
    676 	if (xscale_use_minidata)
    677 #endif
    678 		valloc_pages(bmi, &minidataclean, 1,
    679 		    VM_PROT_READ | VM_PROT_WRITE, 0, true);
    680 #endif
    681 
    682 	/*
    683 	 * Ok we have allocated physical pages for the primary kernel
    684 	 * page tables and stacks.  Let's just confirm that.
    685 	 */
    686 	if (kernel_l1pt.pv_va == 0
    687 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    688 		panic("%s: Failed to allocate or align the kernel "
    689 		    "page directory", __func__);
    690 
    691 	VPRINTF("Creating L1 page table at 0x%08lx/0x%08lx\n",
    692 	    kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
    693 
    694 	/*
    695 	 * Now we start construction of the L1 page table
    696 	 * We start by mapping the L2 page tables into the L1.
    697 	 * This means that we can replace L1 mappings later on if necessary
    698 	 */
    699 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    700 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    701 
    702 	if (map_vectors_p) {
    703 		/* Map the L2 pages tables in the L1 page table */
    704 		const vaddr_t va = systempage.pv_va & -L2_S_SEGSIZE;
    705 
    706 		pmap_link_l2pt(l1pt_va, va,  &bmi->bmi_vector_l2pt);
    707 
    708 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    709 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    710 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va, "(vectors)");
    711 	}
    712 
    713 	/*
    714 	 * This enforces an alignment requirement of L2_S_SEGSIZE for kernel
    715 	 * start PA
    716 	 */
    717 	const vaddr_t kernel_base =
    718 	    KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    719 
    720 	VPRINTF("%s: kernel_base %lx KERNEL_L2PT_KERNEL_NUM %zu\n", __func__,
    721 	    kernel_base, KERNEL_L2PT_KERNEL_NUM);
    722 
    723 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    724 		const vaddr_t va = kernel_base + idx * L2_S_SEGSIZE;
    725 
    726 		pmap_link_l2pt(l1pt_va, va, &kernel_l2pt[idx]);
    727 
    728 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    729 		    __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
    730 		    va, "(kernel)");
    731 	}
    732 
    733 	VPRINTF("%s: kernel_vm_base %lx KERNEL_L2PT_VMDATA_NUM %d\n", __func__,
    734 	    kernel_vm_base, KERNEL_L2PT_VMDATA_NUM);
    735 
    736 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    737 		const vaddr_t va = kernel_vm_base + idx * L2_S_SEGSIZE;
    738 
    739 		pmap_link_l2pt(l1pt_va, va, &vmdata_l2pt[idx]);
    740 
    741 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    742 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    743 		    va, "(vm)");
    744 	}
    745 	if (iovbase) {
    746 		const vaddr_t va = iovbase & -L2_S_SEGSIZE;
    747 
    748 		pmap_link_l2pt(l1pt_va, va, &bmi->bmi_io_l2pt);
    749 
    750 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    751 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    752 		    va, "(io)");
    753 	}
    754 
    755 #ifdef KASAN
    756 	VPRINTF("%s: kasan_shadow_base %x KERNEL_L2PT_KASAN_NUM %d\n", __func__,
    757 	    VM_KERNEL_KASAN_BASE, KERNEL_L2PT_KASAN_NUM);
    758 
    759 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; idx++) {
    760 		const vaddr_t va = VM_KERNEL_KASAN_BASE  + idx * L2_S_SEGSIZE;
    761 
    762 		pmap_link_l2pt(l1pt_va, va, &kasan_l2pt[idx]);
    763 
    764 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    765 		    __func__, kasan_l2pt[idx].pv_va, kasan_l2pt[idx].pv_pa,
    766 		    va, "(kasan)");
    767 	}
    768 	kasan_l2pts_created = true;
    769 #endif
    770 
    771 	/* update the top of the kernel VM */
    772 	pmap_curmaxkvaddr =
    773 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    774 
    775 	// This could be done earlier and then the kernel data and pages
    776 	// allocated above would get merged (concatentated)
    777 
    778 	VPRINTF("Mapping kernel\n");
    779 
    780 	extern char etext[];
    781 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    782 	size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
    783 
    784 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    785 
    786 	/* start at offset of kernel in RAM */
    787 
    788 	text.pv_pa = bmi->bmi_kernelstart;
    789 	text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
    790 	text.pv_size = textsize;
    791 	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
    792 	text.pv_cache = PTE_CACHE;
    793 
    794 	VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    795 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    796 
    797 	add_pages(bmi, &text);
    798 
    799 	data.pv_pa = text.pv_pa + textsize;
    800 	data.pv_va = text.pv_va + textsize;
    801 	data.pv_size = totalsize - textsize;
    802 	data.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    803 	data.pv_cache = PTE_CACHE;
    804 
    805 	VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    806 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    807 
    808 	add_pages(bmi, &data);
    809 
    810 	VPRINTF("Listing Chunks\n");
    811 
    812 	pv_addr_t *lpv;
    813 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    814 		VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
    815 		    "(PA %#lx, prot %d, cache %d)\n",
    816 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    817 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    818 	}
    819 	VPRINTF("\nMapping Chunks\n");
    820 
    821 	pv_addr_t cur_pv;
    822 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    823 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    824 		cur_pv = *pv;
    825 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    826 		pv = SLIST_NEXT(pv, pv_list);
    827 	} else {
    828 		cur_pv.pv_va = KERNEL_BASE;
    829 		cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
    830 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    831 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    832 		cur_pv.pv_cache = PTE_CACHE;
    833 	}
    834 	while (pv != NULL) {
    835 		if (mapallmem_p) {
    836 			if (concat_pvaddr(&cur_pv, pv)) {
    837 				pv = SLIST_NEXT(pv, pv_list);
    838 				continue;
    839 			}
    840 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    841 				/*
    842 				 * See if we can extend the current pv to emcompass the
    843 				 * hole, and if so do it and retry the concatenation.
    844 				 */
    845 				if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    846 				    && cur_pv.pv_cache == PTE_CACHE) {
    847 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    848 					continue;
    849 				}
    850 
    851 				/*
    852 				 * We couldn't so emit the current chunk and then
    853 				 */
    854 				VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    855 				    "(PA %#lx, prot %d, cache %d)\n",
    856 				    __func__,
    857 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    858 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    859 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    860 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    861 
    862 				/*
    863 				 * set the current chunk to the hole and try again.
    864 				 */
    865 				cur_pv.pv_pa += cur_pv.pv_size;
    866 				cur_pv.pv_va += cur_pv.pv_size;
    867 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    868 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    869 				cur_pv.pv_cache = PTE_CACHE;
    870 				continue;
    871 			}
    872 		}
    873 
    874 		/*
    875 		 * The new pv didn't concatenate so emit the current one
    876 		 * and use the new pv as the current pv.
    877 		 */
    878 		VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    879 		    "(PA %#lx, prot %d, cache %d)\n",
    880 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    881 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    882 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    883 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    884 		cur_pv = *pv;
    885 		pv = SLIST_NEXT(pv, pv_list);
    886 	}
    887 
    888 	/*
    889 	 * If we are mapping all of memory, let's map the rest of memory.
    890 	 */
    891 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    892 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    893 		    && cur_pv.pv_cache == PTE_CACHE) {
    894 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    895 		} else {
    896 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    897 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    898 			    kernel_vm_base);
    899 			VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    900 			    "(PA %#lx, prot %d, cache %d)\n",
    901 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    902 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    903 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    904 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    905 			cur_pv.pv_pa += cur_pv.pv_size;
    906 			cur_pv.pv_va += cur_pv.pv_size;
    907 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    908 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    909 			cur_pv.pv_cache = PTE_CACHE;
    910 		}
    911 	}
    912 
    913 	/*
    914 	 * The amount we can direct map is limited by the start of the
    915 	 * virtual part of the kernel address space.  Don't overrun
    916 	 * into it.
    917 	 */
    918 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    919 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    920 	}
    921 
    922 	/*
    923 	 * Now we map the final chunk.
    924 	 */
    925 	VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    926 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    927 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    928 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    929 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    930 
    931 	/*
    932 	 * Now we map the stuff that isn't directly after the kernel
    933 	 */
    934 	if (map_vectors_p) {
    935 		/* Map the vector page. */
    936 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    937 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE, PTE_CACHE);
    938 	}
    939 
    940 	/* Map the Mini-Data cache clean area. */
    941 #if ARM_MMU_XSCALE == 1
    942 #if (ARM_NMMUS > 1)
    943 	if (xscale_use_minidata)
    944 #endif
    945 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    946 		    minidataclean.pv_pa);
    947 #endif
    948 
    949 	/*
    950 	 * Map integrated peripherals at same address in first level page
    951 	 * table so that we can continue to use console.
    952 	 */
    953 	if (devmap)
    954 		pmap_devmap_bootstrap(l1pt_va, devmap);
    955 
    956 	/* Tell the user about where all the bits and pieces live. */
    957 	VPRINTF("%22s       Physical              Virtual        Num\n", " ");
    958 	VPRINTF("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    959 
    960 #ifdef VERBOSE_INIT_ARM
    961 	static const char mem_fmt[] =
    962 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    963 	static const char mem_fmt_nov[] =
    964 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    965 #endif
    966 
    967 #if 0
    968 	// XXX Doesn't make sense if kernel not at bottom of RAM
    969 	VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    970 	    KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
    971 	    (int)physmem);
    972 #endif
    973 	VPRINTF(mem_fmt, "text section",
    974 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    975 	       text.pv_va, text.pv_va + text.pv_size - 1,
    976 	       (int)(text.pv_size / PAGE_SIZE));
    977 	VPRINTF(mem_fmt, "data section",
    978 	       KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
    979 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    980 	       (int)((round_page((vaddr_t)_edata)
    981 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    982 	VPRINTF(mem_fmt, "bss section",
    983 	       KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
    984 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    985 	       (int)((round_page((vaddr_t)__bss_end__)
    986 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    987 	VPRINTF(mem_fmt, "L1 page directory",
    988 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    989 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    990 	    L1_TABLE_SIZE / PAGE_SIZE);
    991 #if defined(EFI_RUNTIME)
    992 	VPRINTF(mem_fmt, "EFI L1 page directory",
    993 	    efirt_l1pt.pv_pa, efirt_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    994 	    efirt_l1pt.pv_va, efirt_l1pt.pv_va + L1_TABLE_SIZE - 1,
    995 	    L1_TABLE_SIZE / PAGE_SIZE);
    996 #endif
    997 	VPRINTF(mem_fmt, "ABT stack (CPU 0)",
    998 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    999 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
   1000 	    ABT_STACK_SIZE);
   1001 	VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
   1002 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
   1003 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
   1004 	    FIQ_STACK_SIZE);
   1005 	VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
   1006 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
   1007 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
   1008 	    IRQ_STACK_SIZE);
   1009 	VPRINTF(mem_fmt, "UND stack (CPU 0)",
   1010 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
   1011 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
   1012 	    UND_STACK_SIZE);
   1013 	VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
   1014 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
   1015 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
   1016 	    UPAGES);
   1017 	VPRINTF(mem_fmt, "SVC stack",
   1018 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
   1019 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
   1020 	    UPAGES);
   1021 	VPRINTF(mem_fmt, "Message Buffer",
   1022 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
   1023 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
   1024 	    (int)msgbuf_pgs);
   1025 	if (map_vectors_p) {
   1026 		VPRINTF(mem_fmt, "Exception Vectors",
   1027 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
   1028 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
   1029 		    1);
   1030 	}
   1031 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
   1032 		pv = &bmi->bmi_freeblocks[i];
   1033 
   1034 		VPRINTF(mem_fmt_nov, "Free Memory",
   1035 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
   1036 		    pv->pv_size / PAGE_SIZE);
   1037 	}
   1038 	/*
   1039 	 * Now we have the real page tables in place so we can switch to them.
   1040 	 * Once this is done we will be running with the REAL kernel page
   1041 	 * tables.
   1042 	 */
   1043 
   1044 	VPRINTF("TTBR0=%#x", armreg_ttbr_read());
   1045 #ifdef _ARM_ARCH_6
   1046 	VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
   1047 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
   1048 	    armreg_contextidr_read());
   1049 #endif
   1050 	VPRINTF("\n");
   1051 
   1052 	/* Switch tables */
   1053 	VPRINTF("switching to new L1 page table @%#lx...\n", l1pt_pa);
   1054 
   1055 	cpu_ttb = l1pt_pa;
   1056 
   1057 	cpu_domains(DOMAIN_DEFAULT);
   1058 
   1059 	cpu_idcache_wbinv_all();
   1060 
   1061 #ifdef __HAVE_GENERIC_START
   1062 
   1063 	/*
   1064 	 * Turn on caches and set SCTLR/ACTLR
   1065 	 */
   1066 	cpu_setup(boot_args);
   1067 #endif
   1068 
   1069 	VPRINTF(" ttb");
   1070 
   1071 #ifdef ARM_MMU_EXTENDED
   1072 	/*
   1073 	 * TTBCR should have been initialized by the MD start code.
   1074 	 */
   1075 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
   1076 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
   1077 	/*
   1078 	 * Disable lookups via TTBR0 until there is an activated pmap.
   1079 	 */
   1080 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
   1081 	cpu_setttb(l1pt_pa, KERNEL_PID);
   1082 	isb();
   1083 #else
   1084 	cpu_setttb(l1pt_pa, true);
   1085 #endif
   1086 
   1087 	cpu_tlb_flushID();
   1088 
   1089 #ifdef KASAN
   1090 	extern uint8_t start_stacks_bottom[];
   1091 	kasan_early_init((void *)start_stacks_bottom);
   1092 #endif
   1093 
   1094 #ifdef ARM_MMU_EXTENDED
   1095 	VPRINTF("\nsctlr=%#x actlr=%#x\n",
   1096 	    armreg_sctlr_read(), armreg_auxctl_read());
   1097 #else
   1098 	VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
   1099 #endif
   1100 
   1101 #ifdef MULTIPROCESSOR
   1102 #ifndef __HAVE_GENERIC_START
   1103 	/*
   1104 	 * Kick the secondaries to load the TTB.  After which they'll go
   1105 	 * back to sleep to wait for the final kick so they will hatch.
   1106 	 */
   1107 	VPRINTF(" hatchlings");
   1108 	cpu_boot_secondary_processors();
   1109 #endif
   1110 #endif
   1111 
   1112 	VPRINTF(" OK\n");
   1113 }
   1114