arm32_kvminit.c revision 1.13 1 1.13 matt /* $NetBSD: arm32_kvminit.c,v 1.13 2012/10/21 22:04:05 matt Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 1.1 matt * Written by Hiroyuki Bessho for Genetec Corporation.
6 1.1 matt *
7 1.1 matt * Redistribution and use in source and binary forms, with or without
8 1.1 matt * modification, are permitted provided that the following conditions
9 1.1 matt * are met:
10 1.1 matt * 1. Redistributions of source code must retain the above copyright
11 1.1 matt * notice, this list of conditions and the following disclaimer.
12 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer in the
14 1.1 matt * documentation and/or other materials provided with the distribution.
15 1.1 matt * 3. The name of Genetec Corporation may not be used to endorse or
16 1.1 matt * promote products derived from this software without specific prior
17 1.1 matt * written permission.
18 1.1 matt *
19 1.1 matt * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
30 1.1 matt *
31 1.1 matt * Copyright (c) 2001 Wasabi Systems, Inc.
32 1.1 matt * All rights reserved.
33 1.1 matt *
34 1.1 matt * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 1.1 matt *
36 1.1 matt * Redistribution and use in source and binary forms, with or without
37 1.1 matt * modification, are permitted provided that the following conditions
38 1.1 matt * are met:
39 1.1 matt * 1. Redistributions of source code must retain the above copyright
40 1.1 matt * notice, this list of conditions and the following disclaimer.
41 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 matt * notice, this list of conditions and the following disclaimer in the
43 1.1 matt * documentation and/or other materials provided with the distribution.
44 1.1 matt * 3. All advertising materials mentioning features or use of this software
45 1.1 matt * must display the following acknowledgement:
46 1.1 matt * This product includes software developed for the NetBSD Project by
47 1.1 matt * Wasabi Systems, Inc.
48 1.1 matt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 1.1 matt * or promote products derived from this software without specific prior
50 1.1 matt * written permission.
51 1.1 matt *
52 1.1 matt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
63 1.1 matt *
64 1.1 matt * Copyright (c) 1997,1998 Mark Brinicombe.
65 1.1 matt * Copyright (c) 1997,1998 Causality Limited.
66 1.1 matt * All rights reserved.
67 1.1 matt *
68 1.1 matt * Redistribution and use in source and binary forms, with or without
69 1.1 matt * modification, are permitted provided that the following conditions
70 1.1 matt * are met:
71 1.1 matt * 1. Redistributions of source code must retain the above copyright
72 1.1 matt * notice, this list of conditions and the following disclaimer.
73 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
74 1.1 matt * notice, this list of conditions and the following disclaimer in the
75 1.1 matt * documentation and/or other materials provided with the distribution.
76 1.1 matt * 3. All advertising materials mentioning features or use of this software
77 1.1 matt * must display the following acknowledgement:
78 1.1 matt * This product includes software developed by Mark Brinicombe
79 1.1 matt * for the NetBSD Project.
80 1.1 matt * 4. The name of the company nor the name of the author may be used to
81 1.1 matt * endorse or promote products derived from this software without specific
82 1.1 matt * prior written permission.
83 1.1 matt *
84 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 1.1 matt * SUCH DAMAGE.
95 1.1 matt *
96 1.1 matt * Copyright (c) 2007 Microsoft
97 1.1 matt * All rights reserved.
98 1.1 matt *
99 1.1 matt * Redistribution and use in source and binary forms, with or without
100 1.1 matt * modification, are permitted provided that the following conditions
101 1.1 matt * are met:
102 1.1 matt * 1. Redistributions of source code must retain the above copyright
103 1.1 matt * notice, this list of conditions and the following disclaimer.
104 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
105 1.1 matt * notice, this list of conditions and the following disclaimer in the
106 1.1 matt * documentation and/or other materials provided with the distribution.
107 1.1 matt * 3. All advertising materials mentioning features or use of this software
108 1.1 matt * must display the following acknowledgement:
109 1.1 matt * This product includes software developed by Microsoft
110 1.1 matt *
111 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 1.1 matt * SUCH DAMAGE.
122 1.1 matt */
123 1.1 matt
124 1.1 matt #include <sys/cdefs.h>
125 1.13 matt __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.13 2012/10/21 22:04:05 matt Exp $");
126 1.1 matt
127 1.1 matt #include <sys/param.h>
128 1.1 matt #include <sys/device.h>
129 1.1 matt #include <sys/kernel.h>
130 1.1 matt #include <sys/reboot.h>
131 1.1 matt #include <sys/bus.h>
132 1.1 matt
133 1.1 matt #include <dev/cons.h>
134 1.1 matt
135 1.1 matt #include <uvm/uvm_extern.h>
136 1.1 matt
137 1.1 matt #include <arm/db_machdep.h>
138 1.1 matt #include <arm/undefined.h>
139 1.1 matt #include <arm/bootconfig.h>
140 1.1 matt #include <arm/arm32/machdep.h>
141 1.1 matt
142 1.1 matt #include "ksyms.h"
143 1.1 matt
144 1.1 matt struct bootmem_info bootmem_info;
145 1.1 matt
146 1.1 matt paddr_t msgbufphys;
147 1.1 matt paddr_t physical_start;
148 1.1 matt paddr_t physical_end;
149 1.1 matt
150 1.1 matt extern char etext[];
151 1.1 matt extern char __data_start[], _edata[];
152 1.1 matt extern char __bss_start[], __bss_end__[];
153 1.1 matt extern char _end[];
154 1.1 matt
155 1.1 matt /* Page tables for mapping kernel VM */
156 1.1 matt #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
157 1.1 matt
158 1.1 matt /*
159 1.1 matt * Macros to translate between physical and virtual for a subset of the
160 1.1 matt * kernel address space. *Not* for general use.
161 1.1 matt */
162 1.1 matt #define KERN_VTOPHYS(bmi, va) \
163 1.1 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
164 1.1 matt #define KERN_PHYSTOV(bmi, pa) \
165 1.1 matt ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
166 1.1 matt
167 1.1 matt void
168 1.1 matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
169 1.1 matt {
170 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
171 1.1 matt pv_addr_t *pv = bmi->bmi_freeblocks;
172 1.1 matt
173 1.1 matt #ifdef VERBOSE_INIT_ARM
174 1.1 matt printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
175 1.1 matt __func__, memstart, memsize, kernelstart);
176 1.1 matt #endif
177 1.1 matt
178 1.1 matt physical_start = bmi->bmi_start = memstart;
179 1.1 matt physical_end = bmi->bmi_end = memstart + memsize;
180 1.1 matt physmem = memsize / PAGE_SIZE;
181 1.1 matt
182 1.1 matt /*
183 1.1 matt * Let's record where the kernel lives.
184 1.1 matt */
185 1.1 matt bmi->bmi_kernelstart = kernelstart;
186 1.1 matt bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
187 1.1 matt
188 1.1 matt #ifdef VERBOSE_INIT_ARM
189 1.1 matt printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
190 1.1 matt #endif
191 1.1 matt
192 1.1 matt /*
193 1.1 matt * Now the rest of the free memory must be after the kernel.
194 1.1 matt */
195 1.1 matt pv->pv_pa = bmi->bmi_kernelend;
196 1.1 matt pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
197 1.1 matt pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
198 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
199 1.1 matt #ifdef VERBOSE_INIT_ARM
200 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
201 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
202 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
203 1.1 matt #endif
204 1.1 matt pv++;
205 1.1 matt
206 1.1 matt /*
207 1.1 matt * Add a free block for any memory before the kernel.
208 1.1 matt */
209 1.1 matt if (bmi->bmi_start < bmi->bmi_kernelstart) {
210 1.1 matt pv->pv_pa = bmi->bmi_start;
211 1.1 matt pv->pv_va = KERNEL_BASE;
212 1.1 matt pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
213 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
214 1.1 matt #ifdef VERBOSE_INIT_ARM
215 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
216 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
217 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
218 1.1 matt #endif
219 1.1 matt pv++;
220 1.1 matt }
221 1.1 matt
222 1.1 matt bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
223 1.1 matt
224 1.1 matt SLIST_INIT(&bmi->bmi_freechunks);
225 1.1 matt SLIST_INIT(&bmi->bmi_chunks);
226 1.1 matt }
227 1.1 matt
228 1.1 matt static bool
229 1.1 matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
230 1.1 matt {
231 1.1 matt if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
232 1.1 matt && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
233 1.1 matt && acc_pv->pv_prot == pv->pv_prot
234 1.1 matt && acc_pv->pv_cache == pv->pv_cache) {
235 1.1 matt #ifdef VERBOSE_INIT_ARMX
236 1.1 matt printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
237 1.1 matt __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
238 1.1 matt acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
239 1.1 matt #endif
240 1.1 matt acc_pv->pv_size += pv->pv_size;
241 1.1 matt return true;
242 1.1 matt }
243 1.1 matt
244 1.1 matt return false;
245 1.1 matt }
246 1.1 matt
247 1.1 matt static void
248 1.1 matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
249 1.1 matt {
250 1.1 matt pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
251 1.1 matt while ((*pvp) != 0 && (*pvp)->pv_va <= pv->pv_va) {
252 1.1 matt pv_addr_t * const pv0 = (*pvp);
253 1.1 matt KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
254 1.1 matt if (concat_pvaddr(pv0, pv)) {
255 1.1 matt #ifdef VERBOSE_INIT_ARM
256 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 1.1 matt __func__, "appending", pv,
258 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
259 1.1 matt pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
260 1.1 matt #endif
261 1.1 matt pv = SLIST_NEXT(pv0, pv_list);
262 1.1 matt if (pv != NULL && concat_pvaddr(pv0, pv)) {
263 1.1 matt #ifdef VERBOSE_INIT_ARM
264 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
265 1.1 matt __func__, "merging", pv,
266 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
267 1.1 matt pv0->pv_pa,
268 1.1 matt pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
269 1.1 matt #endif
270 1.1 matt SLIST_REMOVE_AFTER(pv0, pv_list);
271 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
272 1.1 matt }
273 1.1 matt return;
274 1.1 matt }
275 1.1 matt KASSERT(pv->pv_va != (*pvp)->pv_va);
276 1.1 matt pvp = &SLIST_NEXT(*pvp, pv_list);
277 1.1 matt }
278 1.1 matt KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
279 1.1 matt pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
280 1.1 matt KASSERT(new_pv != NULL);
281 1.1 matt SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
282 1.1 matt *new_pv = *pv;
283 1.1 matt SLIST_NEXT(new_pv, pv_list) = *pvp;
284 1.1 matt (*pvp) = new_pv;
285 1.1 matt #ifdef VERBOSE_INIT_ARM
286 1.1 matt printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
287 1.1 matt __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
288 1.1 matt new_pv->pv_size / PAGE_SIZE);
289 1.1 matt if (SLIST_NEXT(new_pv, pv_list))
290 1.1 matt printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
291 1.1 matt else
292 1.1 matt printf("at tail\n");
293 1.1 matt #endif
294 1.1 matt }
295 1.1 matt
296 1.1 matt static void
297 1.1 matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
298 1.1 matt int prot, int cache)
299 1.1 matt {
300 1.1 matt size_t nbytes = npages * PAGE_SIZE;
301 1.1 matt pv_addr_t *free_pv = bmi->bmi_freeblocks;
302 1.1 matt size_t free_idx = 0;
303 1.1 matt static bool l1pt_found;
304 1.1 matt
305 1.1 matt /*
306 1.6 skrll * If we haven't allocated the kernel L1 page table and we are aligned
307 1.1 matt * at a L1 table boundary, alloc the memory for it.
308 1.1 matt */
309 1.1 matt if (!l1pt_found
310 1.1 matt && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
311 1.1 matt && free_pv->pv_size >= L1_TABLE_SIZE) {
312 1.1 matt l1pt_found = true;
313 1.1 matt valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
314 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
315 1.1 matt add_pages(bmi, &kernel_l1pt);
316 1.1 matt }
317 1.1 matt
318 1.1 matt while (nbytes > free_pv->pv_size) {
319 1.1 matt free_pv++;
320 1.1 matt free_idx++;
321 1.1 matt if (free_idx == bmi->bmi_nfreeblocks) {
322 1.1 matt panic("%s: could not allocate %zu bytes",
323 1.1 matt __func__, nbytes);
324 1.1 matt }
325 1.1 matt }
326 1.1 matt
327 1.12 skrll /*
328 1.12 skrll * As we allocate the memory, make sure that we don't walk over
329 1.12 skrll * our current first level translation table.
330 1.12 skrll */
331 1.12 skrll KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
332 1.12 skrll
333 1.1 matt pv->pv_pa = free_pv->pv_pa;
334 1.1 matt pv->pv_va = free_pv->pv_va;
335 1.1 matt pv->pv_size = nbytes;
336 1.1 matt pv->pv_prot = prot;
337 1.1 matt pv->pv_cache = cache;
338 1.1 matt
339 1.1 matt /*
340 1.1 matt * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
341 1.1 matt * just use PTE_CACHE.
342 1.1 matt */
343 1.1 matt if (cache == PTE_PAGETABLE
344 1.1 matt && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
345 1.1 matt && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
346 1.1 matt && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
347 1.1 matt pv->pv_cache = PTE_CACHE;
348 1.1 matt
349 1.1 matt free_pv->pv_pa += nbytes;
350 1.1 matt free_pv->pv_va += nbytes;
351 1.1 matt free_pv->pv_size -= nbytes;
352 1.1 matt if (free_pv->pv_size == 0) {
353 1.1 matt --bmi->bmi_nfreeblocks;
354 1.1 matt for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
355 1.1 matt free_pv[0] = free_pv[1];
356 1.1 matt }
357 1.1 matt }
358 1.1 matt
359 1.1 matt bmi->bmi_freepages -= npages;
360 1.1 matt
361 1.1 matt memset((void *)pv->pv_va, 0, nbytes);
362 1.1 matt }
363 1.1 matt
364 1.1 matt void
365 1.1 matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
366 1.1 matt const struct pmap_devmap *devmap, bool mapallmem_p)
367 1.1 matt {
368 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
369 1.1 matt #ifdef MULTIPROCESSOR
370 1.1 matt const size_t cpu_num = arm_cpu_max + 1;
371 1.1 matt #else
372 1.1 matt const size_t cpu_num = 1;
373 1.1 matt #endif
374 1.1 matt
375 1.1 matt /*
376 1.1 matt * Calculate the number of L2 pages needed for mapping the
377 1.11 skrll * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
378 1.11 skrll * and 1 for IO
379 1.1 matt */
380 1.1 matt size_t kernel_size = bmi->bmi_kernelend;
381 1.1 matt kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
382 1.1 matt kernel_size += L1_TABLE_SIZE;
383 1.11 skrll kernel_size += L2_TABLE_SIZE * (2 + 1 + KERNEL_L2PT_VMDATA_NUM + 1);
384 1.1 matt kernel_size +=
385 1.1 matt cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
386 1.1 matt + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
387 1.11 skrll kernel_size += round_page(MSGBUFSIZE);
388 1.1 matt kernel_size += 0x10000; /* slop */
389 1.1 matt kernel_size += (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
390 1.1 matt kernel_size = round_page(kernel_size);
391 1.1 matt
392 1.1 matt /*
393 1.1 matt * Now we know how many L2 pages it will take.
394 1.1 matt */
395 1.1 matt const size_t KERNEL_L2PT_KERNEL_NUM =
396 1.1 matt (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
397 1.1 matt
398 1.1 matt #ifdef VERBOSE_INIT_ARM
399 1.1 matt printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
400 1.1 matt __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
401 1.1 matt #endif
402 1.1 matt
403 1.1 matt KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
404 1.1 matt pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
405 1.1 matt pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
406 1.1 matt pv_addr_t msgbuf;
407 1.1 matt pv_addr_t text;
408 1.1 matt pv_addr_t data;
409 1.1 matt pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
410 1.1 matt #if ARM_MMU_XSCALE == 1
411 1.1 matt pv_addr_t minidataclean;
412 1.1 matt #endif
413 1.1 matt
414 1.1 matt /*
415 1.1 matt * We need to allocate some fixed page tables to get the kernel going.
416 1.1 matt *
417 1.1 matt * We are going to allocate our bootstrap pages from the beginning of
418 1.1 matt * the free space that we just calculated. We allocate one page
419 1.1 matt * directory and a number of page tables and store the physical
420 1.10 skrll * addresses in the bmi_l2pts array in bootmem_info.
421 1.1 matt *
422 1.1 matt * The kernel page directory must be on a 16K boundary. The page
423 1.1 matt * tables must be on 4K boundaries. What we do is allocate the
424 1.1 matt * page directory on the first 16K boundary that we encounter, and
425 1.1 matt * the page tables on 4K boundaries otherwise. Since we allocate
426 1.1 matt * at least 3 L2 page tables, we are guaranteed to encounter at
427 1.1 matt * least one 16K aligned region.
428 1.1 matt */
429 1.1 matt
430 1.1 matt #ifdef VERBOSE_INIT_ARM
431 1.1 matt printf("%s: allocating page tables for", __func__);
432 1.1 matt #endif
433 1.1 matt for (size_t i = 0; i < __arraycount(chunks); i++) {
434 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
435 1.1 matt }
436 1.1 matt
437 1.1 matt kernel_l1pt.pv_pa = 0;
438 1.1 matt kernel_l1pt.pv_va = 0;
439 1.1 matt
440 1.1 matt /*
441 1.10 skrll * Allocate the L2 pages, but if we get to a page that is aligned for
442 1.10 skrll * an L1 page table, we will allocate the pages for it first and then
443 1.10 skrll * allocate the L2 page.
444 1.10 skrll */
445 1.10 skrll
446 1.10 skrll /*
447 1.1 matt * First allocate L2 page for the vectors.
448 1.1 matt */
449 1.1 matt #ifdef VERBOSE_INIT_ARM
450 1.1 matt printf(" vector");
451 1.1 matt #endif
452 1.1 matt valloc_pages(bmi, &bmi->bmi_vector_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
453 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
454 1.1 matt add_pages(bmi, &bmi->bmi_vector_l2pt);
455 1.1 matt
456 1.1 matt /*
457 1.10 skrll * Now allocate L2 pages for the kernel
458 1.1 matt */
459 1.1 matt #ifdef VERBOSE_INIT_ARM
460 1.1 matt printf(" kernel");
461 1.1 matt #endif
462 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
463 1.1 matt valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
464 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
465 1.1 matt add_pages(bmi, &kernel_l2pt[idx]);
466 1.1 matt }
467 1.10 skrll
468 1.10 skrll /*
469 1.10 skrll * Now allocate L2 pages for the initial kernel VA space.
470 1.10 skrll */
471 1.1 matt #ifdef VERBOSE_INIT_ARM
472 1.1 matt printf(" vm");
473 1.1 matt #endif
474 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
475 1.1 matt valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
476 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
477 1.1 matt add_pages(bmi, &vmdata_l2pt[idx]);
478 1.1 matt }
479 1.1 matt
480 1.1 matt /*
481 1.1 matt * If someone wanted a L2 page for I/O, allocate it now.
482 1.1 matt */
483 1.1 matt if (iovbase != 0) {
484 1.1 matt #ifdef VERBOSE_INIT_ARM
485 1.1 matt printf(" io");
486 1.1 matt #endif
487 1.1 matt valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
488 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
489 1.1 matt add_pages(bmi, &bmi->bmi_io_l2pt);
490 1.1 matt }
491 1.1 matt
492 1.1 matt #ifdef VERBOSE_ARM_INIT
493 1.1 matt printf("%s: allocating stacks\n", __func__);
494 1.1 matt #endif
495 1.1 matt
496 1.10 skrll /* Allocate stacks for all modes and CPUs */
497 1.1 matt valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
498 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
499 1.1 matt add_pages(bmi, &abtstack);
500 1.1 matt valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
501 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
502 1.1 matt add_pages(bmi, &fiqstack);
503 1.1 matt valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
504 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
505 1.1 matt add_pages(bmi, &irqstack);
506 1.1 matt valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
507 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
508 1.1 matt add_pages(bmi, &undstack);
509 1.1 matt valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
510 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
511 1.1 matt add_pages(bmi, &idlestack);
512 1.1 matt valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
513 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
514 1.1 matt add_pages(bmi, &kernelstack);
515 1.1 matt
516 1.1 matt /* Allocate the message buffer from the end of memory. */
517 1.1 matt const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
518 1.1 matt valloc_pages(bmi, &msgbuf, msgbuf_pgs,
519 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
520 1.1 matt add_pages(bmi, &msgbuf);
521 1.1 matt msgbufphys = msgbuf.pv_pa;
522 1.1 matt
523 1.1 matt /*
524 1.1 matt * Allocate a page for the system vector page.
525 1.1 matt * This page will just contain the system vectors and can be
526 1.1 matt * shared by all processes.
527 1.1 matt */
528 1.1 matt valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
529 1.1 matt systempage.pv_va = vectors;
530 1.1 matt
531 1.1 matt /*
532 1.1 matt * If the caller needed a few extra pages for some reason, allocate
533 1.1 matt * them now.
534 1.1 matt */
535 1.1 matt #if ARM_MMU_XSCALE == 1
536 1.1 matt #if (ARM_NMMUS > 1)
537 1.1 matt if (xscale_use_minidata)
538 1.1 matt #endif
539 1.1 matt valloc_pages(bmi, extrapv, nextrapages,
540 1.1 matt VM_PROT_READ|VM_PROT_WRITE, 0);
541 1.1 matt #endif
542 1.1 matt
543 1.1 matt /*
544 1.1 matt * Ok we have allocated physical pages for the primary kernel
545 1.1 matt * page tables and stacks. Let's just confirm that.
546 1.1 matt */
547 1.1 matt if (kernel_l1pt.pv_va == 0
548 1.1 matt && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
549 1.1 matt panic("%s: Failed to allocate or align the kernel "
550 1.1 matt "page directory", __func__);
551 1.1 matt
552 1.1 matt
553 1.1 matt #ifdef VERBOSE_INIT_ARM
554 1.1 matt printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
555 1.1 matt #endif
556 1.1 matt
557 1.1 matt /*
558 1.1 matt * Now we start construction of the L1 page table
559 1.1 matt * We start by mapping the L2 page tables into the L1.
560 1.1 matt * This means that we can replace L1 mappings later on if necessary
561 1.1 matt */
562 1.1 matt vaddr_t l1pt_va = kernel_l1pt.pv_va;
563 1.1 matt paddr_t l1pt_pa = kernel_l1pt.pv_pa;
564 1.1 matt
565 1.1 matt /* Map the L2 pages tables in the L1 page table */
566 1.1 matt pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
567 1.1 matt &bmi->bmi_vector_l2pt);
568 1.1 matt #ifdef VERBOSE_INIT_ARM
569 1.9 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n (vectors)",
570 1.1 matt __func__, bmi->bmi_vector_l2pt.pv_va, bmi->bmi_vector_l2pt.pv_pa,
571 1.1 matt systempage.pv_va);
572 1.1 matt #endif
573 1.1 matt
574 1.1 matt const vaddr_t kernel_base =
575 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
576 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
577 1.1 matt pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
578 1.1 matt &kernel_l2pt[idx]);
579 1.1 matt #ifdef VERBOSE_INIT_ARM
580 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
581 1.1 matt __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
582 1.1 matt kernel_base + idx * L2_S_SEGSIZE);
583 1.1 matt #endif
584 1.1 matt }
585 1.1 matt
586 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
587 1.1 matt pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
588 1.1 matt &vmdata_l2pt[idx]);
589 1.1 matt #ifdef VERBOSE_INIT_ARM
590 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
591 1.1 matt __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
592 1.1 matt kernel_vm_base + idx * L2_S_SEGSIZE);
593 1.1 matt #endif
594 1.1 matt }
595 1.1 matt if (iovbase) {
596 1.1 matt pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
597 1.1 matt #ifdef VERBOSE_INIT_ARM
598 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
599 1.1 matt __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
600 1.1 matt iovbase & -L2_S_SEGSIZE);
601 1.1 matt #endif
602 1.1 matt }
603 1.1 matt
604 1.1 matt /* update the top of the kernel VM */
605 1.1 matt pmap_curmaxkvaddr =
606 1.1 matt kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
607 1.1 matt
608 1.1 matt #ifdef VERBOSE_INIT_ARM
609 1.1 matt printf("Mapping kernel\n");
610 1.1 matt #endif
611 1.1 matt
612 1.1 matt extern char etext[], _end[];
613 1.1 matt size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
614 1.1 matt size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
615 1.1 matt
616 1.1 matt textsize = (textsize + PGOFSET) & ~PGOFSET;
617 1.1 matt
618 1.1 matt /* start at offset of kernel in RAM */
619 1.1 matt
620 1.1 matt text.pv_pa = bmi->bmi_kernelstart;
621 1.1 matt text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
622 1.1 matt text.pv_size = textsize;
623 1.1 matt text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
624 1.1 matt text.pv_cache = PTE_CACHE;
625 1.1 matt
626 1.1 matt #ifdef VERBOSE_INIT_ARM
627 1.1 matt printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
628 1.1 matt __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
629 1.1 matt #endif
630 1.1 matt
631 1.1 matt add_pages(bmi, &text);
632 1.1 matt
633 1.1 matt data.pv_pa = text.pv_pa + textsize;
634 1.1 matt data.pv_va = text.pv_va + textsize;
635 1.1 matt data.pv_size = totalsize - textsize;
636 1.1 matt data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
637 1.1 matt data.pv_cache = PTE_CACHE;
638 1.1 matt
639 1.1 matt #ifdef VERBOSE_INIT_ARM
640 1.1 matt printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
641 1.1 matt __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
642 1.1 matt #endif
643 1.1 matt
644 1.1 matt add_pages(bmi, &data);
645 1.1 matt
646 1.1 matt #ifdef VERBOSE_INIT_ARM
647 1.1 matt printf("Listing Chunks\n");
648 1.1 matt {
649 1.1 matt pv_addr_t *pv;
650 1.1 matt SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
651 1.1 matt printf("%s: pv %p: chunk VA %#lx..%#lx "
652 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
653 1.1 matt __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
654 1.1 matt pv->pv_pa, pv->pv_prot, pv->pv_cache);
655 1.1 matt }
656 1.1 matt }
657 1.1 matt printf("\nMapping Chunks\n");
658 1.1 matt #endif
659 1.1 matt
660 1.1 matt pv_addr_t cur_pv;
661 1.1 matt pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
662 1.1 matt if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
663 1.1 matt cur_pv = *pv;
664 1.1 matt pv = SLIST_NEXT(pv, pv_list);
665 1.1 matt } else {
666 1.13 matt cur_pv.pv_va = KERNEL_BASE;
667 1.1 matt cur_pv.pv_pa = bmi->bmi_start;
668 1.1 matt cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
669 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
670 1.1 matt cur_pv.pv_cache = PTE_CACHE;
671 1.1 matt }
672 1.1 matt while (pv != NULL) {
673 1.1 matt if (mapallmem_p) {
674 1.1 matt if (concat_pvaddr(&cur_pv, pv)) {
675 1.1 matt pv = SLIST_NEXT(pv, pv_list);
676 1.1 matt continue;
677 1.1 matt }
678 1.1 matt if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
679 1.1 matt /*
680 1.1 matt * See if we can extend the current pv to emcompass the
681 1.1 matt * hole, and if so do it and retry the concatenation.
682 1.1 matt */
683 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
684 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
685 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
686 1.1 matt continue;
687 1.1 matt }
688 1.1 matt
689 1.1 matt /*
690 1.1 matt * We couldn't so emit the current chunk and then
691 1.1 matt */
692 1.1 matt #ifdef VERBOSE_INIT_ARM
693 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
694 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
695 1.1 matt __func__,
696 1.1 matt cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
697 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
698 1.1 matt #endif
699 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
700 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
701 1.1 matt
702 1.1 matt /*
703 1.1 matt * set the current chunk to the hole and try again.
704 1.1 matt */
705 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
706 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
707 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
708 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
709 1.1 matt cur_pv.pv_cache = PTE_CACHE;
710 1.1 matt continue;
711 1.1 matt }
712 1.1 matt }
713 1.1 matt
714 1.1 matt /*
715 1.1 matt * The new pv didn't concatenate so emit the current one
716 1.1 matt * and use the new pv as the current pv.
717 1.1 matt */
718 1.1 matt #ifdef VERBOSE_INIT_ARM
719 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
720 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
721 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
722 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
723 1.1 matt #endif
724 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
725 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
726 1.1 matt cur_pv = *pv;
727 1.1 matt pv = SLIST_NEXT(pv, pv_list);
728 1.1 matt }
729 1.1 matt
730 1.1 matt /*
731 1.1 matt * If we are mapping all of memory, let's map the rest of memory.
732 1.1 matt */
733 1.1 matt if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
734 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
735 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
736 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
737 1.1 matt } else {
738 1.1 matt #ifdef VERBOSE_INIT_ARM
739 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
740 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
741 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
742 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
743 1.1 matt #endif
744 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
745 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
746 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
747 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
748 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
749 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
750 1.1 matt cur_pv.pv_cache = PTE_CACHE;
751 1.1 matt }
752 1.1 matt }
753 1.1 matt
754 1.1 matt /*
755 1.1 matt * Now we map the final chunk.
756 1.1 matt */
757 1.1 matt #ifdef VERBOSE_INIT_ARM
758 1.1 matt printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
759 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
760 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
761 1.1 matt #endif
762 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
763 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
764 1.1 matt
765 1.1 matt /*
766 1.1 matt * Now we map the stuff that isn't directly after the kernel
767 1.1 matt */
768 1.1 matt
769 1.1 matt /* Map the vector page. */
770 1.1 matt pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
771 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
772 1.1 matt
773 1.1 matt /* Map the Mini-Data cache clean area. */
774 1.1 matt #if ARM_MMU_XSCALE == 1
775 1.1 matt #if (ARM_NMMUS > 1)
776 1.1 matt if (xscale_use_minidata)
777 1.1 matt #endif
778 1.1 matt xscale_setup_minidata(l1_va, minidataclean.pv_va,
779 1.1 matt minidataclean.pv_pa);
780 1.1 matt #endif
781 1.1 matt
782 1.1 matt /*
783 1.1 matt * Map integrated peripherals at same address in first level page
784 1.1 matt * table so that we can continue to use console.
785 1.1 matt */
786 1.1 matt if (devmap)
787 1.1 matt pmap_devmap_bootstrap(l1pt_va, devmap);
788 1.1 matt
789 1.1 matt #ifdef VERBOSE_INIT_ARM
790 1.1 matt /* Tell the user about where all the bits and pieces live. */
791 1.1 matt printf("%22s Physical Virtual Num\n", " ");
792 1.1 matt printf("%22s Starting Ending Starting Ending Pages\n", " ");
793 1.1 matt
794 1.1 matt static const char mem_fmt[] =
795 1.1 matt "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
796 1.1 matt static const char mem_fmt_nov[] =
797 1.1 matt "%20s: 0x%08lx 0x%08lx %zu\n";
798 1.1 matt
799 1.1 matt printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
800 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
801 1.1 matt physmem);
802 1.1 matt printf(mem_fmt, "text section",
803 1.1 matt text.pv_pa, text.pv_pa + text.pv_size - 1,
804 1.1 matt text.pv_va, text.pv_va + text.pv_size - 1,
805 1.1 matt (int)(text.pv_size / PAGE_SIZE));
806 1.1 matt printf(mem_fmt, "data section",
807 1.1 matt KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
808 1.1 matt (vaddr_t)__data_start, (vaddr_t)_edata,
809 1.1 matt (int)((round_page((vaddr_t)_edata)
810 1.1 matt - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
811 1.1 matt printf(mem_fmt, "bss section",
812 1.1 matt KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
813 1.1 matt (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
814 1.1 matt (int)((round_page((vaddr_t)__bss_end__)
815 1.1 matt - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
816 1.1 matt printf(mem_fmt, "L1 page directory",
817 1.1 matt kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
818 1.1 matt kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
819 1.1 matt L1_TABLE_SIZE / PAGE_SIZE);
820 1.7 skrll printf(mem_fmt, "ABT stack (CPU 0)",
821 1.7 skrll abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
822 1.7 skrll abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
823 1.7 skrll ABT_STACK_SIZE);
824 1.1 matt printf(mem_fmt, "FIQ stack (CPU 0)",
825 1.1 matt fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
826 1.1 matt fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
827 1.1 matt FIQ_STACK_SIZE);
828 1.1 matt printf(mem_fmt, "IRQ stack (CPU 0)",
829 1.1 matt irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
830 1.1 matt irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
831 1.1 matt IRQ_STACK_SIZE);
832 1.1 matt printf(mem_fmt, "UND stack (CPU 0)",
833 1.1 matt undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
834 1.1 matt undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
835 1.1 matt UND_STACK_SIZE);
836 1.1 matt printf(mem_fmt, "IDLE stack (CPU 0)",
837 1.1 matt idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
838 1.1 matt idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
839 1.1 matt UPAGES);
840 1.1 matt printf(mem_fmt, "SVC stack",
841 1.1 matt kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
842 1.1 matt kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
843 1.1 matt UPAGES);
844 1.9 skrll printf(mem_fmt, "Message Buffer",
845 1.9 skrll msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
846 1.9 skrll msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
847 1.9 skrll (int)msgbuf_pgs);
848 1.5 skrll printf(mem_fmt, "Exception Vectors",
849 1.5 skrll systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
850 1.5 skrll systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
851 1.5 skrll 1);
852 1.1 matt for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
853 1.1 matt pv = &bmi->bmi_freeblocks[i];
854 1.1 matt
855 1.1 matt printf(mem_fmt_nov, "Free Memory",
856 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
857 1.1 matt pv->pv_size / PAGE_SIZE);
858 1.1 matt }
859 1.1 matt #endif
860 1.1 matt /*
861 1.1 matt * Now we have the real page tables in place so we can switch to them.
862 1.1 matt * Once this is done we will be running with the REAL kernel page
863 1.1 matt * tables.
864 1.1 matt */
865 1.1 matt
866 1.2 matt #if defined(VERBOSE_INIT_ARM) && 0
867 1.2 matt printf("TTBR0=%#x", armreg_ttbr_read());
868 1.2 matt #ifdef _ARM_ARCH_6
869 1.2 matt printf(" TTBR1=%#x TTBCR=%#x",
870 1.2 matt armreg_ttbr1_read(), armreg_ttbcr_read());
871 1.2 matt #endif
872 1.2 matt printf("\n");
873 1.2 matt #endif
874 1.2 matt
875 1.1 matt /* Switch tables */
876 1.1 matt #ifdef VERBOSE_INIT_ARM
877 1.3 matt printf("switching to new L1 page table @%#lx...", l1pt_pa);
878 1.1 matt #endif
879 1.1 matt
880 1.1 matt cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
881 1.3 matt cpu_idcache_wbinv_all();
882 1.4 matt cpu_setttb(l1pt_pa, true);
883 1.1 matt cpu_tlb_flushID();
884 1.1 matt cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
885 1.1 matt
886 1.1 matt #ifdef VERBOSE_INIT_ARM
887 1.9 skrll printf("TTBR0=%#x OK\n", armreg_ttbr_read());
888 1.1 matt #endif
889 1.1 matt }
890