Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.26.2.1
      1  1.26.2.1    tls /*	$NetBSD: arm32_kvminit.c,v 1.26.2.1 2014/08/10 06:53:50 tls Exp $	*/
      2       1.1   matt 
      3       1.1   matt /*
      4       1.1   matt  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5       1.1   matt  * Written by Hiroyuki Bessho for Genetec Corporation.
      6       1.1   matt  *
      7       1.1   matt  * Redistribution and use in source and binary forms, with or without
      8       1.1   matt  * modification, are permitted provided that the following conditions
      9       1.1   matt  * are met:
     10       1.1   matt  * 1. Redistributions of source code must retain the above copyright
     11       1.1   matt  *    notice, this list of conditions and the following disclaimer.
     12       1.1   matt  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1   matt  *    notice, this list of conditions and the following disclaimer in the
     14       1.1   matt  *    documentation and/or other materials provided with the distribution.
     15       1.1   matt  * 3. The name of Genetec Corporation may not be used to endorse or
     16       1.1   matt  *    promote products derived from this software without specific prior
     17       1.1   matt  *    written permission.
     18       1.1   matt  *
     19       1.1   matt  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20       1.1   matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1   matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1   matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23       1.1   matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1   matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1   matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1   matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1   matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1   matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1   matt  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1   matt  *
     31       1.1   matt  * Copyright (c) 2001 Wasabi Systems, Inc.
     32       1.1   matt  * All rights reserved.
     33       1.1   matt  *
     34       1.1   matt  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35       1.1   matt  *
     36       1.1   matt  * Redistribution and use in source and binary forms, with or without
     37       1.1   matt  * modification, are permitted provided that the following conditions
     38       1.1   matt  * are met:
     39       1.1   matt  * 1. Redistributions of source code must retain the above copyright
     40       1.1   matt  *    notice, this list of conditions and the following disclaimer.
     41       1.1   matt  * 2. Redistributions in binary form must reproduce the above copyright
     42       1.1   matt  *    notice, this list of conditions and the following disclaimer in the
     43       1.1   matt  *    documentation and/or other materials provided with the distribution.
     44       1.1   matt  * 3. All advertising materials mentioning features or use of this software
     45       1.1   matt  *    must display the following acknowledgement:
     46       1.1   matt  *	This product includes software developed for the NetBSD Project by
     47       1.1   matt  *	Wasabi Systems, Inc.
     48       1.1   matt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49       1.1   matt  *    or promote products derived from this software without specific prior
     50       1.1   matt  *    written permission.
     51       1.1   matt  *
     52       1.1   matt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53       1.1   matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54       1.1   matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55       1.1   matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56       1.1   matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57       1.1   matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58       1.1   matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59       1.1   matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60       1.1   matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61       1.1   matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62       1.1   matt  * POSSIBILITY OF SUCH DAMAGE.
     63       1.1   matt  *
     64       1.1   matt  * Copyright (c) 1997,1998 Mark Brinicombe.
     65       1.1   matt  * Copyright (c) 1997,1998 Causality Limited.
     66       1.1   matt  * All rights reserved.
     67       1.1   matt  *
     68       1.1   matt  * Redistribution and use in source and binary forms, with or without
     69       1.1   matt  * modification, are permitted provided that the following conditions
     70       1.1   matt  * are met:
     71       1.1   matt  * 1. Redistributions of source code must retain the above copyright
     72       1.1   matt  *    notice, this list of conditions and the following disclaimer.
     73       1.1   matt  * 2. Redistributions in binary form must reproduce the above copyright
     74       1.1   matt  *    notice, this list of conditions and the following disclaimer in the
     75       1.1   matt  *    documentation and/or other materials provided with the distribution.
     76       1.1   matt  * 3. All advertising materials mentioning features or use of this software
     77       1.1   matt  *    must display the following acknowledgement:
     78       1.1   matt  *	This product includes software developed by Mark Brinicombe
     79       1.1   matt  *	for the NetBSD Project.
     80       1.1   matt  * 4. The name of the company nor the name of the author may be used to
     81       1.1   matt  *    endorse or promote products derived from this software without specific
     82       1.1   matt  *    prior written permission.
     83       1.1   matt  *
     84       1.1   matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85       1.1   matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86       1.1   matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87       1.1   matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88       1.1   matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89       1.1   matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90       1.1   matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91       1.1   matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92       1.1   matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93       1.1   matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94       1.1   matt  * SUCH DAMAGE.
     95       1.1   matt  *
     96       1.1   matt  * Copyright (c) 2007 Microsoft
     97       1.1   matt  * All rights reserved.
     98       1.1   matt  *
     99       1.1   matt  * Redistribution and use in source and binary forms, with or without
    100       1.1   matt  * modification, are permitted provided that the following conditions
    101       1.1   matt  * are met:
    102       1.1   matt  * 1. Redistributions of source code must retain the above copyright
    103       1.1   matt  *    notice, this list of conditions and the following disclaimer.
    104       1.1   matt  * 2. Redistributions in binary form must reproduce the above copyright
    105       1.1   matt  *    notice, this list of conditions and the following disclaimer in the
    106       1.1   matt  *    documentation and/or other materials provided with the distribution.
    107       1.1   matt  * 3. All advertising materials mentioning features or use of this software
    108       1.1   matt  *    must display the following acknowledgement:
    109       1.1   matt  *	This product includes software developed by Microsoft
    110       1.1   matt  *
    111       1.1   matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112       1.1   matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113       1.1   matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114       1.1   matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115       1.1   matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116       1.1   matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117       1.1   matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118       1.1   matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119       1.1   matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120       1.1   matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121       1.1   matt  * SUCH DAMAGE.
    122       1.1   matt  */
    123       1.1   matt 
    124       1.1   matt #include <sys/cdefs.h>
    125  1.26.2.1    tls __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.26.2.1 2014/08/10 06:53:50 tls Exp $");
    126       1.1   matt 
    127       1.1   matt #include <sys/param.h>
    128       1.1   matt #include <sys/device.h>
    129       1.1   matt #include <sys/kernel.h>
    130       1.1   matt #include <sys/reboot.h>
    131       1.1   matt #include <sys/bus.h>
    132       1.1   matt 
    133       1.1   matt #include <dev/cons.h>
    134       1.1   matt 
    135       1.1   matt #include <uvm/uvm_extern.h>
    136       1.1   matt 
    137      1.24   matt #include <arm/locore.h>
    138       1.1   matt #include <arm/db_machdep.h>
    139       1.1   matt #include <arm/undefined.h>
    140       1.1   matt #include <arm/bootconfig.h>
    141       1.1   matt #include <arm/arm32/machdep.h>
    142       1.1   matt 
    143       1.1   matt #include "ksyms.h"
    144       1.1   matt 
    145       1.1   matt struct bootmem_info bootmem_info;
    146       1.1   matt 
    147  1.26.2.1    tls extern void *msgbufaddr;
    148       1.1   matt paddr_t msgbufphys;
    149       1.1   matt paddr_t physical_start;
    150       1.1   matt paddr_t physical_end;
    151       1.1   matt 
    152       1.1   matt extern char etext[];
    153       1.1   matt extern char __data_start[], _edata[];
    154       1.1   matt extern char __bss_start[], __bss_end__[];
    155       1.1   matt extern char _end[];
    156       1.1   matt 
    157       1.1   matt /* Page tables for mapping kernel VM */
    158       1.1   matt #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    159       1.1   matt 
    160       1.1   matt /*
    161       1.1   matt  * Macros to translate between physical and virtual for a subset of the
    162       1.1   matt  * kernel address space.  *Not* for general use.
    163       1.1   matt  */
    164  1.26.2.1    tls #if defined(KERNEL_BASE_VOFFSET)
    165  1.26.2.1    tls #define KERN_VTOPHYS(bmi, va) \
    166  1.26.2.1    tls 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
    167  1.26.2.1    tls #define KERN_PHYSTOV(bmi, pa) \
    168  1.26.2.1    tls 	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
    169  1.26.2.1    tls #elif defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    170  1.26.2.1    tls #define KERN_VTOPHYS(bmi, va) \
    171  1.26.2.1    tls 	((paddr_t)((vaddr_t)(va) - pmap_directbase + (bmi)->bmi_start))
    172  1.26.2.1    tls #define KERN_PHYSTOV(bmi, pa) \
    173  1.26.2.1    tls 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + pmap_directbase))
    174  1.26.2.1    tls #else
    175       1.1   matt #define KERN_VTOPHYS(bmi, va) \
    176       1.1   matt 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    177       1.1   matt #define KERN_PHYSTOV(bmi, pa) \
    178       1.1   matt 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    179  1.26.2.1    tls #endif
    180       1.1   matt 
    181       1.1   matt void
    182       1.1   matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    183       1.1   matt {
    184       1.1   matt 	struct bootmem_info * const bmi = &bootmem_info;
    185       1.1   matt 	pv_addr_t *pv = bmi->bmi_freeblocks;
    186       1.1   matt 
    187       1.1   matt #ifdef VERBOSE_INIT_ARM
    188       1.1   matt 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    189       1.1   matt 	    __func__, memstart, memsize, kernelstart);
    190       1.1   matt #endif
    191       1.1   matt 
    192       1.1   matt 	physical_start = bmi->bmi_start = memstart;
    193       1.1   matt 	physical_end = bmi->bmi_end = memstart + memsize;
    194       1.1   matt 	physmem = memsize / PAGE_SIZE;
    195       1.1   matt 
    196       1.1   matt 	/*
    197       1.1   matt 	 * Let's record where the kernel lives.
    198       1.1   matt 	 */
    199       1.1   matt 	bmi->bmi_kernelstart = kernelstart;
    200       1.1   matt 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    201       1.1   matt 
    202       1.1   matt #ifdef VERBOSE_INIT_ARM
    203       1.1   matt 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    204       1.1   matt #endif
    205       1.1   matt 
    206       1.1   matt 	/*
    207       1.1   matt 	 * Now the rest of the free memory must be after the kernel.
    208       1.1   matt 	 */
    209       1.1   matt 	pv->pv_pa = bmi->bmi_kernelend;
    210       1.1   matt 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    211       1.1   matt 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    212       1.1   matt 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    213       1.1   matt #ifdef VERBOSE_INIT_ARM
    214       1.1   matt 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    215       1.1   matt 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    216       1.1   matt 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    217       1.1   matt #endif
    218       1.1   matt 	pv++;
    219       1.1   matt 
    220       1.1   matt 	/*
    221       1.1   matt 	 * Add a free block for any memory before the kernel.
    222       1.1   matt 	 */
    223       1.1   matt 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    224       1.1   matt 		pv->pv_pa = bmi->bmi_start;
    225  1.26.2.1    tls #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    226  1.26.2.1    tls 		pv->pv_va = pmap_directbase;
    227  1.26.2.1    tls #else
    228       1.1   matt 		pv->pv_va = KERNEL_BASE;
    229  1.26.2.1    tls #endif
    230       1.1   matt 		pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
    231       1.1   matt 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    232       1.1   matt #ifdef VERBOSE_INIT_ARM
    233       1.1   matt 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    234       1.1   matt 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    235       1.1   matt 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    236       1.1   matt #endif
    237       1.1   matt 		pv++;
    238       1.1   matt 	}
    239       1.1   matt 
    240       1.1   matt 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    241       1.1   matt 
    242       1.1   matt 	SLIST_INIT(&bmi->bmi_freechunks);
    243       1.1   matt 	SLIST_INIT(&bmi->bmi_chunks);
    244       1.1   matt }
    245       1.1   matt 
    246       1.1   matt static bool
    247       1.1   matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    248       1.1   matt {
    249       1.1   matt 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    250       1.1   matt 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    251       1.1   matt 	    && acc_pv->pv_prot == pv->pv_prot
    252       1.1   matt 	    && acc_pv->pv_cache == pv->pv_cache) {
    253       1.1   matt #ifdef VERBOSE_INIT_ARMX
    254       1.1   matt 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    255       1.1   matt 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    256       1.1   matt 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    257       1.1   matt #endif
    258       1.1   matt 		acc_pv->pv_size += pv->pv_size;
    259       1.1   matt 		return true;
    260       1.1   matt 	}
    261       1.1   matt 
    262       1.1   matt 	return false;
    263       1.1   matt }
    264       1.1   matt 
    265       1.1   matt static void
    266       1.1   matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    267       1.1   matt {
    268       1.1   matt 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    269      1.14  skrll 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    270       1.1   matt 		pv_addr_t * const pv0 = (*pvp);
    271       1.1   matt 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    272       1.1   matt 		if (concat_pvaddr(pv0, pv)) {
    273       1.1   matt #ifdef VERBOSE_INIT_ARM
    274       1.1   matt 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    275       1.1   matt 			    __func__, "appending", pv,
    276       1.1   matt 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    277       1.1   matt 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    278       1.1   matt #endif
    279       1.1   matt 			pv = SLIST_NEXT(pv0, pv_list);
    280       1.1   matt 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    281       1.1   matt #ifdef VERBOSE_INIT_ARM
    282       1.1   matt 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    283       1.1   matt 				    __func__, "merging", pv,
    284       1.1   matt 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    285       1.1   matt 				    pv0->pv_pa,
    286       1.1   matt 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    287       1.1   matt #endif
    288       1.1   matt 				SLIST_REMOVE_AFTER(pv0, pv_list);
    289       1.1   matt 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    290       1.1   matt 			}
    291       1.1   matt 			return;
    292       1.1   matt 		}
    293       1.1   matt 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    294       1.1   matt 		pvp = &SLIST_NEXT(*pvp, pv_list);
    295       1.1   matt 	}
    296       1.1   matt 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    297       1.1   matt 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    298       1.1   matt 	KASSERT(new_pv != NULL);
    299       1.1   matt 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    300       1.1   matt 	*new_pv = *pv;
    301       1.1   matt 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    302       1.1   matt 	(*pvp) = new_pv;
    303       1.1   matt #ifdef VERBOSE_INIT_ARM
    304       1.1   matt 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    305       1.1   matt 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    306       1.1   matt 	    new_pv->pv_size / PAGE_SIZE);
    307       1.1   matt 	if (SLIST_NEXT(new_pv, pv_list))
    308       1.1   matt 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    309       1.1   matt 	else
    310       1.1   matt 		printf("at tail\n");
    311       1.1   matt #endif
    312       1.1   matt }
    313       1.1   matt 
    314       1.1   matt static void
    315       1.1   matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    316      1.17   matt 	int prot, int cache, bool zero_p)
    317       1.1   matt {
    318       1.1   matt 	size_t nbytes = npages * PAGE_SIZE;
    319       1.1   matt 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    320       1.1   matt 	size_t free_idx = 0;
    321       1.1   matt 	static bool l1pt_found;
    322       1.1   matt 
    323      1.23   matt 	KASSERT(npages > 0);
    324      1.23   matt 
    325       1.1   matt 	/*
    326       1.6  skrll 	 * If we haven't allocated the kernel L1 page table and we are aligned
    327       1.1   matt 	 * at a L1 table boundary, alloc the memory for it.
    328       1.1   matt 	 */
    329       1.1   matt 	if (!l1pt_found
    330       1.1   matt 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    331       1.1   matt 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    332       1.1   matt 		l1pt_found = true;
    333       1.1   matt 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    334      1.17   matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    335       1.1   matt 		add_pages(bmi, &kernel_l1pt);
    336       1.1   matt 	}
    337       1.1   matt 
    338       1.1   matt 	while (nbytes > free_pv->pv_size) {
    339       1.1   matt 		free_pv++;
    340       1.1   matt 		free_idx++;
    341       1.1   matt 		if (free_idx == bmi->bmi_nfreeblocks) {
    342       1.1   matt 			panic("%s: could not allocate %zu bytes",
    343       1.1   matt 			    __func__, nbytes);
    344       1.1   matt 		}
    345       1.1   matt 	}
    346       1.1   matt 
    347      1.12  skrll 	/*
    348      1.12  skrll 	 * As we allocate the memory, make sure that we don't walk over
    349      1.12  skrll 	 * our current first level translation table.
    350      1.12  skrll 	 */
    351      1.12  skrll 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    352      1.12  skrll 
    353       1.1   matt 	pv->pv_pa = free_pv->pv_pa;
    354       1.1   matt 	pv->pv_va = free_pv->pv_va;
    355       1.1   matt 	pv->pv_size = nbytes;
    356       1.1   matt 	pv->pv_prot = prot;
    357       1.1   matt 	pv->pv_cache = cache;
    358       1.1   matt 
    359       1.1   matt 	/*
    360       1.1   matt 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    361       1.1   matt 	 * just use PTE_CACHE.
    362       1.1   matt 	 */
    363       1.1   matt 	if (cache == PTE_PAGETABLE
    364       1.1   matt 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    365       1.1   matt 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    366       1.1   matt 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    367       1.1   matt 		pv->pv_cache = PTE_CACHE;
    368       1.1   matt 
    369       1.1   matt 	free_pv->pv_pa += nbytes;
    370       1.1   matt 	free_pv->pv_va += nbytes;
    371       1.1   matt 	free_pv->pv_size -= nbytes;
    372       1.1   matt 	if (free_pv->pv_size == 0) {
    373       1.1   matt 		--bmi->bmi_nfreeblocks;
    374       1.1   matt 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    375       1.1   matt 			free_pv[0] = free_pv[1];
    376       1.1   matt 		}
    377       1.1   matt 	}
    378       1.1   matt 
    379       1.1   matt 	bmi->bmi_freepages -= npages;
    380       1.1   matt 
    381      1.18   matt 	if (zero_p)
    382      1.18   matt 		memset((void *)pv->pv_va, 0, nbytes);
    383       1.1   matt }
    384       1.1   matt 
    385       1.1   matt void
    386       1.1   matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    387       1.1   matt 	const struct pmap_devmap *devmap, bool mapallmem_p)
    388       1.1   matt {
    389       1.1   matt 	struct bootmem_info * const bmi = &bootmem_info;
    390       1.1   matt #ifdef MULTIPROCESSOR
    391      1.25   matt 	const size_t cpu_num = arm_cpu_max;
    392       1.1   matt #else
    393       1.1   matt 	const size_t cpu_num = 1;
    394       1.1   matt #endif
    395      1.20   matt #ifdef ARM_HAS_VBAR
    396      1.20   matt 	const bool map_vectors_p = false;
    397      1.20   matt #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    398      1.21   matt 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    399      1.21   matt 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    400      1.19   matt #else
    401      1.19   matt 	const bool map_vectors_p = true;
    402      1.19   matt #endif
    403       1.1   matt 
    404      1.15   matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    405      1.15   matt 	KASSERT(mapallmem_p);
    406  1.26.2.1    tls #ifdef ARM_MMU_EXTENDED
    407  1.26.2.1    tls 	/*
    408  1.26.2.1    tls 	 * We can only use address beneath kernel_vm_base to map physical
    409  1.26.2.1    tls 	 * memory.
    410  1.26.2.1    tls 	 */
    411  1.26.2.1    tls 	const psize_t physical_size =
    412  1.26.2.1    tls 	    roundup(physical_end - physical_start, L1_SS_SIZE);
    413  1.26.2.1    tls 	KASSERT(kernel_vm_base >= physical_size);
    414  1.26.2.1    tls 	/*
    415  1.26.2.1    tls 	 * If we don't have enough memory via TTBR1, we have use addresses
    416  1.26.2.1    tls 	 * from TTBR0 to map some of the physical memory.  But try to use as
    417  1.26.2.1    tls 	 * much high memory space as possible.
    418  1.26.2.1    tls 	 */
    419  1.26.2.1    tls 	if (kernel_vm_base - KERNEL_BASE < physical_size) {
    420  1.26.2.1    tls 		pmap_directbase = kernel_vm_base - physical_size;
    421  1.26.2.1    tls 		printf("%s: changing pmap_directbase to %#lx\n", __func__,
    422  1.26.2.1    tls 		    pmap_directbase);
    423  1.26.2.1    tls 	}
    424  1.26.2.1    tls #else
    425  1.26.2.1    tls 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    426  1.26.2.1    tls #endif /* ARM_MMU_EXTENDED */
    427  1.26.2.1    tls #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    428      1.15   matt 
    429       1.1   matt 	/*
    430       1.1   matt 	 * Calculate the number of L2 pages needed for mapping the
    431      1.11  skrll 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    432      1.11  skrll 	 * and 1 for IO
    433       1.1   matt 	 */
    434       1.1   matt 	size_t kernel_size = bmi->bmi_kernelend;
    435       1.1   matt 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    436      1.23   matt 	kernel_size += L1_TABLE_SIZE_REAL;
    437      1.23   matt 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    438      1.23   matt 	if (map_vectors_p) {
    439      1.23   matt 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    440      1.23   matt 	}
    441      1.23   matt 	if (iovbase) {
    442      1.23   matt 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    443      1.23   matt 	}
    444       1.1   matt 	kernel_size +=
    445       1.1   matt 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    446       1.1   matt 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    447      1.11  skrll 	kernel_size += round_page(MSGBUFSIZE);
    448       1.1   matt 	kernel_size += 0x10000;	/* slop */
    449      1.23   matt 	if (!mapallmem_p) {
    450      1.23   matt 		kernel_size += PAGE_SIZE
    451      1.23   matt 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    452      1.23   matt 	}
    453       1.1   matt 	kernel_size = round_page(kernel_size);
    454       1.1   matt 
    455       1.1   matt 	/*
    456      1.23   matt 	 * Now we know how many L2 pages it will take.  If we've mapped
    457      1.23   matt 	 * all of memory, then it won't take any.
    458       1.1   matt 	 */
    459      1.23   matt 	const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
    460      1.23   matt 	    ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    461       1.1   matt 
    462       1.1   matt #ifdef VERBOSE_INIT_ARM
    463       1.1   matt 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    464       1.1   matt 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    465       1.1   matt #endif
    466       1.1   matt 
    467       1.1   matt 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    468       1.1   matt 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    469       1.1   matt 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    470       1.1   matt 	pv_addr_t msgbuf;
    471       1.1   matt 	pv_addr_t text;
    472       1.1   matt 	pv_addr_t data;
    473       1.1   matt 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    474       1.1   matt #if ARM_MMU_XSCALE == 1
    475       1.1   matt 	pv_addr_t minidataclean;
    476       1.1   matt #endif
    477       1.1   matt 
    478       1.1   matt 	/*
    479       1.1   matt 	 * We need to allocate some fixed page tables to get the kernel going.
    480       1.1   matt 	 *
    481       1.1   matt 	 * We are going to allocate our bootstrap pages from the beginning of
    482       1.1   matt 	 * the free space that we just calculated.  We allocate one page
    483       1.1   matt 	 * directory and a number of page tables and store the physical
    484      1.10  skrll 	 * addresses in the bmi_l2pts array in bootmem_info.
    485       1.1   matt 	 *
    486       1.1   matt 	 * The kernel page directory must be on a 16K boundary.  The page
    487       1.1   matt 	 * tables must be on 4K boundaries.  What we do is allocate the
    488       1.1   matt 	 * page directory on the first 16K boundary that we encounter, and
    489       1.1   matt 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    490       1.1   matt 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    491       1.1   matt 	 * least one 16K aligned region.
    492       1.1   matt 	 */
    493       1.1   matt 
    494       1.1   matt #ifdef VERBOSE_INIT_ARM
    495       1.1   matt 	printf("%s: allocating page tables for", __func__);
    496       1.1   matt #endif
    497       1.1   matt 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    498       1.1   matt 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    499       1.1   matt 	}
    500       1.1   matt 
    501       1.1   matt 	kernel_l1pt.pv_pa = 0;
    502       1.1   matt 	kernel_l1pt.pv_va = 0;
    503       1.1   matt 
    504       1.1   matt 	/*
    505      1.10  skrll 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    506      1.10  skrll 	 * an L1 page table, we will allocate the pages for it first and then
    507      1.10  skrll 	 * allocate the L2 page.
    508      1.10  skrll 	 */
    509      1.10  skrll 
    510      1.19   matt 	if (map_vectors_p) {
    511      1.19   matt 		/*
    512      1.19   matt 		 * First allocate L2 page for the vectors.
    513      1.19   matt 		 */
    514       1.1   matt #ifdef VERBOSE_INIT_ARM
    515      1.19   matt 		printf(" vector");
    516       1.1   matt #endif
    517      1.23   matt 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    518      1.23   matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    519      1.19   matt 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    520      1.19   matt 	}
    521       1.1   matt 
    522       1.1   matt 	/*
    523      1.10  skrll 	 * Now allocate L2 pages for the kernel
    524       1.1   matt 	 */
    525       1.1   matt #ifdef VERBOSE_INIT_ARM
    526       1.1   matt 	printf(" kernel");
    527       1.1   matt #endif
    528      1.23   matt 	KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
    529      1.23   matt 	KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
    530       1.8  skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    531      1.23   matt 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    532      1.17   matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    533       1.1   matt 		add_pages(bmi, &kernel_l2pt[idx]);
    534       1.1   matt 	}
    535      1.10  skrll 
    536      1.10  skrll 	/*
    537      1.10  skrll 	 * Now allocate L2 pages for the initial kernel VA space.
    538      1.10  skrll 	 */
    539       1.1   matt #ifdef VERBOSE_INIT_ARM
    540       1.1   matt 	printf(" vm");
    541       1.1   matt #endif
    542       1.8  skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    543      1.23   matt 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    544      1.17   matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    545       1.1   matt 		add_pages(bmi, &vmdata_l2pt[idx]);
    546       1.1   matt 	}
    547       1.1   matt 
    548       1.1   matt 	/*
    549       1.1   matt 	 * If someone wanted a L2 page for I/O, allocate it now.
    550       1.1   matt 	 */
    551      1.23   matt 	if (iovbase) {
    552       1.1   matt #ifdef VERBOSE_INIT_ARM
    553       1.1   matt 		printf(" io");
    554       1.1   matt #endif
    555      1.23   matt 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    556      1.17   matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    557       1.1   matt 		add_pages(bmi, &bmi->bmi_io_l2pt);
    558       1.1   matt 	}
    559       1.1   matt 
    560      1.22    riz #ifdef VERBOSE_INIT_ARM
    561       1.1   matt 	printf("%s: allocating stacks\n", __func__);
    562       1.1   matt #endif
    563       1.1   matt 
    564      1.10  skrll 	/* Allocate stacks for all modes and CPUs */
    565       1.1   matt 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    566      1.17   matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    567       1.1   matt 	add_pages(bmi, &abtstack);
    568       1.1   matt 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    569      1.17   matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    570       1.1   matt 	add_pages(bmi, &fiqstack);
    571       1.1   matt 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    572      1.17   matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    573       1.1   matt 	add_pages(bmi, &irqstack);
    574       1.1   matt 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    575      1.17   matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    576       1.1   matt 	add_pages(bmi, &undstack);
    577       1.1   matt 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    578      1.17   matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    579       1.1   matt 	add_pages(bmi, &idlestack);
    580       1.1   matt 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    581      1.17   matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    582       1.1   matt 	add_pages(bmi, &kernelstack);
    583       1.1   matt 
    584       1.1   matt 	/* Allocate the message buffer from the end of memory. */
    585       1.1   matt 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    586       1.1   matt 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    587      1.17   matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    588       1.1   matt 	add_pages(bmi, &msgbuf);
    589       1.1   matt 	msgbufphys = msgbuf.pv_pa;
    590  1.26.2.1    tls 	msgbufaddr = (void *)msgbuf.pv_va;
    591       1.1   matt 
    592      1.19   matt 	if (map_vectors_p) {
    593      1.19   matt 		/*
    594      1.19   matt 		 * Allocate a page for the system vector page.
    595      1.19   matt 		 * This page will just contain the system vectors and can be
    596      1.19   matt 		 * shared by all processes.
    597      1.19   matt 		 */
    598      1.19   matt 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
    599      1.19   matt 		    PTE_CACHE, true);
    600      1.19   matt 	}
    601       1.1   matt 	systempage.pv_va = vectors;
    602       1.1   matt 
    603       1.1   matt 	/*
    604       1.1   matt 	 * If the caller needed a few extra pages for some reason, allocate
    605       1.1   matt 	 * them now.
    606       1.1   matt 	 */
    607       1.1   matt #if ARM_MMU_XSCALE == 1
    608       1.1   matt #if (ARM_NMMUS > 1)
    609       1.1   matt 	if (xscale_use_minidata)
    610       1.1   matt #endif
    611  1.26.2.1    tls 		valloc_pages(bmi, &minidataclean, 1,
    612      1.18   matt 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    613       1.1   matt #endif
    614       1.1   matt 
    615       1.1   matt 	/*
    616       1.1   matt 	 * Ok we have allocated physical pages for the primary kernel
    617       1.1   matt 	 * page tables and stacks.  Let's just confirm that.
    618       1.1   matt 	 */
    619       1.1   matt 	if (kernel_l1pt.pv_va == 0
    620       1.1   matt 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    621       1.1   matt 		panic("%s: Failed to allocate or align the kernel "
    622       1.1   matt 		    "page directory", __func__);
    623       1.1   matt 
    624       1.1   matt 
    625       1.1   matt #ifdef VERBOSE_INIT_ARM
    626       1.1   matt 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    627       1.1   matt #endif
    628       1.1   matt 
    629       1.1   matt 	/*
    630       1.1   matt 	 * Now we start construction of the L1 page table
    631       1.1   matt 	 * We start by mapping the L2 page tables into the L1.
    632       1.1   matt 	 * This means that we can replace L1 mappings later on if necessary
    633       1.1   matt 	 */
    634       1.1   matt 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    635       1.1   matt 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    636       1.1   matt 
    637      1.19   matt 	if (map_vectors_p) {
    638      1.19   matt 		/* Map the L2 pages tables in the L1 page table */
    639      1.19   matt 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    640      1.19   matt 		    &bmi->bmi_vector_l2pt);
    641      1.19   matt #ifdef VERBOSE_INIT_ARM
    642      1.19   matt 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    643      1.19   matt 		    "for VA %#lx\n (vectors)",
    644      1.19   matt 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    645      1.19   matt 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    646       1.1   matt #endif
    647      1.19   matt 	}
    648       1.1   matt 
    649       1.1   matt 	const vaddr_t kernel_base =
    650       1.1   matt 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    651       1.1   matt 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    652       1.1   matt 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    653       1.1   matt 		    &kernel_l2pt[idx]);
    654       1.1   matt #ifdef VERBOSE_INIT_ARM
    655       1.7  skrll 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    656      1.23   matt 		    __func__, kernel_l2pt[idx].pv_va,
    657      1.23   matt 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    658       1.1   matt #endif
    659       1.1   matt 	}
    660       1.1   matt 
    661       1.1   matt 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    662       1.1   matt 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    663       1.1   matt 		    &vmdata_l2pt[idx]);
    664       1.1   matt #ifdef VERBOSE_INIT_ARM
    665       1.7  skrll 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    666       1.1   matt 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    667       1.1   matt 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    668       1.1   matt #endif
    669       1.1   matt 	}
    670       1.1   matt 	if (iovbase) {
    671       1.1   matt 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    672       1.1   matt #ifdef VERBOSE_INIT_ARM
    673       1.7  skrll 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    674       1.1   matt 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    675       1.1   matt 		    iovbase & -L2_S_SEGSIZE);
    676       1.1   matt #endif
    677       1.1   matt 	}
    678       1.1   matt 
    679       1.1   matt 	/* update the top of the kernel VM */
    680       1.1   matt 	pmap_curmaxkvaddr =
    681       1.1   matt 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    682       1.1   matt 
    683       1.1   matt #ifdef VERBOSE_INIT_ARM
    684       1.1   matt 	printf("Mapping kernel\n");
    685       1.1   matt #endif
    686       1.1   matt 
    687       1.1   matt 	extern char etext[], _end[];
    688       1.1   matt 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    689       1.1   matt 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    690       1.1   matt 
    691       1.1   matt 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    692       1.1   matt 
    693       1.1   matt 	/* start at offset of kernel in RAM */
    694       1.1   matt 
    695       1.1   matt 	text.pv_pa = bmi->bmi_kernelstart;
    696       1.1   matt 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    697       1.1   matt 	text.pv_size = textsize;
    698       1.1   matt 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
    699       1.1   matt 	text.pv_cache = PTE_CACHE;
    700       1.1   matt 
    701       1.1   matt #ifdef VERBOSE_INIT_ARM
    702       1.1   matt 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    703       1.1   matt 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    704       1.1   matt #endif
    705       1.1   matt 
    706       1.1   matt 	add_pages(bmi, &text);
    707       1.1   matt 
    708       1.1   matt 	data.pv_pa = text.pv_pa + textsize;
    709       1.1   matt 	data.pv_va = text.pv_va + textsize;
    710       1.1   matt 	data.pv_size = totalsize - textsize;
    711       1.1   matt 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    712       1.1   matt 	data.pv_cache = PTE_CACHE;
    713       1.1   matt 
    714       1.1   matt #ifdef VERBOSE_INIT_ARM
    715       1.1   matt 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    716       1.1   matt 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    717       1.1   matt #endif
    718       1.1   matt 
    719       1.1   matt 	add_pages(bmi, &data);
    720       1.1   matt 
    721       1.1   matt #ifdef VERBOSE_INIT_ARM
    722       1.1   matt 	printf("Listing Chunks\n");
    723      1.26  skrll 
    724      1.26  skrll 	pv_addr_t *lpv;
    725      1.26  skrll 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    726      1.26  skrll 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    727      1.26  skrll 		    "(PA %#lx, prot %d, cache %d)\n",
    728      1.26  skrll 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    729      1.26  skrll 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    730       1.1   matt 	}
    731       1.1   matt 	printf("\nMapping Chunks\n");
    732       1.1   matt #endif
    733       1.1   matt 
    734       1.1   matt 	pv_addr_t cur_pv;
    735       1.1   matt 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    736       1.1   matt 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    737       1.1   matt 		cur_pv = *pv;
    738       1.1   matt 		pv = SLIST_NEXT(pv, pv_list);
    739       1.1   matt 	} else {
    740  1.26.2.1    tls #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    741  1.26.2.1    tls 		cur_pv.pv_va = pmap_directbase;
    742  1.26.2.1    tls #else
    743      1.13   matt 		cur_pv.pv_va = KERNEL_BASE;
    744  1.26.2.1    tls #endif
    745       1.1   matt 		cur_pv.pv_pa = bmi->bmi_start;
    746       1.1   matt 		cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
    747       1.1   matt 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    748       1.1   matt 		cur_pv.pv_cache = PTE_CACHE;
    749       1.1   matt 	}
    750       1.1   matt 	while (pv != NULL) {
    751       1.1   matt 		if (mapallmem_p) {
    752       1.1   matt 			if (concat_pvaddr(&cur_pv, pv)) {
    753       1.1   matt 				pv = SLIST_NEXT(pv, pv_list);
    754       1.1   matt 				continue;
    755       1.1   matt 			}
    756       1.1   matt 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    757       1.1   matt 				/*
    758       1.1   matt 				 * See if we can extend the current pv to emcompass the
    759       1.1   matt 				 * hole, and if so do it and retry the concatenation.
    760       1.1   matt 				 */
    761       1.1   matt 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    762       1.1   matt 				    && cur_pv.pv_cache == PTE_CACHE) {
    763       1.1   matt 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    764       1.1   matt 					continue;
    765       1.1   matt 				}
    766       1.1   matt 
    767       1.1   matt 				/*
    768       1.1   matt 				 * We couldn't so emit the current chunk and then
    769       1.1   matt 				 */
    770       1.1   matt #ifdef VERBOSE_INIT_ARM
    771       1.1   matt 				printf("%s: mapping chunk VA %#lx..%#lx "
    772       1.1   matt 				    "(PA %#lx, prot %d, cache %d)\n",
    773       1.1   matt 				    __func__,
    774       1.1   matt 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    775       1.1   matt 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    776       1.1   matt #endif
    777       1.1   matt 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    778       1.1   matt 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    779       1.1   matt 
    780       1.1   matt 				/*
    781       1.1   matt 				 * set the current chunk to the hole and try again.
    782       1.1   matt 				 */
    783       1.1   matt 				cur_pv.pv_pa += cur_pv.pv_size;
    784       1.1   matt 				cur_pv.pv_va += cur_pv.pv_size;
    785       1.1   matt 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    786       1.1   matt 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    787       1.1   matt 				cur_pv.pv_cache = PTE_CACHE;
    788       1.1   matt 				continue;
    789       1.1   matt 			}
    790       1.1   matt 		}
    791       1.1   matt 
    792       1.1   matt 		/*
    793       1.1   matt 		 * The new pv didn't concatenate so emit the current one
    794       1.1   matt 		 * and use the new pv as the current pv.
    795       1.1   matt 		 */
    796       1.1   matt #ifdef VERBOSE_INIT_ARM
    797       1.1   matt 		printf("%s: mapping chunk VA %#lx..%#lx "
    798       1.1   matt 		    "(PA %#lx, prot %d, cache %d)\n",
    799       1.1   matt 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    800       1.1   matt 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    801       1.1   matt #endif
    802       1.1   matt 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    803       1.1   matt 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    804       1.1   matt 		cur_pv = *pv;
    805       1.1   matt 		pv = SLIST_NEXT(pv, pv_list);
    806       1.1   matt 	}
    807       1.1   matt 
    808       1.1   matt 	/*
    809       1.1   matt 	 * If we are mapping all of memory, let's map the rest of memory.
    810       1.1   matt 	 */
    811       1.1   matt 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    812       1.1   matt 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    813       1.1   matt 		    && cur_pv.pv_cache == PTE_CACHE) {
    814       1.1   matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    815       1.1   matt 		} else {
    816       1.1   matt #ifdef VERBOSE_INIT_ARM
    817       1.1   matt 			printf("%s: mapping chunk VA %#lx..%#lx "
    818       1.1   matt 			    "(PA %#lx, prot %d, cache %d)\n",
    819       1.1   matt 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    820       1.1   matt 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    821       1.1   matt #endif
    822       1.1   matt 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    823       1.1   matt 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    824       1.1   matt 			cur_pv.pv_pa += cur_pv.pv_size;
    825       1.1   matt 			cur_pv.pv_va += cur_pv.pv_size;
    826       1.1   matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    827       1.1   matt 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    828       1.1   matt 			cur_pv.pv_cache = PTE_CACHE;
    829       1.1   matt 		}
    830       1.1   matt 	}
    831       1.1   matt 
    832       1.1   matt 	/*
    833       1.1   matt 	 * Now we map the final chunk.
    834       1.1   matt 	 */
    835       1.1   matt #ifdef VERBOSE_INIT_ARM
    836       1.1   matt 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    837       1.1   matt 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    838       1.1   matt 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    839       1.1   matt #endif
    840       1.1   matt 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    841       1.1   matt 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    842       1.1   matt 
    843       1.1   matt 	/*
    844       1.1   matt 	 * Now we map the stuff that isn't directly after the kernel
    845       1.1   matt 	 */
    846       1.1   matt 
    847      1.19   matt 	if (map_vectors_p) {
    848      1.19   matt 		/* Map the vector page. */
    849      1.19   matt 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    850      1.19   matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    851      1.19   matt 	}
    852       1.1   matt 
    853       1.1   matt 	/* Map the Mini-Data cache clean area. */
    854       1.1   matt #if ARM_MMU_XSCALE == 1
    855       1.1   matt #if (ARM_NMMUS > 1)
    856       1.1   matt 	if (xscale_use_minidata)
    857       1.1   matt #endif
    858  1.26.2.1    tls 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    859       1.1   matt 		    minidataclean.pv_pa);
    860       1.1   matt #endif
    861       1.1   matt 
    862       1.1   matt 	/*
    863       1.1   matt 	 * Map integrated peripherals at same address in first level page
    864       1.1   matt 	 * table so that we can continue to use console.
    865       1.1   matt 	 */
    866       1.1   matt 	if (devmap)
    867       1.1   matt 		pmap_devmap_bootstrap(l1pt_va, devmap);
    868       1.1   matt 
    869       1.1   matt #ifdef VERBOSE_INIT_ARM
    870       1.1   matt 	/* Tell the user about where all the bits and pieces live. */
    871       1.1   matt 	printf("%22s       Physical              Virtual        Num\n", " ");
    872       1.1   matt 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    873       1.1   matt 
    874       1.1   matt 	static const char mem_fmt[] =
    875       1.1   matt 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    876       1.1   matt 	static const char mem_fmt_nov[] =
    877       1.1   matt 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    878       1.1   matt 
    879       1.1   matt 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    880       1.1   matt 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    881       1.1   matt 	    physmem);
    882       1.1   matt 	printf(mem_fmt, "text section",
    883       1.1   matt 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    884       1.1   matt 	       text.pv_va, text.pv_va + text.pv_size - 1,
    885       1.1   matt 	       (int)(text.pv_size / PAGE_SIZE));
    886       1.1   matt 	printf(mem_fmt, "data section",
    887       1.1   matt 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    888       1.1   matt 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    889       1.1   matt 	       (int)((round_page((vaddr_t)_edata)
    890       1.1   matt 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    891       1.1   matt 	printf(mem_fmt, "bss section",
    892       1.1   matt 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    893       1.1   matt 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    894       1.1   matt 	       (int)((round_page((vaddr_t)__bss_end__)
    895       1.1   matt 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    896       1.1   matt 	printf(mem_fmt, "L1 page directory",
    897       1.1   matt 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    898       1.1   matt 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    899       1.1   matt 	    L1_TABLE_SIZE / PAGE_SIZE);
    900       1.7  skrll 	printf(mem_fmt, "ABT stack (CPU 0)",
    901       1.7  skrll 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    902       1.7  skrll 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    903       1.7  skrll 	    ABT_STACK_SIZE);
    904       1.1   matt 	printf(mem_fmt, "FIQ stack (CPU 0)",
    905       1.1   matt 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    906       1.1   matt 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    907       1.1   matt 	    FIQ_STACK_SIZE);
    908       1.1   matt 	printf(mem_fmt, "IRQ stack (CPU 0)",
    909       1.1   matt 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    910       1.1   matt 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    911       1.1   matt 	    IRQ_STACK_SIZE);
    912       1.1   matt 	printf(mem_fmt, "UND stack (CPU 0)",
    913       1.1   matt 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    914       1.1   matt 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    915       1.1   matt 	    UND_STACK_SIZE);
    916       1.1   matt 	printf(mem_fmt, "IDLE stack (CPU 0)",
    917       1.1   matt 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    918       1.1   matt 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    919       1.1   matt 	    UPAGES);
    920       1.1   matt 	printf(mem_fmt, "SVC stack",
    921       1.1   matt 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    922       1.1   matt 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    923       1.1   matt 	    UPAGES);
    924       1.9  skrll 	printf(mem_fmt, "Message Buffer",
    925       1.9  skrll 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    926       1.9  skrll 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    927       1.9  skrll 	    (int)msgbuf_pgs);
    928      1.19   matt 	if (map_vectors_p) {
    929      1.19   matt 		printf(mem_fmt, "Exception Vectors",
    930      1.19   matt 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    931      1.19   matt 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    932      1.19   matt 		    1);
    933      1.19   matt 	}
    934       1.1   matt 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    935       1.1   matt 		pv = &bmi->bmi_freeblocks[i];
    936       1.1   matt 
    937       1.1   matt 		printf(mem_fmt_nov, "Free Memory",
    938       1.1   matt 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    939       1.1   matt 		    pv->pv_size / PAGE_SIZE);
    940       1.1   matt 	}
    941       1.1   matt #endif
    942       1.1   matt 	/*
    943       1.1   matt 	 * Now we have the real page tables in place so we can switch to them.
    944       1.1   matt 	 * Once this is done we will be running with the REAL kernel page
    945       1.1   matt 	 * tables.
    946       1.1   matt 	 */
    947       1.1   matt 
    948      1.25   matt #if defined(VERBOSE_INIT_ARM)
    949       1.2   matt 	printf("TTBR0=%#x", armreg_ttbr_read());
    950       1.2   matt #ifdef _ARM_ARCH_6
    951      1.25   matt 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    952      1.25   matt 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    953      1.25   matt 	    armreg_contextidr_read());
    954       1.2   matt #endif
    955       1.2   matt 	printf("\n");
    956       1.2   matt #endif
    957       1.2   matt 
    958       1.1   matt 	/* Switch tables */
    959       1.1   matt #ifdef VERBOSE_INIT_ARM
    960       1.3   matt 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    961       1.1   matt #endif
    962       1.1   matt 
    963      1.23   matt #ifdef ARM_MMU_EXTENDED
    964      1.23   matt 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    965      1.23   matt 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    966      1.23   matt #else
    967       1.1   matt 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    968      1.23   matt #endif
    969       1.3   matt 	cpu_idcache_wbinv_all();
    970      1.23   matt #ifdef VERBOSE_INIT_ARM
    971      1.23   matt 	printf(" ttb");
    972      1.23   matt #endif
    973      1.17   matt #ifdef ARM_MMU_EXTENDED
    974      1.23   matt 	/*
    975      1.23   matt 	 * TTBCR should have been initialized by the MD start code.
    976      1.23   matt 	 */
    977      1.25   matt 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    978      1.23   matt 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    979      1.24   matt 	/*
    980      1.24   matt 	 * Disable lookups via TTBR0 until there is an activated pmap.
    981      1.24   matt 	 */
    982      1.24   matt 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    983      1.17   matt 	cpu_setttb(l1pt_pa, KERNEL_PID);
    984      1.24   matt 	arm_isb();
    985      1.17   matt #else
    986       1.4   matt 	cpu_setttb(l1pt_pa, true);
    987      1.23   matt 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    988      1.17   matt #endif
    989       1.1   matt 	cpu_tlb_flushID();
    990       1.1   matt 
    991       1.1   matt #ifdef VERBOSE_INIT_ARM
    992      1.23   matt #ifdef ARM_MMU_EXTENDED
    993      1.24   matt 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    994      1.24   matt 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    995      1.23   matt #else
    996      1.24   matt 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
    997       1.1   matt #endif
    998      1.25   matt #endif
    999      1.25   matt 
   1000      1.25   matt #ifdef MULTIPROCESSOR
   1001      1.25   matt 	/*
   1002      1.25   matt 	 * Kick the secondaries to load the TTB.  After which they'll go
   1003      1.25   matt 	 * back to sleep to wait for the final kick so they will hatch.
   1004      1.25   matt 	 */
   1005      1.25   matt #ifdef VERBOSE_INIT_ARM
   1006      1.25   matt 	printf(" hatchlings");
   1007      1.25   matt #endif
   1008      1.25   matt 	cpu_boot_secondary_processors();
   1009      1.25   matt #endif
   1010      1.25   matt 
   1011      1.25   matt #ifdef VERBOSE_INIT_ARM
   1012      1.24   matt 	printf(" OK\n");
   1013      1.23   matt #endif
   1014       1.1   matt }
   1015