arm32_kvminit.c revision 1.3 1 1.3 matt /* $NetBSD: arm32_kvminit.c,v 1.3 2012/09/06 02:03:01 matt Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 1.1 matt * Written by Hiroyuki Bessho for Genetec Corporation.
6 1.1 matt *
7 1.1 matt * Redistribution and use in source and binary forms, with or without
8 1.1 matt * modification, are permitted provided that the following conditions
9 1.1 matt * are met:
10 1.1 matt * 1. Redistributions of source code must retain the above copyright
11 1.1 matt * notice, this list of conditions and the following disclaimer.
12 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer in the
14 1.1 matt * documentation and/or other materials provided with the distribution.
15 1.1 matt * 3. The name of Genetec Corporation may not be used to endorse or
16 1.1 matt * promote products derived from this software without specific prior
17 1.1 matt * written permission.
18 1.1 matt *
19 1.1 matt * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
30 1.1 matt *
31 1.1 matt * Copyright (c) 2001 Wasabi Systems, Inc.
32 1.1 matt * All rights reserved.
33 1.1 matt *
34 1.1 matt * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 1.1 matt *
36 1.1 matt * Redistribution and use in source and binary forms, with or without
37 1.1 matt * modification, are permitted provided that the following conditions
38 1.1 matt * are met:
39 1.1 matt * 1. Redistributions of source code must retain the above copyright
40 1.1 matt * notice, this list of conditions and the following disclaimer.
41 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 matt * notice, this list of conditions and the following disclaimer in the
43 1.1 matt * documentation and/or other materials provided with the distribution.
44 1.1 matt * 3. All advertising materials mentioning features or use of this software
45 1.1 matt * must display the following acknowledgement:
46 1.1 matt * This product includes software developed for the NetBSD Project by
47 1.1 matt * Wasabi Systems, Inc.
48 1.1 matt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 1.1 matt * or promote products derived from this software without specific prior
50 1.1 matt * written permission.
51 1.1 matt *
52 1.1 matt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
63 1.1 matt *
64 1.1 matt * Copyright (c) 1997,1998 Mark Brinicombe.
65 1.1 matt * Copyright (c) 1997,1998 Causality Limited.
66 1.1 matt * All rights reserved.
67 1.1 matt *
68 1.1 matt * Redistribution and use in source and binary forms, with or without
69 1.1 matt * modification, are permitted provided that the following conditions
70 1.1 matt * are met:
71 1.1 matt * 1. Redistributions of source code must retain the above copyright
72 1.1 matt * notice, this list of conditions and the following disclaimer.
73 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
74 1.1 matt * notice, this list of conditions and the following disclaimer in the
75 1.1 matt * documentation and/or other materials provided with the distribution.
76 1.1 matt * 3. All advertising materials mentioning features or use of this software
77 1.1 matt * must display the following acknowledgement:
78 1.1 matt * This product includes software developed by Mark Brinicombe
79 1.1 matt * for the NetBSD Project.
80 1.1 matt * 4. The name of the company nor the name of the author may be used to
81 1.1 matt * endorse or promote products derived from this software without specific
82 1.1 matt * prior written permission.
83 1.1 matt *
84 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 1.1 matt * SUCH DAMAGE.
95 1.1 matt *
96 1.1 matt * Copyright (c) 2007 Microsoft
97 1.1 matt * All rights reserved.
98 1.1 matt *
99 1.1 matt * Redistribution and use in source and binary forms, with or without
100 1.1 matt * modification, are permitted provided that the following conditions
101 1.1 matt * are met:
102 1.1 matt * 1. Redistributions of source code must retain the above copyright
103 1.1 matt * notice, this list of conditions and the following disclaimer.
104 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
105 1.1 matt * notice, this list of conditions and the following disclaimer in the
106 1.1 matt * documentation and/or other materials provided with the distribution.
107 1.1 matt * 3. All advertising materials mentioning features or use of this software
108 1.1 matt * must display the following acknowledgement:
109 1.1 matt * This product includes software developed by Microsoft
110 1.1 matt *
111 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 1.1 matt * SUCH DAMAGE.
122 1.1 matt */
123 1.1 matt
124 1.1 matt #include <sys/cdefs.h>
125 1.3 matt __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.3 2012/09/06 02:03:01 matt Exp $");
126 1.1 matt
127 1.1 matt #include <sys/param.h>
128 1.1 matt #include <sys/device.h>
129 1.1 matt #include <sys/kernel.h>
130 1.1 matt #include <sys/reboot.h>
131 1.1 matt #include <sys/bus.h>
132 1.1 matt
133 1.1 matt #include <dev/cons.h>
134 1.1 matt
135 1.1 matt #include <uvm/uvm_extern.h>
136 1.1 matt
137 1.1 matt #include <arm/db_machdep.h>
138 1.1 matt #include <arm/undefined.h>
139 1.1 matt #include <arm/bootconfig.h>
140 1.1 matt #include <arm/arm32/machdep.h>
141 1.1 matt
142 1.1 matt #include "ksyms.h"
143 1.1 matt
144 1.1 matt struct bootmem_info bootmem_info;
145 1.1 matt
146 1.1 matt paddr_t msgbufphys;
147 1.1 matt paddr_t physical_start;
148 1.1 matt paddr_t physical_end;
149 1.1 matt
150 1.1 matt extern char etext[];
151 1.1 matt extern char __data_start[], _edata[];
152 1.1 matt extern char __bss_start[], __bss_end__[];
153 1.1 matt extern char _end[];
154 1.1 matt
155 1.1 matt /* Page tables for mapping kernel VM */
156 1.1 matt #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
157 1.1 matt
158 1.1 matt /*
159 1.1 matt * Macros to translate between physical and virtual for a subset of the
160 1.1 matt * kernel address space. *Not* for general use.
161 1.1 matt */
162 1.1 matt #define KERN_VTOPHYS(bmi, va) \
163 1.1 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
164 1.1 matt #define KERN_PHYSTOV(bmi, pa) \
165 1.1 matt ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
166 1.1 matt
167 1.1 matt void
168 1.1 matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
169 1.1 matt {
170 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
171 1.1 matt pv_addr_t *pv = bmi->bmi_freeblocks;
172 1.1 matt
173 1.1 matt #ifdef VERBOSE_INIT_ARM
174 1.1 matt printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
175 1.1 matt __func__, memstart, memsize, kernelstart);
176 1.1 matt #endif
177 1.1 matt
178 1.1 matt physical_start = bmi->bmi_start = memstart;
179 1.1 matt physical_end = bmi->bmi_end = memstart + memsize;
180 1.1 matt physmem = memsize / PAGE_SIZE;
181 1.1 matt
182 1.1 matt /*
183 1.1 matt * Let's record where the kernel lives.
184 1.1 matt */
185 1.1 matt bmi->bmi_kernelstart = kernelstart;
186 1.1 matt bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
187 1.1 matt
188 1.1 matt #ifdef VERBOSE_INIT_ARM
189 1.1 matt printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
190 1.1 matt #endif
191 1.1 matt
192 1.1 matt /*
193 1.1 matt * Now the rest of the free memory must be after the kernel.
194 1.1 matt */
195 1.1 matt pv->pv_pa = bmi->bmi_kernelend;
196 1.1 matt pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
197 1.1 matt pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
198 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
199 1.1 matt #ifdef VERBOSE_INIT_ARM
200 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
201 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
202 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
203 1.1 matt #endif
204 1.1 matt pv++;
205 1.1 matt
206 1.1 matt /*
207 1.1 matt * Add a free block for any memory before the kernel.
208 1.1 matt */
209 1.1 matt if (bmi->bmi_start < bmi->bmi_kernelstart) {
210 1.1 matt pv->pv_pa = bmi->bmi_start;
211 1.1 matt pv->pv_va = KERNEL_BASE;
212 1.1 matt pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
213 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
214 1.1 matt #ifdef VERBOSE_INIT_ARM
215 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
216 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
217 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
218 1.1 matt #endif
219 1.1 matt pv++;
220 1.1 matt }
221 1.1 matt
222 1.1 matt bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
223 1.1 matt
224 1.1 matt SLIST_INIT(&bmi->bmi_freechunks);
225 1.1 matt SLIST_INIT(&bmi->bmi_chunks);
226 1.1 matt }
227 1.1 matt
228 1.1 matt static bool
229 1.1 matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
230 1.1 matt {
231 1.1 matt if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
232 1.1 matt && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
233 1.1 matt && acc_pv->pv_prot == pv->pv_prot
234 1.1 matt && acc_pv->pv_cache == pv->pv_cache) {
235 1.1 matt #ifdef VERBOSE_INIT_ARMX
236 1.1 matt printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
237 1.1 matt __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
238 1.1 matt acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
239 1.1 matt #endif
240 1.1 matt acc_pv->pv_size += pv->pv_size;
241 1.1 matt return true;
242 1.1 matt }
243 1.1 matt
244 1.1 matt return false;
245 1.1 matt }
246 1.1 matt
247 1.1 matt static void
248 1.1 matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
249 1.1 matt {
250 1.1 matt pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
251 1.1 matt while ((*pvp) != 0 && (*pvp)->pv_va <= pv->pv_va) {
252 1.1 matt pv_addr_t * const pv0 = (*pvp);
253 1.1 matt KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
254 1.1 matt if (concat_pvaddr(pv0, pv)) {
255 1.1 matt #ifdef VERBOSE_INIT_ARM
256 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 1.1 matt __func__, "appending", pv,
258 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
259 1.1 matt pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
260 1.1 matt #endif
261 1.1 matt pv = SLIST_NEXT(pv0, pv_list);
262 1.1 matt if (pv != NULL && concat_pvaddr(pv0, pv)) {
263 1.1 matt #ifdef VERBOSE_INIT_ARM
264 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
265 1.1 matt __func__, "merging", pv,
266 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
267 1.1 matt pv0->pv_pa,
268 1.1 matt pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
269 1.1 matt #endif
270 1.1 matt SLIST_REMOVE_AFTER(pv0, pv_list);
271 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
272 1.1 matt }
273 1.1 matt return;
274 1.1 matt }
275 1.1 matt KASSERT(pv->pv_va != (*pvp)->pv_va);
276 1.1 matt pvp = &SLIST_NEXT(*pvp, pv_list);
277 1.1 matt }
278 1.1 matt KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
279 1.1 matt pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
280 1.1 matt KASSERT(new_pv != NULL);
281 1.1 matt SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
282 1.1 matt *new_pv = *pv;
283 1.1 matt SLIST_NEXT(new_pv, pv_list) = *pvp;
284 1.1 matt (*pvp) = new_pv;
285 1.1 matt #ifdef VERBOSE_INIT_ARM
286 1.1 matt printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
287 1.1 matt __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
288 1.1 matt new_pv->pv_size / PAGE_SIZE);
289 1.1 matt if (SLIST_NEXT(new_pv, pv_list))
290 1.1 matt printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
291 1.1 matt else
292 1.1 matt printf("at tail\n");
293 1.1 matt #endif
294 1.1 matt }
295 1.1 matt
296 1.1 matt static void
297 1.1 matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
298 1.1 matt int prot, int cache)
299 1.1 matt {
300 1.1 matt size_t nbytes = npages * PAGE_SIZE;
301 1.1 matt pv_addr_t *free_pv = bmi->bmi_freeblocks;
302 1.1 matt size_t free_idx = 0;
303 1.1 matt static bool l1pt_found;
304 1.1 matt
305 1.1 matt /*
306 1.1 matt * If we haven't allcoated the kernel L1 page table and we are aligned
307 1.1 matt * at a L1 table boundary, alloc the memory for it.
308 1.1 matt */
309 1.1 matt if (!l1pt_found
310 1.1 matt && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
311 1.1 matt && free_pv->pv_size >= L1_TABLE_SIZE) {
312 1.1 matt l1pt_found = true;
313 1.1 matt valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
314 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
315 1.1 matt add_pages(bmi, &kernel_l1pt);
316 1.1 matt }
317 1.1 matt
318 1.1 matt while (nbytes > free_pv->pv_size) {
319 1.1 matt free_pv++;
320 1.1 matt free_idx++;
321 1.1 matt if (free_idx == bmi->bmi_nfreeblocks) {
322 1.1 matt panic("%s: could not allocate %zu bytes",
323 1.1 matt __func__, nbytes);
324 1.1 matt }
325 1.1 matt }
326 1.1 matt
327 1.1 matt pv->pv_pa = free_pv->pv_pa;
328 1.1 matt pv->pv_va = free_pv->pv_va;
329 1.1 matt pv->pv_size = nbytes;
330 1.1 matt pv->pv_prot = prot;
331 1.1 matt pv->pv_cache = cache;
332 1.1 matt
333 1.1 matt /*
334 1.1 matt * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
335 1.1 matt * just use PTE_CACHE.
336 1.1 matt */
337 1.1 matt if (cache == PTE_PAGETABLE
338 1.1 matt && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
339 1.1 matt && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
340 1.1 matt && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
341 1.1 matt pv->pv_cache = PTE_CACHE;
342 1.1 matt
343 1.1 matt free_pv->pv_pa += nbytes;
344 1.1 matt free_pv->pv_va += nbytes;
345 1.1 matt free_pv->pv_size -= nbytes;
346 1.1 matt if (free_pv->pv_size == 0) {
347 1.1 matt --bmi->bmi_nfreeblocks;
348 1.1 matt for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
349 1.1 matt free_pv[0] = free_pv[1];
350 1.1 matt }
351 1.1 matt }
352 1.1 matt
353 1.1 matt bmi->bmi_freepages -= npages;
354 1.1 matt
355 1.1 matt memset((void *)pv->pv_va, 0, nbytes);
356 1.1 matt }
357 1.1 matt
358 1.1 matt void
359 1.1 matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
360 1.1 matt const struct pmap_devmap *devmap, bool mapallmem_p)
361 1.1 matt {
362 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
363 1.1 matt #ifdef MULTIPROCESSOR
364 1.1 matt const size_t cpu_num = arm_cpu_max + 1;
365 1.1 matt #else
366 1.1 matt const size_t cpu_num = 1;
367 1.1 matt #endif
368 1.1 matt
369 1.1 matt /*
370 1.1 matt * Calculate the number of L2 pages needed for mapping the
371 1.1 matt * kernel + data + stuff
372 1.1 matt */
373 1.1 matt size_t kernel_size = bmi->bmi_kernelend;
374 1.1 matt kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
375 1.1 matt kernel_size += L1_TABLE_SIZE;
376 1.1 matt kernel_size += round_page(MSGBUFSIZE);
377 1.1 matt kernel_size +=
378 1.1 matt cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
379 1.1 matt + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
380 1.1 matt kernel_size += 0x10000; /* slop */
381 1.1 matt kernel_size += (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
382 1.1 matt kernel_size = round_page(kernel_size);
383 1.1 matt
384 1.1 matt /*
385 1.1 matt * Now we know how many L2 pages it will take.
386 1.1 matt */
387 1.1 matt const size_t KERNEL_L2PT_KERNEL_NUM =
388 1.1 matt (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
389 1.1 matt
390 1.1 matt #ifdef VERBOSE_INIT_ARM
391 1.1 matt printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
392 1.1 matt __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
393 1.1 matt #endif
394 1.1 matt
395 1.1 matt KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
396 1.1 matt pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
397 1.1 matt pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
398 1.1 matt pv_addr_t msgbuf;
399 1.1 matt pv_addr_t text;
400 1.1 matt pv_addr_t data;
401 1.1 matt pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
402 1.1 matt #if ARM_MMU_XSCALE == 1
403 1.1 matt pv_addr_t minidataclean;
404 1.1 matt #endif
405 1.1 matt
406 1.1 matt /*
407 1.1 matt * We need to allocate some fixed page tables to get the kernel going.
408 1.1 matt *
409 1.1 matt * We are going to allocate our bootstrap pages from the beginning of
410 1.1 matt * the free space that we just calculated. We allocate one page
411 1.1 matt * directory and a number of page tables and store the physical
412 1.1 matt * addresses in the kernel_l2pt_table array.
413 1.1 matt *
414 1.1 matt * The kernel page directory must be on a 16K boundary. The page
415 1.1 matt * tables must be on 4K boundaries. What we do is allocate the
416 1.1 matt * page directory on the first 16K boundary that we encounter, and
417 1.1 matt * the page tables on 4K boundaries otherwise. Since we allocate
418 1.1 matt * at least 3 L2 page tables, we are guaranteed to encounter at
419 1.1 matt * least one 16K aligned region.
420 1.1 matt */
421 1.1 matt
422 1.1 matt #ifdef VERBOSE_INIT_ARM
423 1.1 matt printf("%s: allocating page tables for", __func__);
424 1.1 matt #endif
425 1.1 matt for (size_t i = 0; i < __arraycount(chunks); i++) {
426 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
427 1.1 matt }
428 1.1 matt
429 1.1 matt /*
430 1.1 matt * As we allocate the memory, make sure that we don't walk over
431 1.1 matt * our temporary first level translation table.
432 1.1 matt */
433 1.1 matt
434 1.1 matt kernel_l1pt.pv_pa = 0;
435 1.1 matt kernel_l1pt.pv_va = 0;
436 1.1 matt
437 1.1 matt /*
438 1.1 matt * First allocate L2 page for the vectors.
439 1.1 matt */
440 1.1 matt #ifdef VERBOSE_INIT_ARM
441 1.1 matt printf(" vector");
442 1.1 matt #endif
443 1.1 matt valloc_pages(bmi, &bmi->bmi_vector_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
444 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
445 1.1 matt add_pages(bmi, &bmi->bmi_vector_l2pt);
446 1.1 matt
447 1.1 matt /*
448 1.1 matt * Allocate the L2 pages, but if we get to a page that aligned for a
449 1.1 matt * L1 page table, we will allocate pages for it first and allocate
450 1.1 matt * L2 page.
451 1.1 matt */
452 1.1 matt #ifdef VERBOSE_INIT_ARM
453 1.1 matt printf(" kernel");
454 1.1 matt #endif
455 1.1 matt for (size_t idx = 0; idx <= KERNEL_L2PT_KERNEL_NUM; ++idx) {
456 1.1 matt valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
457 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
458 1.1 matt add_pages(bmi, &kernel_l2pt[idx]);
459 1.1 matt }
460 1.1 matt #ifdef VERBOSE_INIT_ARM
461 1.1 matt printf(" vm");
462 1.1 matt #endif
463 1.1 matt for (size_t idx = 0; idx <= KERNEL_L2PT_VMDATA_NUM; ++idx) {
464 1.1 matt valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
465 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
466 1.1 matt add_pages(bmi, &vmdata_l2pt[idx]);
467 1.1 matt }
468 1.1 matt
469 1.1 matt /*
470 1.1 matt * If someone wanted a L2 page for I/O, allocate it now.
471 1.1 matt */
472 1.1 matt if (iovbase != 0) {
473 1.1 matt #ifdef VERBOSE_INIT_ARM
474 1.1 matt printf(" io");
475 1.1 matt #endif
476 1.1 matt valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
477 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
478 1.1 matt add_pages(bmi, &bmi->bmi_io_l2pt);
479 1.1 matt }
480 1.1 matt
481 1.1 matt #ifdef VERBOSE_ARM_INIT
482 1.1 matt printf("%s: allocating stacks\n", __func__);
483 1.1 matt #endif
484 1.1 matt
485 1.1 matt /* Allocate stacks for all modes */
486 1.1 matt valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
487 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
488 1.1 matt add_pages(bmi, &abtstack);
489 1.1 matt valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
490 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
491 1.1 matt add_pages(bmi, &fiqstack);
492 1.1 matt valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
493 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
494 1.1 matt add_pages(bmi, &irqstack);
495 1.1 matt valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
496 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
497 1.1 matt add_pages(bmi, &undstack);
498 1.1 matt valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
499 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
500 1.1 matt add_pages(bmi, &idlestack);
501 1.1 matt valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
502 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
503 1.1 matt add_pages(bmi, &kernelstack);
504 1.1 matt
505 1.1 matt /* Allocate the message buffer from the end of memory. */
506 1.1 matt const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
507 1.1 matt valloc_pages(bmi, &msgbuf, msgbuf_pgs,
508 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
509 1.1 matt add_pages(bmi, &msgbuf);
510 1.1 matt msgbufphys = msgbuf.pv_pa;
511 1.1 matt
512 1.1 matt /*
513 1.1 matt * Allocate a page for the system vector page.
514 1.1 matt * This page will just contain the system vectors and can be
515 1.1 matt * shared by all processes.
516 1.1 matt */
517 1.1 matt valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
518 1.1 matt systempage.pv_va = vectors;
519 1.1 matt
520 1.1 matt /*
521 1.1 matt * If the caller needed a few extra pages for some reason, allocate
522 1.1 matt * them now.
523 1.1 matt */
524 1.1 matt #if ARM_MMU_XSCALE == 1
525 1.1 matt #if (ARM_NMMUS > 1)
526 1.1 matt if (xscale_use_minidata)
527 1.1 matt #endif
528 1.1 matt valloc_pages(bmi, extrapv, nextrapages,
529 1.1 matt VM_PROT_READ|VM_PROT_WRITE, 0);
530 1.1 matt #endif
531 1.1 matt
532 1.1 matt /*
533 1.1 matt * Ok we have allocated physical pages for the primary kernel
534 1.1 matt * page tables and stacks. Let's just confirm that.
535 1.1 matt */
536 1.1 matt if (kernel_l1pt.pv_va == 0
537 1.1 matt && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
538 1.1 matt panic("%s: Failed to allocate or align the kernel "
539 1.1 matt "page directory", __func__);
540 1.1 matt
541 1.1 matt
542 1.1 matt #ifdef VERBOSE_INIT_ARM
543 1.1 matt printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
544 1.1 matt #endif
545 1.1 matt
546 1.1 matt /*
547 1.1 matt * Now we start construction of the L1 page table
548 1.1 matt * We start by mapping the L2 page tables into the L1.
549 1.1 matt * This means that we can replace L1 mappings later on if necessary
550 1.1 matt */
551 1.1 matt vaddr_t l1pt_va = kernel_l1pt.pv_va;
552 1.1 matt paddr_t l1pt_pa = kernel_l1pt.pv_pa;
553 1.1 matt
554 1.1 matt /* Map the L2 pages tables in the L1 page table */
555 1.1 matt pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
556 1.1 matt &bmi->bmi_vector_l2pt);
557 1.1 matt #ifdef VERBOSE_INIT_ARM
558 1.1 matt printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
559 1.1 matt __func__, bmi->bmi_vector_l2pt.pv_va, bmi->bmi_vector_l2pt.pv_pa,
560 1.1 matt systempage.pv_va);
561 1.1 matt #endif
562 1.1 matt
563 1.1 matt const vaddr_t kernel_base =
564 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
565 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
566 1.1 matt pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
567 1.1 matt &kernel_l2pt[idx]);
568 1.1 matt #ifdef VERBOSE_INIT_ARM
569 1.1 matt printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
570 1.1 matt __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
571 1.1 matt kernel_base + idx * L2_S_SEGSIZE);
572 1.1 matt #endif
573 1.1 matt }
574 1.1 matt
575 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
576 1.1 matt pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
577 1.1 matt &vmdata_l2pt[idx]);
578 1.1 matt #ifdef VERBOSE_INIT_ARM
579 1.1 matt printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
580 1.1 matt __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
581 1.1 matt kernel_vm_base + idx * L2_S_SEGSIZE);
582 1.1 matt #endif
583 1.1 matt }
584 1.1 matt if (iovbase) {
585 1.1 matt pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
586 1.1 matt #ifdef VERBOSE_INIT_ARM
587 1.1 matt printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
588 1.1 matt __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
589 1.1 matt iovbase & -L2_S_SEGSIZE);
590 1.1 matt #endif
591 1.1 matt }
592 1.1 matt
593 1.1 matt /* update the top of the kernel VM */
594 1.1 matt pmap_curmaxkvaddr =
595 1.1 matt kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
596 1.1 matt
597 1.1 matt #ifdef VERBOSE_INIT_ARM
598 1.1 matt printf("Mapping kernel\n");
599 1.1 matt #endif
600 1.1 matt
601 1.1 matt extern char etext[], _end[];
602 1.1 matt size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
603 1.1 matt size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
604 1.1 matt
605 1.1 matt textsize = (textsize + PGOFSET) & ~PGOFSET;
606 1.1 matt
607 1.1 matt /* start at offset of kernel in RAM */
608 1.1 matt
609 1.1 matt text.pv_pa = bmi->bmi_kernelstart;
610 1.1 matt text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
611 1.1 matt text.pv_size = textsize;
612 1.1 matt text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
613 1.1 matt text.pv_cache = PTE_CACHE;
614 1.1 matt
615 1.1 matt #ifdef VERBOSE_INIT_ARM
616 1.1 matt printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
617 1.1 matt __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
618 1.1 matt #endif
619 1.1 matt
620 1.1 matt add_pages(bmi, &text);
621 1.1 matt
622 1.1 matt data.pv_pa = text.pv_pa + textsize;
623 1.1 matt data.pv_va = text.pv_va + textsize;
624 1.1 matt data.pv_size = totalsize - textsize;
625 1.1 matt data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
626 1.1 matt data.pv_cache = PTE_CACHE;
627 1.1 matt
628 1.1 matt #ifdef VERBOSE_INIT_ARM
629 1.1 matt printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
630 1.1 matt __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
631 1.1 matt #endif
632 1.1 matt
633 1.1 matt add_pages(bmi, &data);
634 1.1 matt
635 1.1 matt #ifdef VERBOSE_INIT_ARM
636 1.1 matt printf("Listing Chunks\n");
637 1.1 matt {
638 1.1 matt pv_addr_t *pv;
639 1.1 matt SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
640 1.1 matt printf("%s: pv %p: chunk VA %#lx..%#lx "
641 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
642 1.1 matt __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
643 1.1 matt pv->pv_pa, pv->pv_prot, pv->pv_cache);
644 1.1 matt }
645 1.1 matt }
646 1.1 matt printf("\nMapping Chunks\n");
647 1.1 matt #endif
648 1.1 matt
649 1.1 matt pv_addr_t cur_pv;
650 1.1 matt pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
651 1.1 matt if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
652 1.1 matt cur_pv = *pv;
653 1.1 matt pv = SLIST_NEXT(pv, pv_list);
654 1.1 matt } else {
655 1.1 matt cur_pv.pv_va = kernel_base;
656 1.1 matt cur_pv.pv_pa = bmi->bmi_start;
657 1.1 matt cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
658 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
659 1.1 matt cur_pv.pv_cache = PTE_CACHE;
660 1.1 matt }
661 1.1 matt while (pv != NULL) {
662 1.1 matt if (mapallmem_p) {
663 1.1 matt if (concat_pvaddr(&cur_pv, pv)) {
664 1.1 matt pv = SLIST_NEXT(pv, pv_list);
665 1.1 matt continue;
666 1.1 matt }
667 1.1 matt if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
668 1.1 matt /*
669 1.1 matt * See if we can extend the current pv to emcompass the
670 1.1 matt * hole, and if so do it and retry the concatenation.
671 1.1 matt */
672 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
673 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
674 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
675 1.1 matt continue;
676 1.1 matt }
677 1.1 matt
678 1.1 matt /*
679 1.1 matt * We couldn't so emit the current chunk and then
680 1.1 matt */
681 1.1 matt #ifdef VERBOSE_INIT_ARM
682 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
683 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
684 1.1 matt __func__,
685 1.1 matt cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
686 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
687 1.1 matt #endif
688 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
689 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
690 1.1 matt
691 1.1 matt /*
692 1.1 matt * set the current chunk to the hole and try again.
693 1.1 matt */
694 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
695 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
696 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
697 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
698 1.1 matt cur_pv.pv_cache = PTE_CACHE;
699 1.1 matt continue;
700 1.1 matt }
701 1.1 matt }
702 1.1 matt
703 1.1 matt /*
704 1.1 matt * The new pv didn't concatenate so emit the current one
705 1.1 matt * and use the new pv as the current pv.
706 1.1 matt */
707 1.1 matt #ifdef VERBOSE_INIT_ARM
708 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
709 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
710 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
711 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
712 1.1 matt #endif
713 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
714 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
715 1.1 matt cur_pv = *pv;
716 1.1 matt pv = SLIST_NEXT(pv, pv_list);
717 1.1 matt }
718 1.1 matt
719 1.1 matt /*
720 1.1 matt * If we are mapping all of memory, let's map the rest of memory.
721 1.1 matt */
722 1.1 matt if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
723 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
724 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
725 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
726 1.1 matt } else {
727 1.1 matt #ifdef VERBOSE_INIT_ARM
728 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
729 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
730 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
731 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
732 1.1 matt #endif
733 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
734 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
735 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
736 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
737 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
738 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
739 1.1 matt cur_pv.pv_cache = PTE_CACHE;
740 1.1 matt }
741 1.1 matt }
742 1.1 matt
743 1.1 matt /*
744 1.1 matt * Now we map the final chunk.
745 1.1 matt */
746 1.1 matt #ifdef VERBOSE_INIT_ARM
747 1.1 matt printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
748 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
749 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
750 1.1 matt #endif
751 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
752 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
753 1.1 matt
754 1.1 matt /*
755 1.1 matt * Now we map the stuff that isn't directly after the kernel
756 1.1 matt */
757 1.1 matt
758 1.1 matt /* Map the vector page. */
759 1.1 matt pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
760 1.1 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
761 1.1 matt
762 1.1 matt /* Map the Mini-Data cache clean area. */
763 1.1 matt #if ARM_MMU_XSCALE == 1
764 1.1 matt #if (ARM_NMMUS > 1)
765 1.1 matt if (xscale_use_minidata)
766 1.1 matt #endif
767 1.1 matt xscale_setup_minidata(l1_va, minidataclean.pv_va,
768 1.1 matt minidataclean.pv_pa);
769 1.1 matt #endif
770 1.1 matt
771 1.1 matt /*
772 1.1 matt * Map integrated peripherals at same address in first level page
773 1.1 matt * table so that we can continue to use console.
774 1.1 matt */
775 1.1 matt if (devmap)
776 1.1 matt pmap_devmap_bootstrap(l1pt_va, devmap);
777 1.1 matt
778 1.1 matt #ifdef VERBOSE_INIT_ARM
779 1.1 matt /* Tell the user about where all the bits and pieces live. */
780 1.1 matt printf("%22s Physical Virtual Num\n", " ");
781 1.1 matt printf("%22s Starting Ending Starting Ending Pages\n", " ");
782 1.1 matt
783 1.1 matt static const char mem_fmt[] =
784 1.1 matt "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
785 1.1 matt static const char mem_fmt_nov[] =
786 1.1 matt "%20s: 0x%08lx 0x%08lx %zu\n";
787 1.1 matt
788 1.1 matt printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
789 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
790 1.1 matt physmem);
791 1.1 matt printf(mem_fmt, "text section",
792 1.1 matt text.pv_pa, text.pv_pa + text.pv_size - 1,
793 1.1 matt text.pv_va, text.pv_va + text.pv_size - 1,
794 1.1 matt (int)(text.pv_size / PAGE_SIZE));
795 1.1 matt printf(mem_fmt, "data section",
796 1.1 matt KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
797 1.1 matt (vaddr_t)__data_start, (vaddr_t)_edata,
798 1.1 matt (int)((round_page((vaddr_t)_edata)
799 1.1 matt - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
800 1.1 matt printf(mem_fmt, "bss section",
801 1.1 matt KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
802 1.1 matt (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
803 1.1 matt (int)((round_page((vaddr_t)__bss_end__)
804 1.1 matt - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
805 1.1 matt printf(mem_fmt, "L1 page directory",
806 1.1 matt kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
807 1.1 matt kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
808 1.1 matt L1_TABLE_SIZE / PAGE_SIZE);
809 1.1 matt printf(mem_fmt, "Exception Vectors",
810 1.1 matt systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
811 1.1 matt systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
812 1.1 matt 1);
813 1.1 matt printf(mem_fmt, "FIQ stack (CPU 0)",
814 1.1 matt fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
815 1.1 matt fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
816 1.1 matt FIQ_STACK_SIZE);
817 1.1 matt printf(mem_fmt, "IRQ stack (CPU 0)",
818 1.1 matt irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
819 1.1 matt irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
820 1.1 matt IRQ_STACK_SIZE);
821 1.1 matt printf(mem_fmt, "ABT stack (CPU 0)",
822 1.1 matt abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
823 1.1 matt abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
824 1.1 matt ABT_STACK_SIZE);
825 1.1 matt printf(mem_fmt, "UND stack (CPU 0)",
826 1.1 matt undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
827 1.1 matt undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
828 1.1 matt UND_STACK_SIZE);
829 1.1 matt printf(mem_fmt, "IDLE stack (CPU 0)",
830 1.1 matt idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
831 1.1 matt idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
832 1.1 matt UPAGES);
833 1.1 matt printf(mem_fmt, "SVC stack",
834 1.1 matt kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
835 1.1 matt kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
836 1.1 matt UPAGES);
837 1.1 matt printf(mem_fmt_nov, "Message Buffer",
838 1.1 matt msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
839 1.1 matt for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
840 1.1 matt pv = &bmi->bmi_freeblocks[i];
841 1.1 matt
842 1.1 matt printf(mem_fmt_nov, "Free Memory",
843 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
844 1.1 matt pv->pv_size / PAGE_SIZE);
845 1.1 matt }
846 1.1 matt #endif
847 1.1 matt /*
848 1.1 matt * Now we have the real page tables in place so we can switch to them.
849 1.1 matt * Once this is done we will be running with the REAL kernel page
850 1.1 matt * tables.
851 1.1 matt */
852 1.1 matt
853 1.2 matt #if defined(VERBOSE_INIT_ARM) && 0
854 1.2 matt printf("TTBR0=%#x", armreg_ttbr_read());
855 1.2 matt #ifdef _ARM_ARCH_6
856 1.2 matt printf(" TTBR1=%#x TTBCR=%#x",
857 1.2 matt armreg_ttbr1_read(), armreg_ttbcr_read());
858 1.2 matt #endif
859 1.2 matt printf("\n");
860 1.2 matt #endif
861 1.2 matt
862 1.1 matt /* Switch tables */
863 1.1 matt #ifdef VERBOSE_INIT_ARM
864 1.3 matt printf("switching to new L1 page table @%#lx...", l1pt_pa);
865 1.1 matt #endif
866 1.1 matt
867 1.1 matt cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
868 1.3 matt cpu_idcache_wbinv_all();
869 1.1 matt cpu_setttb(l1pt_pa);
870 1.1 matt cpu_tlb_flushID();
871 1.1 matt cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
872 1.1 matt
873 1.1 matt #ifdef VERBOSE_INIT_ARM
874 1.1 matt printf("OK.\n");
875 1.1 matt #endif
876 1.1 matt }
877