Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.3
      1  1.3  matt /*	$NetBSD: arm32_kvminit.c,v 1.3 2012/09/06 02:03:01 matt Exp $	*/
      2  1.1  matt 
      3  1.1  matt /*
      4  1.1  matt  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  1.1  matt  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  1.1  matt  *
      7  1.1  matt  * Redistribution and use in source and binary forms, with or without
      8  1.1  matt  * modification, are permitted provided that the following conditions
      9  1.1  matt  * are met:
     10  1.1  matt  * 1. Redistributions of source code must retain the above copyright
     11  1.1  matt  *    notice, this list of conditions and the following disclaimer.
     12  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  matt  *    documentation and/or other materials provided with the distribution.
     15  1.1  matt  * 3. The name of Genetec Corporation may not be used to endorse or
     16  1.1  matt  *    promote products derived from this software without specific prior
     17  1.1  matt  *    written permission.
     18  1.1  matt  *
     19  1.1  matt  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  1.1  matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     30  1.1  matt  *
     31  1.1  matt  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  1.1  matt  * All rights reserved.
     33  1.1  matt  *
     34  1.1  matt  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  1.1  matt  *
     36  1.1  matt  * Redistribution and use in source and binary forms, with or without
     37  1.1  matt  * modification, are permitted provided that the following conditions
     38  1.1  matt  * are met:
     39  1.1  matt  * 1. Redistributions of source code must retain the above copyright
     40  1.1  matt  *    notice, this list of conditions and the following disclaimer.
     41  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     42  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     43  1.1  matt  *    documentation and/or other materials provided with the distribution.
     44  1.1  matt  * 3. All advertising materials mentioning features or use of this software
     45  1.1  matt  *    must display the following acknowledgement:
     46  1.1  matt  *	This product includes software developed for the NetBSD Project by
     47  1.1  matt  *	Wasabi Systems, Inc.
     48  1.1  matt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  1.1  matt  *    or promote products derived from this software without specific prior
     50  1.1  matt  *    written permission.
     51  1.1  matt  *
     52  1.1  matt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  1.1  matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     63  1.1  matt  *
     64  1.1  matt  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  1.1  matt  * Copyright (c) 1997,1998 Causality Limited.
     66  1.1  matt  * All rights reserved.
     67  1.1  matt  *
     68  1.1  matt  * Redistribution and use in source and binary forms, with or without
     69  1.1  matt  * modification, are permitted provided that the following conditions
     70  1.1  matt  * are met:
     71  1.1  matt  * 1. Redistributions of source code must retain the above copyright
     72  1.1  matt  *    notice, this list of conditions and the following disclaimer.
     73  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     74  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     75  1.1  matt  *    documentation and/or other materials provided with the distribution.
     76  1.1  matt  * 3. All advertising materials mentioning features or use of this software
     77  1.1  matt  *    must display the following acknowledgement:
     78  1.1  matt  *	This product includes software developed by Mark Brinicombe
     79  1.1  matt  *	for the NetBSD Project.
     80  1.1  matt  * 4. The name of the company nor the name of the author may be used to
     81  1.1  matt  *    endorse or promote products derived from this software without specific
     82  1.1  matt  *    prior written permission.
     83  1.1  matt  *
     84  1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  1.1  matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  1.1  matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  1.1  matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  1.1  matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  1.1  matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  1.1  matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  1.1  matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  1.1  matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  1.1  matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  1.1  matt  * SUCH DAMAGE.
     95  1.1  matt  *
     96  1.1  matt  * Copyright (c) 2007 Microsoft
     97  1.1  matt  * All rights reserved.
     98  1.1  matt  *
     99  1.1  matt  * Redistribution and use in source and binary forms, with or without
    100  1.1  matt  * modification, are permitted provided that the following conditions
    101  1.1  matt  * are met:
    102  1.1  matt  * 1. Redistributions of source code must retain the above copyright
    103  1.1  matt  *    notice, this list of conditions and the following disclaimer.
    104  1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
    105  1.1  matt  *    notice, this list of conditions and the following disclaimer in the
    106  1.1  matt  *    documentation and/or other materials provided with the distribution.
    107  1.1  matt  * 3. All advertising materials mentioning features or use of this software
    108  1.1  matt  *    must display the following acknowledgement:
    109  1.1  matt  *	This product includes software developed by Microsoft
    110  1.1  matt  *
    111  1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  1.1  matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  1.1  matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  1.1  matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  1.1  matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  1.1  matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  1.1  matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  1.1  matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  1.1  matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  1.1  matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  1.1  matt  * SUCH DAMAGE.
    122  1.1  matt  */
    123  1.1  matt 
    124  1.1  matt #include <sys/cdefs.h>
    125  1.3  matt __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.3 2012/09/06 02:03:01 matt Exp $");
    126  1.1  matt 
    127  1.1  matt #include <sys/param.h>
    128  1.1  matt #include <sys/device.h>
    129  1.1  matt #include <sys/kernel.h>
    130  1.1  matt #include <sys/reboot.h>
    131  1.1  matt #include <sys/bus.h>
    132  1.1  matt 
    133  1.1  matt #include <dev/cons.h>
    134  1.1  matt 
    135  1.1  matt #include <uvm/uvm_extern.h>
    136  1.1  matt 
    137  1.1  matt #include <arm/db_machdep.h>
    138  1.1  matt #include <arm/undefined.h>
    139  1.1  matt #include <arm/bootconfig.h>
    140  1.1  matt #include <arm/arm32/machdep.h>
    141  1.1  matt 
    142  1.1  matt #include "ksyms.h"
    143  1.1  matt 
    144  1.1  matt struct bootmem_info bootmem_info;
    145  1.1  matt 
    146  1.1  matt paddr_t msgbufphys;
    147  1.1  matt paddr_t physical_start;
    148  1.1  matt paddr_t physical_end;
    149  1.1  matt 
    150  1.1  matt extern char etext[];
    151  1.1  matt extern char __data_start[], _edata[];
    152  1.1  matt extern char __bss_start[], __bss_end__[];
    153  1.1  matt extern char _end[];
    154  1.1  matt 
    155  1.1  matt /* Page tables for mapping kernel VM */
    156  1.1  matt #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    157  1.1  matt 
    158  1.1  matt /*
    159  1.1  matt  * Macros to translate between physical and virtual for a subset of the
    160  1.1  matt  * kernel address space.  *Not* for general use.
    161  1.1  matt  */
    162  1.1  matt #define KERN_VTOPHYS(bmi, va) \
    163  1.1  matt 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    164  1.1  matt #define KERN_PHYSTOV(bmi, pa) \
    165  1.1  matt 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    166  1.1  matt 
    167  1.1  matt void
    168  1.1  matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    169  1.1  matt {
    170  1.1  matt 	struct bootmem_info * const bmi = &bootmem_info;
    171  1.1  matt 	pv_addr_t *pv = bmi->bmi_freeblocks;
    172  1.1  matt 
    173  1.1  matt #ifdef VERBOSE_INIT_ARM
    174  1.1  matt 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    175  1.1  matt 	    __func__, memstart, memsize, kernelstart);
    176  1.1  matt #endif
    177  1.1  matt 
    178  1.1  matt 	physical_start = bmi->bmi_start = memstart;
    179  1.1  matt 	physical_end = bmi->bmi_end = memstart + memsize;
    180  1.1  matt 	physmem = memsize / PAGE_SIZE;
    181  1.1  matt 
    182  1.1  matt 	/*
    183  1.1  matt 	 * Let's record where the kernel lives.
    184  1.1  matt 	 */
    185  1.1  matt 	bmi->bmi_kernelstart = kernelstart;
    186  1.1  matt 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    187  1.1  matt 
    188  1.1  matt #ifdef VERBOSE_INIT_ARM
    189  1.1  matt 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    190  1.1  matt #endif
    191  1.1  matt 
    192  1.1  matt 	/*
    193  1.1  matt 	 * Now the rest of the free memory must be after the kernel.
    194  1.1  matt 	 */
    195  1.1  matt 	pv->pv_pa = bmi->bmi_kernelend;
    196  1.1  matt 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    197  1.1  matt 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    198  1.1  matt 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    199  1.1  matt #ifdef VERBOSE_INIT_ARM
    200  1.1  matt 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    201  1.1  matt 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    202  1.1  matt 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    203  1.1  matt #endif
    204  1.1  matt 	pv++;
    205  1.1  matt 
    206  1.1  matt 	/*
    207  1.1  matt 	 * Add a free block for any memory before the kernel.
    208  1.1  matt 	 */
    209  1.1  matt 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    210  1.1  matt 		pv->pv_pa = bmi->bmi_start;
    211  1.1  matt 		pv->pv_va = KERNEL_BASE;
    212  1.1  matt 		pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
    213  1.1  matt 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    214  1.1  matt #ifdef VERBOSE_INIT_ARM
    215  1.1  matt 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    216  1.1  matt 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    217  1.1  matt 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    218  1.1  matt #endif
    219  1.1  matt 		pv++;
    220  1.1  matt 	}
    221  1.1  matt 
    222  1.1  matt 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    223  1.1  matt 
    224  1.1  matt 	SLIST_INIT(&bmi->bmi_freechunks);
    225  1.1  matt 	SLIST_INIT(&bmi->bmi_chunks);
    226  1.1  matt }
    227  1.1  matt 
    228  1.1  matt static bool
    229  1.1  matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    230  1.1  matt {
    231  1.1  matt 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    232  1.1  matt 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    233  1.1  matt 	    && acc_pv->pv_prot == pv->pv_prot
    234  1.1  matt 	    && acc_pv->pv_cache == pv->pv_cache) {
    235  1.1  matt #ifdef VERBOSE_INIT_ARMX
    236  1.1  matt 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    237  1.1  matt 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    238  1.1  matt 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    239  1.1  matt #endif
    240  1.1  matt 		acc_pv->pv_size += pv->pv_size;
    241  1.1  matt 		return true;
    242  1.1  matt 	}
    243  1.1  matt 
    244  1.1  matt 	return false;
    245  1.1  matt }
    246  1.1  matt 
    247  1.1  matt static void
    248  1.1  matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    249  1.1  matt {
    250  1.1  matt 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    251  1.1  matt 	while ((*pvp) != 0 && (*pvp)->pv_va <= pv->pv_va) {
    252  1.1  matt 		pv_addr_t * const pv0 = (*pvp);
    253  1.1  matt 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    254  1.1  matt 		if (concat_pvaddr(pv0, pv)) {
    255  1.1  matt #ifdef VERBOSE_INIT_ARM
    256  1.1  matt 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    257  1.1  matt 			    __func__, "appending", pv,
    258  1.1  matt 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    259  1.1  matt 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    260  1.1  matt #endif
    261  1.1  matt 			pv = SLIST_NEXT(pv0, pv_list);
    262  1.1  matt 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    263  1.1  matt #ifdef VERBOSE_INIT_ARM
    264  1.1  matt 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    265  1.1  matt 				    __func__, "merging", pv,
    266  1.1  matt 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    267  1.1  matt 				    pv0->pv_pa,
    268  1.1  matt 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    269  1.1  matt #endif
    270  1.1  matt 				SLIST_REMOVE_AFTER(pv0, pv_list);
    271  1.1  matt 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    272  1.1  matt 			}
    273  1.1  matt 			return;
    274  1.1  matt 		}
    275  1.1  matt 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    276  1.1  matt 		pvp = &SLIST_NEXT(*pvp, pv_list);
    277  1.1  matt 	}
    278  1.1  matt 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    279  1.1  matt 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    280  1.1  matt 	KASSERT(new_pv != NULL);
    281  1.1  matt 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    282  1.1  matt 	*new_pv = *pv;
    283  1.1  matt 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    284  1.1  matt 	(*pvp) = new_pv;
    285  1.1  matt #ifdef VERBOSE_INIT_ARM
    286  1.1  matt 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    287  1.1  matt 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    288  1.1  matt 	    new_pv->pv_size / PAGE_SIZE);
    289  1.1  matt 	if (SLIST_NEXT(new_pv, pv_list))
    290  1.1  matt 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    291  1.1  matt 	else
    292  1.1  matt 		printf("at tail\n");
    293  1.1  matt #endif
    294  1.1  matt }
    295  1.1  matt 
    296  1.1  matt static void
    297  1.1  matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    298  1.1  matt 	int prot, int cache)
    299  1.1  matt {
    300  1.1  matt 	size_t nbytes = npages * PAGE_SIZE;
    301  1.1  matt 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    302  1.1  matt 	size_t free_idx = 0;
    303  1.1  matt 	static bool l1pt_found;
    304  1.1  matt 
    305  1.1  matt 	/*
    306  1.1  matt 	 * If we haven't allcoated the kernel L1 page table and we are aligned
    307  1.1  matt 	 * at a L1 table boundary, alloc the memory for it.
    308  1.1  matt 	 */
    309  1.1  matt 	if (!l1pt_found
    310  1.1  matt 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    311  1.1  matt 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    312  1.1  matt 		l1pt_found = true;
    313  1.1  matt 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    314  1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    315  1.1  matt 		add_pages(bmi, &kernel_l1pt);
    316  1.1  matt 	}
    317  1.1  matt 
    318  1.1  matt 	while (nbytes > free_pv->pv_size) {
    319  1.1  matt 		free_pv++;
    320  1.1  matt 		free_idx++;
    321  1.1  matt 		if (free_idx == bmi->bmi_nfreeblocks) {
    322  1.1  matt 			panic("%s: could not allocate %zu bytes",
    323  1.1  matt 			    __func__, nbytes);
    324  1.1  matt 		}
    325  1.1  matt 	}
    326  1.1  matt 
    327  1.1  matt 	pv->pv_pa = free_pv->pv_pa;
    328  1.1  matt 	pv->pv_va = free_pv->pv_va;
    329  1.1  matt 	pv->pv_size = nbytes;
    330  1.1  matt 	pv->pv_prot = prot;
    331  1.1  matt 	pv->pv_cache = cache;
    332  1.1  matt 
    333  1.1  matt 	/*
    334  1.1  matt 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    335  1.1  matt 	 * just use PTE_CACHE.
    336  1.1  matt 	 */
    337  1.1  matt 	if (cache == PTE_PAGETABLE
    338  1.1  matt 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    339  1.1  matt 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    340  1.1  matt 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    341  1.1  matt 		pv->pv_cache = PTE_CACHE;
    342  1.1  matt 
    343  1.1  matt 	free_pv->pv_pa += nbytes;
    344  1.1  matt 	free_pv->pv_va += nbytes;
    345  1.1  matt 	free_pv->pv_size -= nbytes;
    346  1.1  matt 	if (free_pv->pv_size == 0) {
    347  1.1  matt 		--bmi->bmi_nfreeblocks;
    348  1.1  matt 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    349  1.1  matt 			free_pv[0] = free_pv[1];
    350  1.1  matt 		}
    351  1.1  matt 	}
    352  1.1  matt 
    353  1.1  matt 	bmi->bmi_freepages -= npages;
    354  1.1  matt 
    355  1.1  matt 	memset((void *)pv->pv_va, 0, nbytes);
    356  1.1  matt }
    357  1.1  matt 
    358  1.1  matt void
    359  1.1  matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    360  1.1  matt 	const struct pmap_devmap *devmap, bool mapallmem_p)
    361  1.1  matt {
    362  1.1  matt 	struct bootmem_info * const bmi = &bootmem_info;
    363  1.1  matt #ifdef MULTIPROCESSOR
    364  1.1  matt 	const size_t cpu_num = arm_cpu_max + 1;
    365  1.1  matt #else
    366  1.1  matt 	const size_t cpu_num = 1;
    367  1.1  matt #endif
    368  1.1  matt 
    369  1.1  matt 	/*
    370  1.1  matt 	 * Calculate the number of L2 pages needed for mapping the
    371  1.1  matt 	 * kernel + data + stuff
    372  1.1  matt 	 */
    373  1.1  matt 	size_t kernel_size = bmi->bmi_kernelend;
    374  1.1  matt 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    375  1.1  matt 	kernel_size += L1_TABLE_SIZE;
    376  1.1  matt 	kernel_size += round_page(MSGBUFSIZE);
    377  1.1  matt 	kernel_size +=
    378  1.1  matt 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    379  1.1  matt 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    380  1.1  matt 	kernel_size += 0x10000;	/* slop */
    381  1.1  matt 	kernel_size += (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    382  1.1  matt 	kernel_size = round_page(kernel_size);
    383  1.1  matt 
    384  1.1  matt 	/*
    385  1.1  matt 	 * Now we know how many L2 pages it will take.
    386  1.1  matt 	 */
    387  1.1  matt 	const size_t KERNEL_L2PT_KERNEL_NUM =
    388  1.1  matt 	    (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    389  1.1  matt 
    390  1.1  matt #ifdef VERBOSE_INIT_ARM
    391  1.1  matt 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    392  1.1  matt 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    393  1.1  matt #endif
    394  1.1  matt 
    395  1.1  matt 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    396  1.1  matt 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    397  1.1  matt 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    398  1.1  matt 	pv_addr_t msgbuf;
    399  1.1  matt 	pv_addr_t text;
    400  1.1  matt 	pv_addr_t data;
    401  1.1  matt 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    402  1.1  matt #if ARM_MMU_XSCALE == 1
    403  1.1  matt 	pv_addr_t minidataclean;
    404  1.1  matt #endif
    405  1.1  matt 
    406  1.1  matt 	/*
    407  1.1  matt 	 * We need to allocate some fixed page tables to get the kernel going.
    408  1.1  matt 	 *
    409  1.1  matt 	 * We are going to allocate our bootstrap pages from the beginning of
    410  1.1  matt 	 * the free space that we just calculated.  We allocate one page
    411  1.1  matt 	 * directory and a number of page tables and store the physical
    412  1.1  matt 	 * addresses in the kernel_l2pt_table array.
    413  1.1  matt 	 *
    414  1.1  matt 	 * The kernel page directory must be on a 16K boundary.  The page
    415  1.1  matt 	 * tables must be on 4K boundaries.  What we do is allocate the
    416  1.1  matt 	 * page directory on the first 16K boundary that we encounter, and
    417  1.1  matt 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    418  1.1  matt 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    419  1.1  matt 	 * least one 16K aligned region.
    420  1.1  matt 	 */
    421  1.1  matt 
    422  1.1  matt #ifdef VERBOSE_INIT_ARM
    423  1.1  matt 	printf("%s: allocating page tables for", __func__);
    424  1.1  matt #endif
    425  1.1  matt 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    426  1.1  matt 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    427  1.1  matt 	}
    428  1.1  matt 
    429  1.1  matt 	/*
    430  1.1  matt 	 * As we allocate the memory, make sure that we don't walk over
    431  1.1  matt 	 * our temporary first level translation table.
    432  1.1  matt 	 */
    433  1.1  matt 
    434  1.1  matt 	kernel_l1pt.pv_pa = 0;
    435  1.1  matt 	kernel_l1pt.pv_va = 0;
    436  1.1  matt 
    437  1.1  matt 	/*
    438  1.1  matt 	 * First allocate L2 page for the vectors.
    439  1.1  matt 	 */
    440  1.1  matt #ifdef VERBOSE_INIT_ARM
    441  1.1  matt 	printf(" vector");
    442  1.1  matt #endif
    443  1.1  matt 	valloc_pages(bmi, &bmi->bmi_vector_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
    444  1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    445  1.1  matt 	add_pages(bmi, &bmi->bmi_vector_l2pt);
    446  1.1  matt 
    447  1.1  matt 	/*
    448  1.1  matt 	 * Allocate the L2 pages, but if we get to a page that aligned for a
    449  1.1  matt 	 * L1 page table, we will allocate pages for it first and allocate
    450  1.1  matt 	 * L2 page.
    451  1.1  matt 	 */
    452  1.1  matt #ifdef VERBOSE_INIT_ARM
    453  1.1  matt 	printf(" kernel");
    454  1.1  matt #endif
    455  1.1  matt 	for (size_t idx = 0; idx <= KERNEL_L2PT_KERNEL_NUM; ++idx) {
    456  1.1  matt 		valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
    457  1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    458  1.1  matt 		add_pages(bmi, &kernel_l2pt[idx]);
    459  1.1  matt 	}
    460  1.1  matt #ifdef VERBOSE_INIT_ARM
    461  1.1  matt 	printf(" vm");
    462  1.1  matt #endif
    463  1.1  matt 	for (size_t idx = 0; idx <= KERNEL_L2PT_VMDATA_NUM; ++idx) {
    464  1.1  matt 		valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
    465  1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    466  1.1  matt 		add_pages(bmi, &vmdata_l2pt[idx]);
    467  1.1  matt 	}
    468  1.1  matt 
    469  1.1  matt 	/*
    470  1.1  matt 	 * If someone wanted a L2 page for I/O, allocate it now.
    471  1.1  matt 	 */
    472  1.1  matt 	if (iovbase != 0) {
    473  1.1  matt #ifdef VERBOSE_INIT_ARM
    474  1.1  matt 		printf(" io");
    475  1.1  matt #endif
    476  1.1  matt 		valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
    477  1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    478  1.1  matt 		add_pages(bmi, &bmi->bmi_io_l2pt);
    479  1.1  matt 	}
    480  1.1  matt 
    481  1.1  matt #ifdef VERBOSE_ARM_INIT
    482  1.1  matt 	printf("%s: allocating stacks\n", __func__);
    483  1.1  matt #endif
    484  1.1  matt 
    485  1.1  matt 	/* Allocate stacks for all modes */
    486  1.1  matt 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    487  1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    488  1.1  matt 	add_pages(bmi, &abtstack);
    489  1.1  matt 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    490  1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    491  1.1  matt 	add_pages(bmi, &fiqstack);
    492  1.1  matt 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    493  1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    494  1.1  matt 	add_pages(bmi, &irqstack);
    495  1.1  matt 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    496  1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    497  1.1  matt 	add_pages(bmi, &undstack);
    498  1.1  matt 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    499  1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    500  1.1  matt 	add_pages(bmi, &idlestack);
    501  1.1  matt 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    502  1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    503  1.1  matt 	add_pages(bmi, &kernelstack);
    504  1.1  matt 
    505  1.1  matt 	/* Allocate the message buffer from the end of memory. */
    506  1.1  matt 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    507  1.1  matt 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    508  1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    509  1.1  matt 	add_pages(bmi, &msgbuf);
    510  1.1  matt 	msgbufphys = msgbuf.pv_pa;
    511  1.1  matt 
    512  1.1  matt 	/*
    513  1.1  matt 	 * Allocate a page for the system vector page.
    514  1.1  matt 	 * This page will just contain the system vectors and can be
    515  1.1  matt 	 * shared by all processes.
    516  1.1  matt 	 */
    517  1.1  matt 	valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    518  1.1  matt 	systempage.pv_va = vectors;
    519  1.1  matt 
    520  1.1  matt 	/*
    521  1.1  matt 	 * If the caller needed a few extra pages for some reason, allocate
    522  1.1  matt 	 * them now.
    523  1.1  matt 	 */
    524  1.1  matt #if ARM_MMU_XSCALE == 1
    525  1.1  matt #if (ARM_NMMUS > 1)
    526  1.1  matt 	if (xscale_use_minidata)
    527  1.1  matt #endif
    528  1.1  matt 		valloc_pages(bmi, extrapv, nextrapages,
    529  1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, 0);
    530  1.1  matt #endif
    531  1.1  matt 
    532  1.1  matt 	/*
    533  1.1  matt 	 * Ok we have allocated physical pages for the primary kernel
    534  1.1  matt 	 * page tables and stacks.  Let's just confirm that.
    535  1.1  matt 	 */
    536  1.1  matt 	if (kernel_l1pt.pv_va == 0
    537  1.1  matt 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    538  1.1  matt 		panic("%s: Failed to allocate or align the kernel "
    539  1.1  matt 		    "page directory", __func__);
    540  1.1  matt 
    541  1.1  matt 
    542  1.1  matt #ifdef VERBOSE_INIT_ARM
    543  1.1  matt 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    544  1.1  matt #endif
    545  1.1  matt 
    546  1.1  matt 	/*
    547  1.1  matt 	 * Now we start construction of the L1 page table
    548  1.1  matt 	 * We start by mapping the L2 page tables into the L1.
    549  1.1  matt 	 * This means that we can replace L1 mappings later on if necessary
    550  1.1  matt 	 */
    551  1.1  matt 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    552  1.1  matt 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    553  1.1  matt 
    554  1.1  matt 	/* Map the L2 pages tables in the L1 page table */
    555  1.1  matt 	pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    556  1.1  matt 	    &bmi->bmi_vector_l2pt);
    557  1.1  matt #ifdef VERBOSE_INIT_ARM
    558  1.1  matt 	printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
    559  1.1  matt 	    __func__, bmi->bmi_vector_l2pt.pv_va, bmi->bmi_vector_l2pt.pv_pa,
    560  1.1  matt 	    systempage.pv_va);
    561  1.1  matt #endif
    562  1.1  matt 
    563  1.1  matt 	const vaddr_t kernel_base =
    564  1.1  matt 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    565  1.1  matt 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    566  1.1  matt 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    567  1.1  matt 		    &kernel_l2pt[idx]);
    568  1.1  matt #ifdef VERBOSE_INIT_ARM
    569  1.1  matt 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
    570  1.1  matt 		    __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
    571  1.1  matt 		    kernel_base + idx * L2_S_SEGSIZE);
    572  1.1  matt #endif
    573  1.1  matt 	}
    574  1.1  matt 
    575  1.1  matt 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    576  1.1  matt 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    577  1.1  matt 		    &vmdata_l2pt[idx]);
    578  1.1  matt #ifdef VERBOSE_INIT_ARM
    579  1.1  matt 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
    580  1.1  matt 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    581  1.1  matt 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    582  1.1  matt #endif
    583  1.1  matt 	}
    584  1.1  matt 	if (iovbase) {
    585  1.1  matt 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    586  1.1  matt #ifdef VERBOSE_INIT_ARM
    587  1.1  matt 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
    588  1.1  matt 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    589  1.1  matt 		    iovbase & -L2_S_SEGSIZE);
    590  1.1  matt #endif
    591  1.1  matt 	}
    592  1.1  matt 
    593  1.1  matt 	/* update the top of the kernel VM */
    594  1.1  matt 	pmap_curmaxkvaddr =
    595  1.1  matt 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    596  1.1  matt 
    597  1.1  matt #ifdef VERBOSE_INIT_ARM
    598  1.1  matt 	printf("Mapping kernel\n");
    599  1.1  matt #endif
    600  1.1  matt 
    601  1.1  matt 	extern char etext[], _end[];
    602  1.1  matt 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    603  1.1  matt 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    604  1.1  matt 
    605  1.1  matt 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    606  1.1  matt 
    607  1.1  matt 	/* start at offset of kernel in RAM */
    608  1.1  matt 
    609  1.1  matt 	text.pv_pa = bmi->bmi_kernelstart;
    610  1.1  matt 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    611  1.1  matt 	text.pv_size = textsize;
    612  1.1  matt 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
    613  1.1  matt 	text.pv_cache = PTE_CACHE;
    614  1.1  matt 
    615  1.1  matt #ifdef VERBOSE_INIT_ARM
    616  1.1  matt 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    617  1.1  matt 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    618  1.1  matt #endif
    619  1.1  matt 
    620  1.1  matt 	add_pages(bmi, &text);
    621  1.1  matt 
    622  1.1  matt 	data.pv_pa = text.pv_pa + textsize;
    623  1.1  matt 	data.pv_va = text.pv_va + textsize;
    624  1.1  matt 	data.pv_size = totalsize - textsize;
    625  1.1  matt 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    626  1.1  matt 	data.pv_cache = PTE_CACHE;
    627  1.1  matt 
    628  1.1  matt #ifdef VERBOSE_INIT_ARM
    629  1.1  matt 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    630  1.1  matt 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    631  1.1  matt #endif
    632  1.1  matt 
    633  1.1  matt 	add_pages(bmi, &data);
    634  1.1  matt 
    635  1.1  matt #ifdef VERBOSE_INIT_ARM
    636  1.1  matt 	printf("Listing Chunks\n");
    637  1.1  matt 	{
    638  1.1  matt 		pv_addr_t *pv;
    639  1.1  matt 		SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
    640  1.1  matt 			printf("%s: pv %p: chunk VA %#lx..%#lx "
    641  1.1  matt 			    "(PA %#lx, prot %d, cache %d)\n",
    642  1.1  matt 			    __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
    643  1.1  matt 			    pv->pv_pa, pv->pv_prot, pv->pv_cache);
    644  1.1  matt 		}
    645  1.1  matt 	}
    646  1.1  matt 	printf("\nMapping Chunks\n");
    647  1.1  matt #endif
    648  1.1  matt 
    649  1.1  matt 	pv_addr_t cur_pv;
    650  1.1  matt 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    651  1.1  matt 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    652  1.1  matt 		cur_pv = *pv;
    653  1.1  matt 		pv = SLIST_NEXT(pv, pv_list);
    654  1.1  matt 	} else {
    655  1.1  matt 		cur_pv.pv_va = kernel_base;
    656  1.1  matt 		cur_pv.pv_pa = bmi->bmi_start;
    657  1.1  matt 		cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
    658  1.1  matt 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    659  1.1  matt 		cur_pv.pv_cache = PTE_CACHE;
    660  1.1  matt 	}
    661  1.1  matt 	while (pv != NULL) {
    662  1.1  matt 		if (mapallmem_p) {
    663  1.1  matt 			if (concat_pvaddr(&cur_pv, pv)) {
    664  1.1  matt 				pv = SLIST_NEXT(pv, pv_list);
    665  1.1  matt 				continue;
    666  1.1  matt 			}
    667  1.1  matt 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    668  1.1  matt 				/*
    669  1.1  matt 				 * See if we can extend the current pv to emcompass the
    670  1.1  matt 				 * hole, and if so do it and retry the concatenation.
    671  1.1  matt 				 */
    672  1.1  matt 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    673  1.1  matt 				    && cur_pv.pv_cache == PTE_CACHE) {
    674  1.1  matt 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    675  1.1  matt 					continue;
    676  1.1  matt 				}
    677  1.1  matt 
    678  1.1  matt 				/*
    679  1.1  matt 				 * We couldn't so emit the current chunk and then
    680  1.1  matt 				 */
    681  1.1  matt #ifdef VERBOSE_INIT_ARM
    682  1.1  matt 				printf("%s: mapping chunk VA %#lx..%#lx "
    683  1.1  matt 				    "(PA %#lx, prot %d, cache %d)\n",
    684  1.1  matt 				    __func__,
    685  1.1  matt 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    686  1.1  matt 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    687  1.1  matt #endif
    688  1.1  matt 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    689  1.1  matt 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    690  1.1  matt 
    691  1.1  matt 				/*
    692  1.1  matt 				 * set the current chunk to the hole and try again.
    693  1.1  matt 				 */
    694  1.1  matt 				cur_pv.pv_pa += cur_pv.pv_size;
    695  1.1  matt 				cur_pv.pv_va += cur_pv.pv_size;
    696  1.1  matt 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    697  1.1  matt 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    698  1.1  matt 				cur_pv.pv_cache = PTE_CACHE;
    699  1.1  matt 				continue;
    700  1.1  matt 			}
    701  1.1  matt 		}
    702  1.1  matt 
    703  1.1  matt 		/*
    704  1.1  matt 		 * The new pv didn't concatenate so emit the current one
    705  1.1  matt 		 * and use the new pv as the current pv.
    706  1.1  matt 		 */
    707  1.1  matt #ifdef VERBOSE_INIT_ARM
    708  1.1  matt 		printf("%s: mapping chunk VA %#lx..%#lx "
    709  1.1  matt 		    "(PA %#lx, prot %d, cache %d)\n",
    710  1.1  matt 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    711  1.1  matt 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    712  1.1  matt #endif
    713  1.1  matt 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    714  1.1  matt 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    715  1.1  matt 		cur_pv = *pv;
    716  1.1  matt 		pv = SLIST_NEXT(pv, pv_list);
    717  1.1  matt 	}
    718  1.1  matt 
    719  1.1  matt 	/*
    720  1.1  matt 	 * If we are mapping all of memory, let's map the rest of memory.
    721  1.1  matt 	 */
    722  1.1  matt 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    723  1.1  matt 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    724  1.1  matt 		    && cur_pv.pv_cache == PTE_CACHE) {
    725  1.1  matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    726  1.1  matt 		} else {
    727  1.1  matt #ifdef VERBOSE_INIT_ARM
    728  1.1  matt 			printf("%s: mapping chunk VA %#lx..%#lx "
    729  1.1  matt 			    "(PA %#lx, prot %d, cache %d)\n",
    730  1.1  matt 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    731  1.1  matt 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    732  1.1  matt #endif
    733  1.1  matt 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    734  1.1  matt 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    735  1.1  matt 			cur_pv.pv_pa += cur_pv.pv_size;
    736  1.1  matt 			cur_pv.pv_va += cur_pv.pv_size;
    737  1.1  matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    738  1.1  matt 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    739  1.1  matt 			cur_pv.pv_cache = PTE_CACHE;
    740  1.1  matt 		}
    741  1.1  matt 	}
    742  1.1  matt 
    743  1.1  matt 	/*
    744  1.1  matt 	 * Now we map the final chunk.
    745  1.1  matt 	 */
    746  1.1  matt #ifdef VERBOSE_INIT_ARM
    747  1.1  matt 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    748  1.1  matt 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    749  1.1  matt 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    750  1.1  matt #endif
    751  1.1  matt 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    752  1.1  matt 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    753  1.1  matt 
    754  1.1  matt 	/*
    755  1.1  matt 	 * Now we map the stuff that isn't directly after the kernel
    756  1.1  matt 	 */
    757  1.1  matt 
    758  1.1  matt 	/* Map the vector page. */
    759  1.1  matt 	pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    760  1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    761  1.1  matt 
    762  1.1  matt 	/* Map the Mini-Data cache clean area. */
    763  1.1  matt #if ARM_MMU_XSCALE == 1
    764  1.1  matt #if (ARM_NMMUS > 1)
    765  1.1  matt 	if (xscale_use_minidata)
    766  1.1  matt #endif
    767  1.1  matt 		xscale_setup_minidata(l1_va, minidataclean.pv_va,
    768  1.1  matt 		    minidataclean.pv_pa);
    769  1.1  matt #endif
    770  1.1  matt 
    771  1.1  matt 	/*
    772  1.1  matt 	 * Map integrated peripherals at same address in first level page
    773  1.1  matt 	 * table so that we can continue to use console.
    774  1.1  matt 	 */
    775  1.1  matt 	if (devmap)
    776  1.1  matt 		pmap_devmap_bootstrap(l1pt_va, devmap);
    777  1.1  matt 
    778  1.1  matt #ifdef VERBOSE_INIT_ARM
    779  1.1  matt 	/* Tell the user about where all the bits and pieces live. */
    780  1.1  matt 	printf("%22s       Physical              Virtual        Num\n", " ");
    781  1.1  matt 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    782  1.1  matt 
    783  1.1  matt 	static const char mem_fmt[] =
    784  1.1  matt 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    785  1.1  matt 	static const char mem_fmt_nov[] =
    786  1.1  matt 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    787  1.1  matt 
    788  1.1  matt 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    789  1.1  matt 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    790  1.1  matt 	    physmem);
    791  1.1  matt 	printf(mem_fmt, "text section",
    792  1.1  matt 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    793  1.1  matt 	       text.pv_va, text.pv_va + text.pv_size - 1,
    794  1.1  matt 	       (int)(text.pv_size / PAGE_SIZE));
    795  1.1  matt 	printf(mem_fmt, "data section",
    796  1.1  matt 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    797  1.1  matt 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    798  1.1  matt 	       (int)((round_page((vaddr_t)_edata)
    799  1.1  matt 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    800  1.1  matt 	printf(mem_fmt, "bss section",
    801  1.1  matt 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    802  1.1  matt 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    803  1.1  matt 	       (int)((round_page((vaddr_t)__bss_end__)
    804  1.1  matt 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    805  1.1  matt 	printf(mem_fmt, "L1 page directory",
    806  1.1  matt 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    807  1.1  matt 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    808  1.1  matt 	    L1_TABLE_SIZE / PAGE_SIZE);
    809  1.1  matt 	printf(mem_fmt, "Exception Vectors",
    810  1.1  matt 	    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    811  1.1  matt 	    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    812  1.1  matt 	    1);
    813  1.1  matt 	printf(mem_fmt, "FIQ stack (CPU 0)",
    814  1.1  matt 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    815  1.1  matt 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    816  1.1  matt 	    FIQ_STACK_SIZE);
    817  1.1  matt 	printf(mem_fmt, "IRQ stack (CPU 0)",
    818  1.1  matt 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    819  1.1  matt 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    820  1.1  matt 	    IRQ_STACK_SIZE);
    821  1.1  matt 	printf(mem_fmt, "ABT stack (CPU 0)",
    822  1.1  matt 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    823  1.1  matt 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    824  1.1  matt 	    ABT_STACK_SIZE);
    825  1.1  matt 	printf(mem_fmt, "UND stack (CPU 0)",
    826  1.1  matt 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    827  1.1  matt 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    828  1.1  matt 	    UND_STACK_SIZE);
    829  1.1  matt 	printf(mem_fmt, "IDLE stack (CPU 0)",
    830  1.1  matt 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    831  1.1  matt 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    832  1.1  matt 	    UPAGES);
    833  1.1  matt 	printf(mem_fmt, "SVC stack",
    834  1.1  matt 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    835  1.1  matt 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    836  1.1  matt 	    UPAGES);
    837  1.1  matt 	printf(mem_fmt_nov, "Message Buffer",
    838  1.1  matt 	    msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
    839  1.1  matt 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    840  1.1  matt 		pv = &bmi->bmi_freeblocks[i];
    841  1.1  matt 
    842  1.1  matt 		printf(mem_fmt_nov, "Free Memory",
    843  1.1  matt 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    844  1.1  matt 		    pv->pv_size / PAGE_SIZE);
    845  1.1  matt 	}
    846  1.1  matt #endif
    847  1.1  matt 	/*
    848  1.1  matt 	 * Now we have the real page tables in place so we can switch to them.
    849  1.1  matt 	 * Once this is done we will be running with the REAL kernel page
    850  1.1  matt 	 * tables.
    851  1.1  matt 	 */
    852  1.1  matt 
    853  1.2  matt #if defined(VERBOSE_INIT_ARM) && 0
    854  1.2  matt 	printf("TTBR0=%#x", armreg_ttbr_read());
    855  1.2  matt #ifdef _ARM_ARCH_6
    856  1.2  matt 	printf(" TTBR1=%#x TTBCR=%#x",
    857  1.2  matt 	    armreg_ttbr1_read(), armreg_ttbcr_read());
    858  1.2  matt #endif
    859  1.2  matt 	printf("\n");
    860  1.2  matt #endif
    861  1.2  matt 
    862  1.1  matt 	/* Switch tables */
    863  1.1  matt #ifdef VERBOSE_INIT_ARM
    864  1.3  matt 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    865  1.1  matt #endif
    866  1.1  matt 
    867  1.1  matt 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    868  1.3  matt 	cpu_idcache_wbinv_all();
    869  1.1  matt 	cpu_setttb(l1pt_pa);
    870  1.1  matt 	cpu_tlb_flushID();
    871  1.1  matt 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    872  1.1  matt 
    873  1.1  matt #ifdef VERBOSE_INIT_ARM
    874  1.1  matt 	printf("OK.\n");
    875  1.1  matt #endif
    876  1.1  matt }
    877