Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.3.2.1
      1  1.3.2.1   tls /*	$NetBSD: arm32_kvminit.c,v 1.3.2.1 2012/11/20 03:01:02 tls Exp $	*/
      2      1.1  matt 
      3      1.1  matt /*
      4      1.1  matt  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5      1.1  matt  * Written by Hiroyuki Bessho for Genetec Corporation.
      6      1.1  matt  *
      7      1.1  matt  * Redistribution and use in source and binary forms, with or without
      8      1.1  matt  * modification, are permitted provided that the following conditions
      9      1.1  matt  * are met:
     10      1.1  matt  * 1. Redistributions of source code must retain the above copyright
     11      1.1  matt  *    notice, this list of conditions and the following disclaimer.
     12      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     13      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     14      1.1  matt  *    documentation and/or other materials provided with the distribution.
     15      1.1  matt  * 3. The name of Genetec Corporation may not be used to endorse or
     16      1.1  matt  *    promote products derived from this software without specific prior
     17      1.1  matt  *    written permission.
     18      1.1  matt  *
     19      1.1  matt  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20      1.1  matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23      1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     30      1.1  matt  *
     31      1.1  matt  * Copyright (c) 2001 Wasabi Systems, Inc.
     32      1.1  matt  * All rights reserved.
     33      1.1  matt  *
     34      1.1  matt  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35      1.1  matt  *
     36      1.1  matt  * Redistribution and use in source and binary forms, with or without
     37      1.1  matt  * modification, are permitted provided that the following conditions
     38      1.1  matt  * are met:
     39      1.1  matt  * 1. Redistributions of source code must retain the above copyright
     40      1.1  matt  *    notice, this list of conditions and the following disclaimer.
     41      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     42      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     43      1.1  matt  *    documentation and/or other materials provided with the distribution.
     44      1.1  matt  * 3. All advertising materials mentioning features or use of this software
     45      1.1  matt  *    must display the following acknowledgement:
     46      1.1  matt  *	This product includes software developed for the NetBSD Project by
     47      1.1  matt  *	Wasabi Systems, Inc.
     48      1.1  matt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49      1.1  matt  *    or promote products derived from this software without specific prior
     50      1.1  matt  *    written permission.
     51      1.1  matt  *
     52      1.1  matt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53      1.1  matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54      1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55      1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56      1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57      1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58      1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59      1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60      1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61      1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62      1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     63      1.1  matt  *
     64      1.1  matt  * Copyright (c) 1997,1998 Mark Brinicombe.
     65      1.1  matt  * Copyright (c) 1997,1998 Causality Limited.
     66      1.1  matt  * All rights reserved.
     67      1.1  matt  *
     68      1.1  matt  * Redistribution and use in source and binary forms, with or without
     69      1.1  matt  * modification, are permitted provided that the following conditions
     70      1.1  matt  * are met:
     71      1.1  matt  * 1. Redistributions of source code must retain the above copyright
     72      1.1  matt  *    notice, this list of conditions and the following disclaimer.
     73      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     74      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     75      1.1  matt  *    documentation and/or other materials provided with the distribution.
     76      1.1  matt  * 3. All advertising materials mentioning features or use of this software
     77      1.1  matt  *    must display the following acknowledgement:
     78      1.1  matt  *	This product includes software developed by Mark Brinicombe
     79      1.1  matt  *	for the NetBSD Project.
     80      1.1  matt  * 4. The name of the company nor the name of the author may be used to
     81      1.1  matt  *    endorse or promote products derived from this software without specific
     82      1.1  matt  *    prior written permission.
     83      1.1  matt  *
     84      1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85      1.1  matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86      1.1  matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87      1.1  matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88      1.1  matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89      1.1  matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90      1.1  matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91      1.1  matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92      1.1  matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93      1.1  matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94      1.1  matt  * SUCH DAMAGE.
     95      1.1  matt  *
     96      1.1  matt  * Copyright (c) 2007 Microsoft
     97      1.1  matt  * All rights reserved.
     98      1.1  matt  *
     99      1.1  matt  * Redistribution and use in source and binary forms, with or without
    100      1.1  matt  * modification, are permitted provided that the following conditions
    101      1.1  matt  * are met:
    102      1.1  matt  * 1. Redistributions of source code must retain the above copyright
    103      1.1  matt  *    notice, this list of conditions and the following disclaimer.
    104      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
    105      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
    106      1.1  matt  *    documentation and/or other materials provided with the distribution.
    107      1.1  matt  * 3. All advertising materials mentioning features or use of this software
    108      1.1  matt  *    must display the following acknowledgement:
    109      1.1  matt  *	This product includes software developed by Microsoft
    110      1.1  matt  *
    111      1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112      1.1  matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113      1.1  matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114      1.1  matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115      1.1  matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116      1.1  matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117      1.1  matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118      1.1  matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119      1.1  matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120      1.1  matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121      1.1  matt  * SUCH DAMAGE.
    122      1.1  matt  */
    123      1.1  matt 
    124      1.1  matt #include <sys/cdefs.h>
    125  1.3.2.1   tls __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.3.2.1 2012/11/20 03:01:02 tls Exp $");
    126      1.1  matt 
    127      1.1  matt #include <sys/param.h>
    128      1.1  matt #include <sys/device.h>
    129      1.1  matt #include <sys/kernel.h>
    130      1.1  matt #include <sys/reboot.h>
    131      1.1  matt #include <sys/bus.h>
    132      1.1  matt 
    133      1.1  matt #include <dev/cons.h>
    134      1.1  matt 
    135      1.1  matt #include <uvm/uvm_extern.h>
    136      1.1  matt 
    137      1.1  matt #include <arm/db_machdep.h>
    138      1.1  matt #include <arm/undefined.h>
    139      1.1  matt #include <arm/bootconfig.h>
    140      1.1  matt #include <arm/arm32/machdep.h>
    141      1.1  matt 
    142      1.1  matt #include "ksyms.h"
    143      1.1  matt 
    144      1.1  matt struct bootmem_info bootmem_info;
    145      1.1  matt 
    146      1.1  matt paddr_t msgbufphys;
    147      1.1  matt paddr_t physical_start;
    148      1.1  matt paddr_t physical_end;
    149      1.1  matt 
    150      1.1  matt extern char etext[];
    151      1.1  matt extern char __data_start[], _edata[];
    152      1.1  matt extern char __bss_start[], __bss_end__[];
    153      1.1  matt extern char _end[];
    154      1.1  matt 
    155      1.1  matt /* Page tables for mapping kernel VM */
    156      1.1  matt #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    157      1.1  matt 
    158      1.1  matt /*
    159      1.1  matt  * Macros to translate between physical and virtual for a subset of the
    160      1.1  matt  * kernel address space.  *Not* for general use.
    161      1.1  matt  */
    162      1.1  matt #define KERN_VTOPHYS(bmi, va) \
    163      1.1  matt 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    164      1.1  matt #define KERN_PHYSTOV(bmi, pa) \
    165      1.1  matt 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    166      1.1  matt 
    167      1.1  matt void
    168      1.1  matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    169      1.1  matt {
    170      1.1  matt 	struct bootmem_info * const bmi = &bootmem_info;
    171      1.1  matt 	pv_addr_t *pv = bmi->bmi_freeblocks;
    172      1.1  matt 
    173      1.1  matt #ifdef VERBOSE_INIT_ARM
    174      1.1  matt 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    175      1.1  matt 	    __func__, memstart, memsize, kernelstart);
    176      1.1  matt #endif
    177      1.1  matt 
    178      1.1  matt 	physical_start = bmi->bmi_start = memstart;
    179      1.1  matt 	physical_end = bmi->bmi_end = memstart + memsize;
    180      1.1  matt 	physmem = memsize / PAGE_SIZE;
    181      1.1  matt 
    182      1.1  matt 	/*
    183      1.1  matt 	 * Let's record where the kernel lives.
    184      1.1  matt 	 */
    185      1.1  matt 	bmi->bmi_kernelstart = kernelstart;
    186      1.1  matt 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    187      1.1  matt 
    188      1.1  matt #ifdef VERBOSE_INIT_ARM
    189      1.1  matt 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    190      1.1  matt #endif
    191      1.1  matt 
    192      1.1  matt 	/*
    193      1.1  matt 	 * Now the rest of the free memory must be after the kernel.
    194      1.1  matt 	 */
    195      1.1  matt 	pv->pv_pa = bmi->bmi_kernelend;
    196      1.1  matt 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    197      1.1  matt 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    198      1.1  matt 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    199      1.1  matt #ifdef VERBOSE_INIT_ARM
    200      1.1  matt 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    201      1.1  matt 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    202      1.1  matt 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    203      1.1  matt #endif
    204      1.1  matt 	pv++;
    205      1.1  matt 
    206      1.1  matt 	/*
    207      1.1  matt 	 * Add a free block for any memory before the kernel.
    208      1.1  matt 	 */
    209      1.1  matt 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    210      1.1  matt 		pv->pv_pa = bmi->bmi_start;
    211      1.1  matt 		pv->pv_va = KERNEL_BASE;
    212      1.1  matt 		pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
    213      1.1  matt 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    214      1.1  matt #ifdef VERBOSE_INIT_ARM
    215      1.1  matt 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    216      1.1  matt 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    217      1.1  matt 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    218      1.1  matt #endif
    219      1.1  matt 		pv++;
    220      1.1  matt 	}
    221      1.1  matt 
    222      1.1  matt 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    223      1.1  matt 
    224      1.1  matt 	SLIST_INIT(&bmi->bmi_freechunks);
    225      1.1  matt 	SLIST_INIT(&bmi->bmi_chunks);
    226      1.1  matt }
    227      1.1  matt 
    228      1.1  matt static bool
    229      1.1  matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    230      1.1  matt {
    231      1.1  matt 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    232      1.1  matt 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    233      1.1  matt 	    && acc_pv->pv_prot == pv->pv_prot
    234      1.1  matt 	    && acc_pv->pv_cache == pv->pv_cache) {
    235      1.1  matt #ifdef VERBOSE_INIT_ARMX
    236      1.1  matt 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    237      1.1  matt 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    238      1.1  matt 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    239      1.1  matt #endif
    240      1.1  matt 		acc_pv->pv_size += pv->pv_size;
    241      1.1  matt 		return true;
    242      1.1  matt 	}
    243      1.1  matt 
    244      1.1  matt 	return false;
    245      1.1  matt }
    246      1.1  matt 
    247      1.1  matt static void
    248      1.1  matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    249      1.1  matt {
    250      1.1  matt 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    251  1.3.2.1   tls 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    252      1.1  matt 		pv_addr_t * const pv0 = (*pvp);
    253      1.1  matt 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    254      1.1  matt 		if (concat_pvaddr(pv0, pv)) {
    255      1.1  matt #ifdef VERBOSE_INIT_ARM
    256      1.1  matt 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    257      1.1  matt 			    __func__, "appending", pv,
    258      1.1  matt 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    259      1.1  matt 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    260      1.1  matt #endif
    261      1.1  matt 			pv = SLIST_NEXT(pv0, pv_list);
    262      1.1  matt 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    263      1.1  matt #ifdef VERBOSE_INIT_ARM
    264      1.1  matt 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    265      1.1  matt 				    __func__, "merging", pv,
    266      1.1  matt 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    267      1.1  matt 				    pv0->pv_pa,
    268      1.1  matt 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    269      1.1  matt #endif
    270      1.1  matt 				SLIST_REMOVE_AFTER(pv0, pv_list);
    271      1.1  matt 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    272      1.1  matt 			}
    273      1.1  matt 			return;
    274      1.1  matt 		}
    275      1.1  matt 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    276      1.1  matt 		pvp = &SLIST_NEXT(*pvp, pv_list);
    277      1.1  matt 	}
    278      1.1  matt 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    279      1.1  matt 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    280      1.1  matt 	KASSERT(new_pv != NULL);
    281      1.1  matt 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    282      1.1  matt 	*new_pv = *pv;
    283      1.1  matt 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    284      1.1  matt 	(*pvp) = new_pv;
    285      1.1  matt #ifdef VERBOSE_INIT_ARM
    286      1.1  matt 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    287      1.1  matt 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    288      1.1  matt 	    new_pv->pv_size / PAGE_SIZE);
    289      1.1  matt 	if (SLIST_NEXT(new_pv, pv_list))
    290      1.1  matt 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    291      1.1  matt 	else
    292      1.1  matt 		printf("at tail\n");
    293      1.1  matt #endif
    294      1.1  matt }
    295      1.1  matt 
    296      1.1  matt static void
    297      1.1  matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    298      1.1  matt 	int prot, int cache)
    299      1.1  matt {
    300      1.1  matt 	size_t nbytes = npages * PAGE_SIZE;
    301      1.1  matt 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    302      1.1  matt 	size_t free_idx = 0;
    303      1.1  matt 	static bool l1pt_found;
    304      1.1  matt 
    305      1.1  matt 	/*
    306  1.3.2.1   tls 	 * If we haven't allocated the kernel L1 page table and we are aligned
    307      1.1  matt 	 * at a L1 table boundary, alloc the memory for it.
    308      1.1  matt 	 */
    309      1.1  matt 	if (!l1pt_found
    310      1.1  matt 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    311      1.1  matt 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    312      1.1  matt 		l1pt_found = true;
    313      1.1  matt 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    314      1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    315      1.1  matt 		add_pages(bmi, &kernel_l1pt);
    316      1.1  matt 	}
    317      1.1  matt 
    318      1.1  matt 	while (nbytes > free_pv->pv_size) {
    319      1.1  matt 		free_pv++;
    320      1.1  matt 		free_idx++;
    321      1.1  matt 		if (free_idx == bmi->bmi_nfreeblocks) {
    322      1.1  matt 			panic("%s: could not allocate %zu bytes",
    323      1.1  matt 			    __func__, nbytes);
    324      1.1  matt 		}
    325      1.1  matt 	}
    326      1.1  matt 
    327  1.3.2.1   tls 	/*
    328  1.3.2.1   tls 	 * As we allocate the memory, make sure that we don't walk over
    329  1.3.2.1   tls 	 * our current first level translation table.
    330  1.3.2.1   tls 	 */
    331  1.3.2.1   tls 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    332  1.3.2.1   tls 
    333      1.1  matt 	pv->pv_pa = free_pv->pv_pa;
    334      1.1  matt 	pv->pv_va = free_pv->pv_va;
    335      1.1  matt 	pv->pv_size = nbytes;
    336      1.1  matt 	pv->pv_prot = prot;
    337      1.1  matt 	pv->pv_cache = cache;
    338      1.1  matt 
    339      1.1  matt 	/*
    340      1.1  matt 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    341      1.1  matt 	 * just use PTE_CACHE.
    342      1.1  matt 	 */
    343      1.1  matt 	if (cache == PTE_PAGETABLE
    344      1.1  matt 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    345      1.1  matt 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    346      1.1  matt 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    347      1.1  matt 		pv->pv_cache = PTE_CACHE;
    348      1.1  matt 
    349      1.1  matt 	free_pv->pv_pa += nbytes;
    350      1.1  matt 	free_pv->pv_va += nbytes;
    351      1.1  matt 	free_pv->pv_size -= nbytes;
    352      1.1  matt 	if (free_pv->pv_size == 0) {
    353      1.1  matt 		--bmi->bmi_nfreeblocks;
    354      1.1  matt 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    355      1.1  matt 			free_pv[0] = free_pv[1];
    356      1.1  matt 		}
    357      1.1  matt 	}
    358      1.1  matt 
    359      1.1  matt 	bmi->bmi_freepages -= npages;
    360      1.1  matt 
    361      1.1  matt 	memset((void *)pv->pv_va, 0, nbytes);
    362      1.1  matt }
    363      1.1  matt 
    364      1.1  matt void
    365      1.1  matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    366      1.1  matt 	const struct pmap_devmap *devmap, bool mapallmem_p)
    367      1.1  matt {
    368      1.1  matt 	struct bootmem_info * const bmi = &bootmem_info;
    369      1.1  matt #ifdef MULTIPROCESSOR
    370      1.1  matt 	const size_t cpu_num = arm_cpu_max + 1;
    371      1.1  matt #else
    372      1.1  matt 	const size_t cpu_num = 1;
    373      1.1  matt #endif
    374      1.1  matt 
    375      1.1  matt 	/*
    376      1.1  matt 	 * Calculate the number of L2 pages needed for mapping the
    377  1.3.2.1   tls 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    378  1.3.2.1   tls 	 * and 1 for IO
    379      1.1  matt 	 */
    380      1.1  matt 	size_t kernel_size = bmi->bmi_kernelend;
    381      1.1  matt 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    382      1.1  matt 	kernel_size += L1_TABLE_SIZE;
    383  1.3.2.1   tls 	kernel_size += L2_TABLE_SIZE * (2 + 1 + KERNEL_L2PT_VMDATA_NUM + 1);
    384      1.1  matt 	kernel_size +=
    385      1.1  matt 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    386      1.1  matt 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    387  1.3.2.1   tls 	kernel_size += round_page(MSGBUFSIZE);
    388      1.1  matt 	kernel_size += 0x10000;	/* slop */
    389      1.1  matt 	kernel_size += (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    390      1.1  matt 	kernel_size = round_page(kernel_size);
    391      1.1  matt 
    392      1.1  matt 	/*
    393      1.1  matt 	 * Now we know how many L2 pages it will take.
    394      1.1  matt 	 */
    395      1.1  matt 	const size_t KERNEL_L2PT_KERNEL_NUM =
    396      1.1  matt 	    (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    397      1.1  matt 
    398      1.1  matt #ifdef VERBOSE_INIT_ARM
    399      1.1  matt 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    400      1.1  matt 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    401      1.1  matt #endif
    402      1.1  matt 
    403      1.1  matt 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    404      1.1  matt 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    405      1.1  matt 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    406      1.1  matt 	pv_addr_t msgbuf;
    407      1.1  matt 	pv_addr_t text;
    408      1.1  matt 	pv_addr_t data;
    409      1.1  matt 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    410      1.1  matt #if ARM_MMU_XSCALE == 1
    411      1.1  matt 	pv_addr_t minidataclean;
    412      1.1  matt #endif
    413      1.1  matt 
    414      1.1  matt 	/*
    415      1.1  matt 	 * We need to allocate some fixed page tables to get the kernel going.
    416      1.1  matt 	 *
    417      1.1  matt 	 * We are going to allocate our bootstrap pages from the beginning of
    418      1.1  matt 	 * the free space that we just calculated.  We allocate one page
    419      1.1  matt 	 * directory and a number of page tables and store the physical
    420  1.3.2.1   tls 	 * addresses in the bmi_l2pts array in bootmem_info.
    421      1.1  matt 	 *
    422      1.1  matt 	 * The kernel page directory must be on a 16K boundary.  The page
    423      1.1  matt 	 * tables must be on 4K boundaries.  What we do is allocate the
    424      1.1  matt 	 * page directory on the first 16K boundary that we encounter, and
    425      1.1  matt 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    426      1.1  matt 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    427      1.1  matt 	 * least one 16K aligned region.
    428      1.1  matt 	 */
    429      1.1  matt 
    430      1.1  matt #ifdef VERBOSE_INIT_ARM
    431      1.1  matt 	printf("%s: allocating page tables for", __func__);
    432      1.1  matt #endif
    433      1.1  matt 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    434      1.1  matt 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    435      1.1  matt 	}
    436      1.1  matt 
    437      1.1  matt 	kernel_l1pt.pv_pa = 0;
    438      1.1  matt 	kernel_l1pt.pv_va = 0;
    439      1.1  matt 
    440      1.1  matt 	/*
    441  1.3.2.1   tls 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    442  1.3.2.1   tls 	 * an L1 page table, we will allocate the pages for it first and then
    443  1.3.2.1   tls 	 * allocate the L2 page.
    444  1.3.2.1   tls 	 */
    445  1.3.2.1   tls 
    446  1.3.2.1   tls 	/*
    447      1.1  matt 	 * First allocate L2 page for the vectors.
    448      1.1  matt 	 */
    449      1.1  matt #ifdef VERBOSE_INIT_ARM
    450      1.1  matt 	printf(" vector");
    451      1.1  matt #endif
    452      1.1  matt 	valloc_pages(bmi, &bmi->bmi_vector_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
    453      1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    454      1.1  matt 	add_pages(bmi, &bmi->bmi_vector_l2pt);
    455      1.1  matt 
    456      1.1  matt 	/*
    457  1.3.2.1   tls 	 * Now allocate L2 pages for the kernel
    458      1.1  matt 	 */
    459      1.1  matt #ifdef VERBOSE_INIT_ARM
    460      1.1  matt 	printf(" kernel");
    461      1.1  matt #endif
    462  1.3.2.1   tls 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    463      1.1  matt 		valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
    464      1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    465      1.1  matt 		add_pages(bmi, &kernel_l2pt[idx]);
    466      1.1  matt 	}
    467  1.3.2.1   tls 
    468  1.3.2.1   tls 	/*
    469  1.3.2.1   tls 	 * Now allocate L2 pages for the initial kernel VA space.
    470  1.3.2.1   tls 	 */
    471      1.1  matt #ifdef VERBOSE_INIT_ARM
    472      1.1  matt 	printf(" vm");
    473      1.1  matt #endif
    474  1.3.2.1   tls 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    475      1.1  matt 		valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
    476      1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    477      1.1  matt 		add_pages(bmi, &vmdata_l2pt[idx]);
    478      1.1  matt 	}
    479      1.1  matt 
    480      1.1  matt 	/*
    481      1.1  matt 	 * If someone wanted a L2 page for I/O, allocate it now.
    482      1.1  matt 	 */
    483      1.1  matt 	if (iovbase != 0) {
    484      1.1  matt #ifdef VERBOSE_INIT_ARM
    485      1.1  matt 		printf(" io");
    486      1.1  matt #endif
    487      1.1  matt 		valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
    488      1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
    489      1.1  matt 		add_pages(bmi, &bmi->bmi_io_l2pt);
    490      1.1  matt 	}
    491      1.1  matt 
    492      1.1  matt #ifdef VERBOSE_ARM_INIT
    493      1.1  matt 	printf("%s: allocating stacks\n", __func__);
    494      1.1  matt #endif
    495      1.1  matt 
    496  1.3.2.1   tls 	/* Allocate stacks for all modes and CPUs */
    497      1.1  matt 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    498      1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    499      1.1  matt 	add_pages(bmi, &abtstack);
    500      1.1  matt 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    501      1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    502      1.1  matt 	add_pages(bmi, &fiqstack);
    503      1.1  matt 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    504      1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    505      1.1  matt 	add_pages(bmi, &irqstack);
    506      1.1  matt 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    507      1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    508      1.1  matt 	add_pages(bmi, &undstack);
    509      1.1  matt 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    510      1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    511      1.1  matt 	add_pages(bmi, &idlestack);
    512      1.1  matt 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    513      1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    514      1.1  matt 	add_pages(bmi, &kernelstack);
    515      1.1  matt 
    516      1.1  matt 	/* Allocate the message buffer from the end of memory. */
    517      1.1  matt 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    518      1.1  matt 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    519      1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    520      1.1  matt 	add_pages(bmi, &msgbuf);
    521      1.1  matt 	msgbufphys = msgbuf.pv_pa;
    522      1.1  matt 
    523      1.1  matt 	/*
    524      1.1  matt 	 * Allocate a page for the system vector page.
    525      1.1  matt 	 * This page will just contain the system vectors and can be
    526      1.1  matt 	 * shared by all processes.
    527      1.1  matt 	 */
    528      1.1  matt 	valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    529      1.1  matt 	systempage.pv_va = vectors;
    530      1.1  matt 
    531      1.1  matt 	/*
    532      1.1  matt 	 * If the caller needed a few extra pages for some reason, allocate
    533      1.1  matt 	 * them now.
    534      1.1  matt 	 */
    535      1.1  matt #if ARM_MMU_XSCALE == 1
    536      1.1  matt #if (ARM_NMMUS > 1)
    537      1.1  matt 	if (xscale_use_minidata)
    538      1.1  matt #endif
    539      1.1  matt 		valloc_pages(bmi, extrapv, nextrapages,
    540      1.1  matt 		    VM_PROT_READ|VM_PROT_WRITE, 0);
    541      1.1  matt #endif
    542      1.1  matt 
    543      1.1  matt 	/*
    544      1.1  matt 	 * Ok we have allocated physical pages for the primary kernel
    545      1.1  matt 	 * page tables and stacks.  Let's just confirm that.
    546      1.1  matt 	 */
    547      1.1  matt 	if (kernel_l1pt.pv_va == 0
    548      1.1  matt 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    549      1.1  matt 		panic("%s: Failed to allocate or align the kernel "
    550      1.1  matt 		    "page directory", __func__);
    551      1.1  matt 
    552      1.1  matt 
    553      1.1  matt #ifdef VERBOSE_INIT_ARM
    554      1.1  matt 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    555      1.1  matt #endif
    556      1.1  matt 
    557      1.1  matt 	/*
    558      1.1  matt 	 * Now we start construction of the L1 page table
    559      1.1  matt 	 * We start by mapping the L2 page tables into the L1.
    560      1.1  matt 	 * This means that we can replace L1 mappings later on if necessary
    561      1.1  matt 	 */
    562      1.1  matt 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    563      1.1  matt 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    564      1.1  matt 
    565      1.1  matt 	/* Map the L2 pages tables in the L1 page table */
    566      1.1  matt 	pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    567      1.1  matt 	    &bmi->bmi_vector_l2pt);
    568      1.1  matt #ifdef VERBOSE_INIT_ARM
    569  1.3.2.1   tls 	printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n (vectors)",
    570      1.1  matt 	    __func__, bmi->bmi_vector_l2pt.pv_va, bmi->bmi_vector_l2pt.pv_pa,
    571      1.1  matt 	    systempage.pv_va);
    572      1.1  matt #endif
    573      1.1  matt 
    574      1.1  matt 	const vaddr_t kernel_base =
    575      1.1  matt 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    576      1.1  matt 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    577      1.1  matt 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    578      1.1  matt 		    &kernel_l2pt[idx]);
    579      1.1  matt #ifdef VERBOSE_INIT_ARM
    580  1.3.2.1   tls 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    581      1.1  matt 		    __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
    582      1.1  matt 		    kernel_base + idx * L2_S_SEGSIZE);
    583      1.1  matt #endif
    584      1.1  matt 	}
    585      1.1  matt 
    586      1.1  matt 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    587      1.1  matt 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    588      1.1  matt 		    &vmdata_l2pt[idx]);
    589      1.1  matt #ifdef VERBOSE_INIT_ARM
    590  1.3.2.1   tls 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    591      1.1  matt 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    592      1.1  matt 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    593      1.1  matt #endif
    594      1.1  matt 	}
    595      1.1  matt 	if (iovbase) {
    596      1.1  matt 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    597      1.1  matt #ifdef VERBOSE_INIT_ARM
    598  1.3.2.1   tls 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    599      1.1  matt 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    600      1.1  matt 		    iovbase & -L2_S_SEGSIZE);
    601      1.1  matt #endif
    602      1.1  matt 	}
    603      1.1  matt 
    604      1.1  matt 	/* update the top of the kernel VM */
    605      1.1  matt 	pmap_curmaxkvaddr =
    606      1.1  matt 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    607      1.1  matt 
    608      1.1  matt #ifdef VERBOSE_INIT_ARM
    609      1.1  matt 	printf("Mapping kernel\n");
    610      1.1  matt #endif
    611      1.1  matt 
    612      1.1  matt 	extern char etext[], _end[];
    613      1.1  matt 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    614      1.1  matt 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    615      1.1  matt 
    616      1.1  matt 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    617      1.1  matt 
    618      1.1  matt 	/* start at offset of kernel in RAM */
    619      1.1  matt 
    620      1.1  matt 	text.pv_pa = bmi->bmi_kernelstart;
    621      1.1  matt 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    622      1.1  matt 	text.pv_size = textsize;
    623      1.1  matt 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
    624      1.1  matt 	text.pv_cache = PTE_CACHE;
    625      1.1  matt 
    626      1.1  matt #ifdef VERBOSE_INIT_ARM
    627      1.1  matt 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    628      1.1  matt 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    629      1.1  matt #endif
    630      1.1  matt 
    631      1.1  matt 	add_pages(bmi, &text);
    632      1.1  matt 
    633      1.1  matt 	data.pv_pa = text.pv_pa + textsize;
    634      1.1  matt 	data.pv_va = text.pv_va + textsize;
    635      1.1  matt 	data.pv_size = totalsize - textsize;
    636      1.1  matt 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    637      1.1  matt 	data.pv_cache = PTE_CACHE;
    638      1.1  matt 
    639      1.1  matt #ifdef VERBOSE_INIT_ARM
    640      1.1  matt 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    641      1.1  matt 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    642      1.1  matt #endif
    643      1.1  matt 
    644      1.1  matt 	add_pages(bmi, &data);
    645      1.1  matt 
    646      1.1  matt #ifdef VERBOSE_INIT_ARM
    647      1.1  matt 	printf("Listing Chunks\n");
    648      1.1  matt 	{
    649      1.1  matt 		pv_addr_t *pv;
    650      1.1  matt 		SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
    651      1.1  matt 			printf("%s: pv %p: chunk VA %#lx..%#lx "
    652      1.1  matt 			    "(PA %#lx, prot %d, cache %d)\n",
    653      1.1  matt 			    __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
    654      1.1  matt 			    pv->pv_pa, pv->pv_prot, pv->pv_cache);
    655      1.1  matt 		}
    656      1.1  matt 	}
    657      1.1  matt 	printf("\nMapping Chunks\n");
    658      1.1  matt #endif
    659      1.1  matt 
    660      1.1  matt 	pv_addr_t cur_pv;
    661      1.1  matt 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    662      1.1  matt 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    663      1.1  matt 		cur_pv = *pv;
    664      1.1  matt 		pv = SLIST_NEXT(pv, pv_list);
    665      1.1  matt 	} else {
    666  1.3.2.1   tls 		cur_pv.pv_va = KERNEL_BASE;
    667      1.1  matt 		cur_pv.pv_pa = bmi->bmi_start;
    668      1.1  matt 		cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
    669      1.1  matt 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    670      1.1  matt 		cur_pv.pv_cache = PTE_CACHE;
    671      1.1  matt 	}
    672      1.1  matt 	while (pv != NULL) {
    673      1.1  matt 		if (mapallmem_p) {
    674      1.1  matt 			if (concat_pvaddr(&cur_pv, pv)) {
    675      1.1  matt 				pv = SLIST_NEXT(pv, pv_list);
    676      1.1  matt 				continue;
    677      1.1  matt 			}
    678      1.1  matt 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    679      1.1  matt 				/*
    680      1.1  matt 				 * See if we can extend the current pv to emcompass the
    681      1.1  matt 				 * hole, and if so do it and retry the concatenation.
    682      1.1  matt 				 */
    683      1.1  matt 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    684      1.1  matt 				    && cur_pv.pv_cache == PTE_CACHE) {
    685      1.1  matt 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    686      1.1  matt 					continue;
    687      1.1  matt 				}
    688      1.1  matt 
    689      1.1  matt 				/*
    690      1.1  matt 				 * We couldn't so emit the current chunk and then
    691      1.1  matt 				 */
    692      1.1  matt #ifdef VERBOSE_INIT_ARM
    693      1.1  matt 				printf("%s: mapping chunk VA %#lx..%#lx "
    694      1.1  matt 				    "(PA %#lx, prot %d, cache %d)\n",
    695      1.1  matt 				    __func__,
    696      1.1  matt 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    697      1.1  matt 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    698      1.1  matt #endif
    699      1.1  matt 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    700      1.1  matt 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    701      1.1  matt 
    702      1.1  matt 				/*
    703      1.1  matt 				 * set the current chunk to the hole and try again.
    704      1.1  matt 				 */
    705      1.1  matt 				cur_pv.pv_pa += cur_pv.pv_size;
    706      1.1  matt 				cur_pv.pv_va += cur_pv.pv_size;
    707      1.1  matt 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    708      1.1  matt 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    709      1.1  matt 				cur_pv.pv_cache = PTE_CACHE;
    710      1.1  matt 				continue;
    711      1.1  matt 			}
    712      1.1  matt 		}
    713      1.1  matt 
    714      1.1  matt 		/*
    715      1.1  matt 		 * The new pv didn't concatenate so emit the current one
    716      1.1  matt 		 * and use the new pv as the current pv.
    717      1.1  matt 		 */
    718      1.1  matt #ifdef VERBOSE_INIT_ARM
    719      1.1  matt 		printf("%s: mapping chunk VA %#lx..%#lx "
    720      1.1  matt 		    "(PA %#lx, prot %d, cache %d)\n",
    721      1.1  matt 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    722      1.1  matt 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    723      1.1  matt #endif
    724      1.1  matt 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    725      1.1  matt 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    726      1.1  matt 		cur_pv = *pv;
    727      1.1  matt 		pv = SLIST_NEXT(pv, pv_list);
    728      1.1  matt 	}
    729      1.1  matt 
    730      1.1  matt 	/*
    731      1.1  matt 	 * If we are mapping all of memory, let's map the rest of memory.
    732      1.1  matt 	 */
    733      1.1  matt 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    734      1.1  matt 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    735      1.1  matt 		    && cur_pv.pv_cache == PTE_CACHE) {
    736      1.1  matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    737      1.1  matt 		} else {
    738      1.1  matt #ifdef VERBOSE_INIT_ARM
    739      1.1  matt 			printf("%s: mapping chunk VA %#lx..%#lx "
    740      1.1  matt 			    "(PA %#lx, prot %d, cache %d)\n",
    741      1.1  matt 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    742      1.1  matt 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    743      1.1  matt #endif
    744      1.1  matt 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    745      1.1  matt 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    746      1.1  matt 			cur_pv.pv_pa += cur_pv.pv_size;
    747      1.1  matt 			cur_pv.pv_va += cur_pv.pv_size;
    748      1.1  matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    749      1.1  matt 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    750      1.1  matt 			cur_pv.pv_cache = PTE_CACHE;
    751      1.1  matt 		}
    752      1.1  matt 	}
    753      1.1  matt 
    754      1.1  matt 	/*
    755      1.1  matt 	 * Now we map the final chunk.
    756      1.1  matt 	 */
    757      1.1  matt #ifdef VERBOSE_INIT_ARM
    758      1.1  matt 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    759      1.1  matt 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    760      1.1  matt 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    761      1.1  matt #endif
    762      1.1  matt 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    763      1.1  matt 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    764      1.1  matt 
    765      1.1  matt 	/*
    766      1.1  matt 	 * Now we map the stuff that isn't directly after the kernel
    767      1.1  matt 	 */
    768      1.1  matt 
    769      1.1  matt 	/* Map the vector page. */
    770      1.1  matt 	pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    771      1.1  matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    772      1.1  matt 
    773      1.1  matt 	/* Map the Mini-Data cache clean area. */
    774      1.1  matt #if ARM_MMU_XSCALE == 1
    775      1.1  matt #if (ARM_NMMUS > 1)
    776      1.1  matt 	if (xscale_use_minidata)
    777      1.1  matt #endif
    778      1.1  matt 		xscale_setup_minidata(l1_va, minidataclean.pv_va,
    779      1.1  matt 		    minidataclean.pv_pa);
    780      1.1  matt #endif
    781      1.1  matt 
    782      1.1  matt 	/*
    783      1.1  matt 	 * Map integrated peripherals at same address in first level page
    784      1.1  matt 	 * table so that we can continue to use console.
    785      1.1  matt 	 */
    786      1.1  matt 	if (devmap)
    787      1.1  matt 		pmap_devmap_bootstrap(l1pt_va, devmap);
    788      1.1  matt 
    789      1.1  matt #ifdef VERBOSE_INIT_ARM
    790      1.1  matt 	/* Tell the user about where all the bits and pieces live. */
    791      1.1  matt 	printf("%22s       Physical              Virtual        Num\n", " ");
    792      1.1  matt 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    793      1.1  matt 
    794      1.1  matt 	static const char mem_fmt[] =
    795      1.1  matt 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    796      1.1  matt 	static const char mem_fmt_nov[] =
    797      1.1  matt 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    798      1.1  matt 
    799      1.1  matt 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    800      1.1  matt 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    801      1.1  matt 	    physmem);
    802      1.1  matt 	printf(mem_fmt, "text section",
    803      1.1  matt 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    804      1.1  matt 	       text.pv_va, text.pv_va + text.pv_size - 1,
    805      1.1  matt 	       (int)(text.pv_size / PAGE_SIZE));
    806      1.1  matt 	printf(mem_fmt, "data section",
    807      1.1  matt 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    808      1.1  matt 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    809      1.1  matt 	       (int)((round_page((vaddr_t)_edata)
    810      1.1  matt 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    811      1.1  matt 	printf(mem_fmt, "bss section",
    812      1.1  matt 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    813      1.1  matt 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    814      1.1  matt 	       (int)((round_page((vaddr_t)__bss_end__)
    815      1.1  matt 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    816      1.1  matt 	printf(mem_fmt, "L1 page directory",
    817      1.1  matt 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    818      1.1  matt 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    819      1.1  matt 	    L1_TABLE_SIZE / PAGE_SIZE);
    820  1.3.2.1   tls 	printf(mem_fmt, "ABT stack (CPU 0)",
    821  1.3.2.1   tls 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    822  1.3.2.1   tls 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    823  1.3.2.1   tls 	    ABT_STACK_SIZE);
    824      1.1  matt 	printf(mem_fmt, "FIQ stack (CPU 0)",
    825      1.1  matt 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    826      1.1  matt 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    827      1.1  matt 	    FIQ_STACK_SIZE);
    828      1.1  matt 	printf(mem_fmt, "IRQ stack (CPU 0)",
    829      1.1  matt 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    830      1.1  matt 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    831      1.1  matt 	    IRQ_STACK_SIZE);
    832      1.1  matt 	printf(mem_fmt, "UND stack (CPU 0)",
    833      1.1  matt 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    834      1.1  matt 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    835      1.1  matt 	    UND_STACK_SIZE);
    836      1.1  matt 	printf(mem_fmt, "IDLE stack (CPU 0)",
    837      1.1  matt 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    838      1.1  matt 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    839      1.1  matt 	    UPAGES);
    840      1.1  matt 	printf(mem_fmt, "SVC stack",
    841      1.1  matt 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    842      1.1  matt 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    843      1.1  matt 	    UPAGES);
    844  1.3.2.1   tls 	printf(mem_fmt, "Message Buffer",
    845  1.3.2.1   tls 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    846  1.3.2.1   tls 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    847  1.3.2.1   tls 	    (int)msgbuf_pgs);
    848  1.3.2.1   tls 	printf(mem_fmt, "Exception Vectors",
    849  1.3.2.1   tls 	    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    850  1.3.2.1   tls 	    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    851  1.3.2.1   tls 	    1);
    852      1.1  matt 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    853      1.1  matt 		pv = &bmi->bmi_freeblocks[i];
    854      1.1  matt 
    855      1.1  matt 		printf(mem_fmt_nov, "Free Memory",
    856      1.1  matt 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    857      1.1  matt 		    pv->pv_size / PAGE_SIZE);
    858      1.1  matt 	}
    859      1.1  matt #endif
    860      1.1  matt 	/*
    861      1.1  matt 	 * Now we have the real page tables in place so we can switch to them.
    862      1.1  matt 	 * Once this is done we will be running with the REAL kernel page
    863      1.1  matt 	 * tables.
    864      1.1  matt 	 */
    865      1.1  matt 
    866      1.2  matt #if defined(VERBOSE_INIT_ARM) && 0
    867      1.2  matt 	printf("TTBR0=%#x", armreg_ttbr_read());
    868      1.2  matt #ifdef _ARM_ARCH_6
    869      1.2  matt 	printf(" TTBR1=%#x TTBCR=%#x",
    870      1.2  matt 	    armreg_ttbr1_read(), armreg_ttbcr_read());
    871      1.2  matt #endif
    872      1.2  matt 	printf("\n");
    873      1.2  matt #endif
    874      1.2  matt 
    875      1.1  matt 	/* Switch tables */
    876      1.1  matt #ifdef VERBOSE_INIT_ARM
    877      1.3  matt 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    878      1.1  matt #endif
    879      1.1  matt 
    880      1.1  matt 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    881      1.3  matt 	cpu_idcache_wbinv_all();
    882  1.3.2.1   tls 	cpu_setttb(l1pt_pa, true);
    883      1.1  matt 	cpu_tlb_flushID();
    884      1.1  matt 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    885      1.1  matt 
    886      1.1  matt #ifdef VERBOSE_INIT_ARM
    887  1.3.2.1   tls 	printf("TTBR0=%#x OK\n", armreg_ttbr_read());
    888      1.1  matt #endif
    889      1.1  matt }
    890