Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.3.2.4
      1  1.3.2.3   tls /*	$NetBSD: arm32_kvminit.c,v 1.3.2.4 2014/08/20 00:02:45 tls Exp $	*/
      2      1.1  matt 
      3      1.1  matt /*
      4      1.1  matt  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5      1.1  matt  * Written by Hiroyuki Bessho for Genetec Corporation.
      6      1.1  matt  *
      7      1.1  matt  * Redistribution and use in source and binary forms, with or without
      8      1.1  matt  * modification, are permitted provided that the following conditions
      9      1.1  matt  * are met:
     10      1.1  matt  * 1. Redistributions of source code must retain the above copyright
     11      1.1  matt  *    notice, this list of conditions and the following disclaimer.
     12      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     13      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     14      1.1  matt  *    documentation and/or other materials provided with the distribution.
     15      1.1  matt  * 3. The name of Genetec Corporation may not be used to endorse or
     16      1.1  matt  *    promote products derived from this software without specific prior
     17      1.1  matt  *    written permission.
     18      1.1  matt  *
     19      1.1  matt  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20      1.1  matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21      1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22      1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23      1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24      1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25      1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26      1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27      1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28      1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29      1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     30      1.1  matt  *
     31      1.1  matt  * Copyright (c) 2001 Wasabi Systems, Inc.
     32      1.1  matt  * All rights reserved.
     33      1.1  matt  *
     34      1.1  matt  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35      1.1  matt  *
     36      1.1  matt  * Redistribution and use in source and binary forms, with or without
     37      1.1  matt  * modification, are permitted provided that the following conditions
     38      1.1  matt  * are met:
     39      1.1  matt  * 1. Redistributions of source code must retain the above copyright
     40      1.1  matt  *    notice, this list of conditions and the following disclaimer.
     41      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     42      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     43      1.1  matt  *    documentation and/or other materials provided with the distribution.
     44      1.1  matt  * 3. All advertising materials mentioning features or use of this software
     45      1.1  matt  *    must display the following acknowledgement:
     46      1.1  matt  *	This product includes software developed for the NetBSD Project by
     47      1.1  matt  *	Wasabi Systems, Inc.
     48      1.1  matt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49      1.1  matt  *    or promote products derived from this software without specific prior
     50      1.1  matt  *    written permission.
     51      1.1  matt  *
     52      1.1  matt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53      1.1  matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54      1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55      1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56      1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57      1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58      1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59      1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60      1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61      1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62      1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     63      1.1  matt  *
     64      1.1  matt  * Copyright (c) 1997,1998 Mark Brinicombe.
     65      1.1  matt  * Copyright (c) 1997,1998 Causality Limited.
     66      1.1  matt  * All rights reserved.
     67      1.1  matt  *
     68      1.1  matt  * Redistribution and use in source and binary forms, with or without
     69      1.1  matt  * modification, are permitted provided that the following conditions
     70      1.1  matt  * are met:
     71      1.1  matt  * 1. Redistributions of source code must retain the above copyright
     72      1.1  matt  *    notice, this list of conditions and the following disclaimer.
     73      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     74      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     75      1.1  matt  *    documentation and/or other materials provided with the distribution.
     76      1.1  matt  * 3. All advertising materials mentioning features or use of this software
     77      1.1  matt  *    must display the following acknowledgement:
     78      1.1  matt  *	This product includes software developed by Mark Brinicombe
     79      1.1  matt  *	for the NetBSD Project.
     80      1.1  matt  * 4. The name of the company nor the name of the author may be used to
     81      1.1  matt  *    endorse or promote products derived from this software without specific
     82      1.1  matt  *    prior written permission.
     83      1.1  matt  *
     84      1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85      1.1  matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86      1.1  matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87      1.1  matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88      1.1  matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89      1.1  matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90      1.1  matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91      1.1  matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92      1.1  matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93      1.1  matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94      1.1  matt  * SUCH DAMAGE.
     95      1.1  matt  *
     96      1.1  matt  * Copyright (c) 2007 Microsoft
     97      1.1  matt  * All rights reserved.
     98      1.1  matt  *
     99      1.1  matt  * Redistribution and use in source and binary forms, with or without
    100      1.1  matt  * modification, are permitted provided that the following conditions
    101      1.1  matt  * are met:
    102      1.1  matt  * 1. Redistributions of source code must retain the above copyright
    103      1.1  matt  *    notice, this list of conditions and the following disclaimer.
    104      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
    105      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
    106      1.1  matt  *    documentation and/or other materials provided with the distribution.
    107      1.1  matt  * 3. All advertising materials mentioning features or use of this software
    108      1.1  matt  *    must display the following acknowledgement:
    109      1.1  matt  *	This product includes software developed by Microsoft
    110      1.1  matt  *
    111      1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112      1.1  matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113      1.1  matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114      1.1  matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115      1.1  matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116      1.1  matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117      1.1  matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118      1.1  matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119      1.1  matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120      1.1  matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121      1.1  matt  * SUCH DAMAGE.
    122      1.1  matt  */
    123      1.1  matt 
    124      1.1  matt #include <sys/cdefs.h>
    125  1.3.2.3   tls __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.3.2.4 2014/08/20 00:02:45 tls Exp $");
    126      1.1  matt 
    127      1.1  matt #include <sys/param.h>
    128      1.1  matt #include <sys/device.h>
    129      1.1  matt #include <sys/kernel.h>
    130      1.1  matt #include <sys/reboot.h>
    131      1.1  matt #include <sys/bus.h>
    132      1.1  matt 
    133      1.1  matt #include <dev/cons.h>
    134      1.1  matt 
    135      1.1  matt #include <uvm/uvm_extern.h>
    136      1.1  matt 
    137  1.3.2.4   tls #include <arm/locore.h>
    138      1.1  matt #include <arm/db_machdep.h>
    139      1.1  matt #include <arm/undefined.h>
    140      1.1  matt #include <arm/bootconfig.h>
    141      1.1  matt #include <arm/arm32/machdep.h>
    142      1.1  matt 
    143      1.1  matt #include "ksyms.h"
    144      1.1  matt 
    145      1.1  matt struct bootmem_info bootmem_info;
    146      1.1  matt 
    147  1.3.2.4   tls extern void *msgbufaddr;
    148      1.1  matt paddr_t msgbufphys;
    149      1.1  matt paddr_t physical_start;
    150      1.1  matt paddr_t physical_end;
    151      1.1  matt 
    152      1.1  matt extern char etext[];
    153      1.1  matt extern char __data_start[], _edata[];
    154      1.1  matt extern char __bss_start[], __bss_end__[];
    155      1.1  matt extern char _end[];
    156      1.1  matt 
    157      1.1  matt /* Page tables for mapping kernel VM */
    158      1.1  matt #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    159      1.1  matt 
    160      1.1  matt /*
    161      1.1  matt  * Macros to translate between physical and virtual for a subset of the
    162      1.1  matt  * kernel address space.  *Not* for general use.
    163      1.1  matt  */
    164  1.3.2.4   tls #if defined(KERNEL_BASE_VOFFSET)
    165  1.3.2.4   tls #define KERN_VTOPHYS(bmi, va) \
    166  1.3.2.4   tls 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
    167  1.3.2.4   tls #define KERN_PHYSTOV(bmi, pa) \
    168  1.3.2.4   tls 	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
    169  1.3.2.4   tls #elif defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    170  1.3.2.4   tls #define KERN_VTOPHYS(bmi, va) \
    171  1.3.2.4   tls 	((paddr_t)((vaddr_t)(va) - pmap_directbase + (bmi)->bmi_start))
    172  1.3.2.4   tls #define KERN_PHYSTOV(bmi, pa) \
    173  1.3.2.4   tls 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + pmap_directbase))
    174  1.3.2.4   tls #else
    175      1.1  matt #define KERN_VTOPHYS(bmi, va) \
    176      1.1  matt 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    177      1.1  matt #define KERN_PHYSTOV(bmi, pa) \
    178      1.1  matt 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    179  1.3.2.4   tls #endif
    180      1.1  matt 
    181      1.1  matt void
    182      1.1  matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    183      1.1  matt {
    184      1.1  matt 	struct bootmem_info * const bmi = &bootmem_info;
    185      1.1  matt 	pv_addr_t *pv = bmi->bmi_freeblocks;
    186      1.1  matt 
    187      1.1  matt #ifdef VERBOSE_INIT_ARM
    188      1.1  matt 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    189      1.1  matt 	    __func__, memstart, memsize, kernelstart);
    190      1.1  matt #endif
    191      1.1  matt 
    192      1.1  matt 	physical_start = bmi->bmi_start = memstart;
    193      1.1  matt 	physical_end = bmi->bmi_end = memstart + memsize;
    194      1.1  matt 	physmem = memsize / PAGE_SIZE;
    195      1.1  matt 
    196      1.1  matt 	/*
    197      1.1  matt 	 * Let's record where the kernel lives.
    198      1.1  matt 	 */
    199      1.1  matt 	bmi->bmi_kernelstart = kernelstart;
    200      1.1  matt 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    201      1.1  matt 
    202      1.1  matt #ifdef VERBOSE_INIT_ARM
    203      1.1  matt 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    204      1.1  matt #endif
    205      1.1  matt 
    206      1.1  matt 	/*
    207      1.1  matt 	 * Now the rest of the free memory must be after the kernel.
    208      1.1  matt 	 */
    209      1.1  matt 	pv->pv_pa = bmi->bmi_kernelend;
    210      1.1  matt 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    211      1.1  matt 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    212      1.1  matt 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    213      1.1  matt #ifdef VERBOSE_INIT_ARM
    214      1.1  matt 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    215      1.1  matt 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    216      1.1  matt 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    217      1.1  matt #endif
    218      1.1  matt 	pv++;
    219      1.1  matt 
    220      1.1  matt 	/*
    221      1.1  matt 	 * Add a free block for any memory before the kernel.
    222      1.1  matt 	 */
    223      1.1  matt 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    224      1.1  matt 		pv->pv_pa = bmi->bmi_start;
    225  1.3.2.4   tls #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    226  1.3.2.4   tls 		pv->pv_va = pmap_directbase;
    227  1.3.2.4   tls #else
    228      1.1  matt 		pv->pv_va = KERNEL_BASE;
    229  1.3.2.4   tls #endif
    230      1.1  matt 		pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
    231      1.1  matt 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    232      1.1  matt #ifdef VERBOSE_INIT_ARM
    233      1.1  matt 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    234      1.1  matt 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    235      1.1  matt 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    236      1.1  matt #endif
    237      1.1  matt 		pv++;
    238      1.1  matt 	}
    239      1.1  matt 
    240      1.1  matt 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    241      1.1  matt 
    242      1.1  matt 	SLIST_INIT(&bmi->bmi_freechunks);
    243      1.1  matt 	SLIST_INIT(&bmi->bmi_chunks);
    244      1.1  matt }
    245      1.1  matt 
    246      1.1  matt static bool
    247      1.1  matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    248      1.1  matt {
    249      1.1  matt 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    250      1.1  matt 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    251      1.1  matt 	    && acc_pv->pv_prot == pv->pv_prot
    252      1.1  matt 	    && acc_pv->pv_cache == pv->pv_cache) {
    253      1.1  matt #ifdef VERBOSE_INIT_ARMX
    254      1.1  matt 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    255      1.1  matt 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    256      1.1  matt 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    257      1.1  matt #endif
    258      1.1  matt 		acc_pv->pv_size += pv->pv_size;
    259      1.1  matt 		return true;
    260      1.1  matt 	}
    261      1.1  matt 
    262      1.1  matt 	return false;
    263      1.1  matt }
    264      1.1  matt 
    265      1.1  matt static void
    266      1.1  matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    267      1.1  matt {
    268      1.1  matt 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    269  1.3.2.1   tls 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    270      1.1  matt 		pv_addr_t * const pv0 = (*pvp);
    271      1.1  matt 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    272      1.1  matt 		if (concat_pvaddr(pv0, pv)) {
    273      1.1  matt #ifdef VERBOSE_INIT_ARM
    274      1.1  matt 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    275      1.1  matt 			    __func__, "appending", pv,
    276      1.1  matt 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    277      1.1  matt 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    278      1.1  matt #endif
    279      1.1  matt 			pv = SLIST_NEXT(pv0, pv_list);
    280      1.1  matt 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    281      1.1  matt #ifdef VERBOSE_INIT_ARM
    282      1.1  matt 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    283      1.1  matt 				    __func__, "merging", pv,
    284      1.1  matt 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    285      1.1  matt 				    pv0->pv_pa,
    286      1.1  matt 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    287      1.1  matt #endif
    288      1.1  matt 				SLIST_REMOVE_AFTER(pv0, pv_list);
    289      1.1  matt 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    290      1.1  matt 			}
    291      1.1  matt 			return;
    292      1.1  matt 		}
    293      1.1  matt 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    294      1.1  matt 		pvp = &SLIST_NEXT(*pvp, pv_list);
    295      1.1  matt 	}
    296      1.1  matt 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    297      1.1  matt 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    298      1.1  matt 	KASSERT(new_pv != NULL);
    299      1.1  matt 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    300      1.1  matt 	*new_pv = *pv;
    301      1.1  matt 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    302      1.1  matt 	(*pvp) = new_pv;
    303      1.1  matt #ifdef VERBOSE_INIT_ARM
    304      1.1  matt 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    305      1.1  matt 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    306      1.1  matt 	    new_pv->pv_size / PAGE_SIZE);
    307      1.1  matt 	if (SLIST_NEXT(new_pv, pv_list))
    308      1.1  matt 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    309      1.1  matt 	else
    310      1.1  matt 		printf("at tail\n");
    311      1.1  matt #endif
    312      1.1  matt }
    313      1.1  matt 
    314      1.1  matt static void
    315      1.1  matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    316  1.3.2.3   tls 	int prot, int cache, bool zero_p)
    317      1.1  matt {
    318      1.1  matt 	size_t nbytes = npages * PAGE_SIZE;
    319      1.1  matt 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    320      1.1  matt 	size_t free_idx = 0;
    321      1.1  matt 	static bool l1pt_found;
    322      1.1  matt 
    323  1.3.2.4   tls 	KASSERT(npages > 0);
    324  1.3.2.4   tls 
    325      1.1  matt 	/*
    326  1.3.2.1   tls 	 * If we haven't allocated the kernel L1 page table and we are aligned
    327      1.1  matt 	 * at a L1 table boundary, alloc the memory for it.
    328      1.1  matt 	 */
    329      1.1  matt 	if (!l1pt_found
    330      1.1  matt 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    331      1.1  matt 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    332      1.1  matt 		l1pt_found = true;
    333      1.1  matt 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    334  1.3.2.3   tls 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    335      1.1  matt 		add_pages(bmi, &kernel_l1pt);
    336      1.1  matt 	}
    337      1.1  matt 
    338      1.1  matt 	while (nbytes > free_pv->pv_size) {
    339      1.1  matt 		free_pv++;
    340      1.1  matt 		free_idx++;
    341      1.1  matt 		if (free_idx == bmi->bmi_nfreeblocks) {
    342      1.1  matt 			panic("%s: could not allocate %zu bytes",
    343      1.1  matt 			    __func__, nbytes);
    344      1.1  matt 		}
    345      1.1  matt 	}
    346      1.1  matt 
    347  1.3.2.1   tls 	/*
    348  1.3.2.1   tls 	 * As we allocate the memory, make sure that we don't walk over
    349  1.3.2.1   tls 	 * our current first level translation table.
    350  1.3.2.1   tls 	 */
    351  1.3.2.1   tls 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    352  1.3.2.1   tls 
    353      1.1  matt 	pv->pv_pa = free_pv->pv_pa;
    354      1.1  matt 	pv->pv_va = free_pv->pv_va;
    355      1.1  matt 	pv->pv_size = nbytes;
    356      1.1  matt 	pv->pv_prot = prot;
    357      1.1  matt 	pv->pv_cache = cache;
    358      1.1  matt 
    359      1.1  matt 	/*
    360      1.1  matt 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    361      1.1  matt 	 * just use PTE_CACHE.
    362      1.1  matt 	 */
    363      1.1  matt 	if (cache == PTE_PAGETABLE
    364      1.1  matt 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    365      1.1  matt 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    366      1.1  matt 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    367      1.1  matt 		pv->pv_cache = PTE_CACHE;
    368      1.1  matt 
    369      1.1  matt 	free_pv->pv_pa += nbytes;
    370      1.1  matt 	free_pv->pv_va += nbytes;
    371      1.1  matt 	free_pv->pv_size -= nbytes;
    372      1.1  matt 	if (free_pv->pv_size == 0) {
    373      1.1  matt 		--bmi->bmi_nfreeblocks;
    374      1.1  matt 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    375      1.1  matt 			free_pv[0] = free_pv[1];
    376      1.1  matt 		}
    377      1.1  matt 	}
    378      1.1  matt 
    379      1.1  matt 	bmi->bmi_freepages -= npages;
    380      1.1  matt 
    381  1.3.2.3   tls 	if (zero_p)
    382  1.3.2.3   tls 		memset((void *)pv->pv_va, 0, nbytes);
    383      1.1  matt }
    384      1.1  matt 
    385      1.1  matt void
    386      1.1  matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    387      1.1  matt 	const struct pmap_devmap *devmap, bool mapallmem_p)
    388      1.1  matt {
    389      1.1  matt 	struct bootmem_info * const bmi = &bootmem_info;
    390      1.1  matt #ifdef MULTIPROCESSOR
    391  1.3.2.4   tls 	const size_t cpu_num = arm_cpu_max;
    392      1.1  matt #else
    393      1.1  matt 	const size_t cpu_num = 1;
    394      1.1  matt #endif
    395  1.3.2.3   tls #ifdef ARM_HAS_VBAR
    396  1.3.2.3   tls 	const bool map_vectors_p = false;
    397  1.3.2.3   tls #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    398  1.3.2.4   tls 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    399  1.3.2.4   tls 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    400  1.3.2.3   tls #else
    401  1.3.2.3   tls 	const bool map_vectors_p = true;
    402  1.3.2.3   tls #endif
    403      1.1  matt 
    404  1.3.2.2   tls #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    405  1.3.2.2   tls 	KASSERT(mapallmem_p);
    406  1.3.2.4   tls #ifdef ARM_MMU_EXTENDED
    407  1.3.2.4   tls 	/*
    408  1.3.2.4   tls 	 * We can only use address beneath kernel_vm_base to map physical
    409  1.3.2.4   tls 	 * memory.
    410  1.3.2.4   tls 	 */
    411  1.3.2.4   tls 	const psize_t physical_size =
    412  1.3.2.4   tls 	    roundup(physical_end - physical_start, L1_SS_SIZE);
    413  1.3.2.4   tls 	KASSERT(kernel_vm_base >= physical_size);
    414  1.3.2.4   tls 	/*
    415  1.3.2.4   tls 	 * If we don't have enough memory via TTBR1, we have use addresses
    416  1.3.2.4   tls 	 * from TTBR0 to map some of the physical memory.  But try to use as
    417  1.3.2.4   tls 	 * much high memory space as possible.
    418  1.3.2.4   tls 	 */
    419  1.3.2.4   tls 	if (kernel_vm_base - KERNEL_BASE < physical_size) {
    420  1.3.2.4   tls 		pmap_directbase = kernel_vm_base - physical_size;
    421  1.3.2.4   tls 		printf("%s: changing pmap_directbase to %#lx\n", __func__,
    422  1.3.2.4   tls 		    pmap_directbase);
    423  1.3.2.4   tls 	}
    424  1.3.2.4   tls #else
    425  1.3.2.4   tls 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    426  1.3.2.4   tls #endif /* ARM_MMU_EXTENDED */
    427  1.3.2.4   tls #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    428  1.3.2.2   tls 
    429      1.1  matt 	/*
    430      1.1  matt 	 * Calculate the number of L2 pages needed for mapping the
    431  1.3.2.1   tls 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    432  1.3.2.1   tls 	 * and 1 for IO
    433      1.1  matt 	 */
    434      1.1  matt 	size_t kernel_size = bmi->bmi_kernelend;
    435      1.1  matt 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    436  1.3.2.4   tls 	kernel_size += L1_TABLE_SIZE_REAL;
    437  1.3.2.4   tls 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    438  1.3.2.4   tls 	if (map_vectors_p) {
    439  1.3.2.4   tls 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    440  1.3.2.4   tls 	}
    441  1.3.2.4   tls 	if (iovbase) {
    442  1.3.2.4   tls 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    443  1.3.2.4   tls 	}
    444      1.1  matt 	kernel_size +=
    445      1.1  matt 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    446      1.1  matt 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    447  1.3.2.1   tls 	kernel_size += round_page(MSGBUFSIZE);
    448      1.1  matt 	kernel_size += 0x10000;	/* slop */
    449  1.3.2.4   tls 	if (!mapallmem_p) {
    450  1.3.2.4   tls 		kernel_size += PAGE_SIZE
    451  1.3.2.4   tls 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    452  1.3.2.4   tls 	}
    453      1.1  matt 	kernel_size = round_page(kernel_size);
    454      1.1  matt 
    455      1.1  matt 	/*
    456  1.3.2.4   tls 	 * Now we know how many L2 pages it will take.  If we've mapped
    457  1.3.2.4   tls 	 * all of memory, then it won't take any.
    458      1.1  matt 	 */
    459  1.3.2.4   tls 	const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
    460  1.3.2.4   tls 	    ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    461      1.1  matt 
    462      1.1  matt #ifdef VERBOSE_INIT_ARM
    463      1.1  matt 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    464      1.1  matt 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    465      1.1  matt #endif
    466      1.1  matt 
    467      1.1  matt 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    468      1.1  matt 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    469      1.1  matt 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    470      1.1  matt 	pv_addr_t msgbuf;
    471      1.1  matt 	pv_addr_t text;
    472      1.1  matt 	pv_addr_t data;
    473      1.1  matt 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    474      1.1  matt #if ARM_MMU_XSCALE == 1
    475      1.1  matt 	pv_addr_t minidataclean;
    476      1.1  matt #endif
    477      1.1  matt 
    478      1.1  matt 	/*
    479      1.1  matt 	 * We need to allocate some fixed page tables to get the kernel going.
    480      1.1  matt 	 *
    481      1.1  matt 	 * We are going to allocate our bootstrap pages from the beginning of
    482      1.1  matt 	 * the free space that we just calculated.  We allocate one page
    483      1.1  matt 	 * directory and a number of page tables and store the physical
    484  1.3.2.1   tls 	 * addresses in the bmi_l2pts array in bootmem_info.
    485      1.1  matt 	 *
    486      1.1  matt 	 * The kernel page directory must be on a 16K boundary.  The page
    487      1.1  matt 	 * tables must be on 4K boundaries.  What we do is allocate the
    488      1.1  matt 	 * page directory on the first 16K boundary that we encounter, and
    489      1.1  matt 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    490      1.1  matt 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    491      1.1  matt 	 * least one 16K aligned region.
    492      1.1  matt 	 */
    493      1.1  matt 
    494      1.1  matt #ifdef VERBOSE_INIT_ARM
    495      1.1  matt 	printf("%s: allocating page tables for", __func__);
    496      1.1  matt #endif
    497      1.1  matt 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    498      1.1  matt 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    499      1.1  matt 	}
    500      1.1  matt 
    501      1.1  matt 	kernel_l1pt.pv_pa = 0;
    502      1.1  matt 	kernel_l1pt.pv_va = 0;
    503      1.1  matt 
    504      1.1  matt 	/*
    505  1.3.2.1   tls 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    506  1.3.2.1   tls 	 * an L1 page table, we will allocate the pages for it first and then
    507  1.3.2.1   tls 	 * allocate the L2 page.
    508  1.3.2.1   tls 	 */
    509  1.3.2.1   tls 
    510  1.3.2.3   tls 	if (map_vectors_p) {
    511  1.3.2.3   tls 		/*
    512  1.3.2.3   tls 		 * First allocate L2 page for the vectors.
    513  1.3.2.3   tls 		 */
    514      1.1  matt #ifdef VERBOSE_INIT_ARM
    515  1.3.2.3   tls 		printf(" vector");
    516      1.1  matt #endif
    517  1.3.2.4   tls 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    518  1.3.2.4   tls 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    519  1.3.2.3   tls 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    520  1.3.2.3   tls 	}
    521      1.1  matt 
    522      1.1  matt 	/*
    523  1.3.2.1   tls 	 * Now allocate L2 pages for the kernel
    524      1.1  matt 	 */
    525      1.1  matt #ifdef VERBOSE_INIT_ARM
    526      1.1  matt 	printf(" kernel");
    527      1.1  matt #endif
    528  1.3.2.4   tls 	KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
    529  1.3.2.4   tls 	KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
    530  1.3.2.1   tls 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    531  1.3.2.4   tls 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    532  1.3.2.3   tls 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    533      1.1  matt 		add_pages(bmi, &kernel_l2pt[idx]);
    534      1.1  matt 	}
    535  1.3.2.1   tls 
    536  1.3.2.1   tls 	/*
    537  1.3.2.1   tls 	 * Now allocate L2 pages for the initial kernel VA space.
    538  1.3.2.1   tls 	 */
    539      1.1  matt #ifdef VERBOSE_INIT_ARM
    540      1.1  matt 	printf(" vm");
    541      1.1  matt #endif
    542  1.3.2.1   tls 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    543  1.3.2.4   tls 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    544  1.3.2.3   tls 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    545      1.1  matt 		add_pages(bmi, &vmdata_l2pt[idx]);
    546      1.1  matt 	}
    547      1.1  matt 
    548      1.1  matt 	/*
    549      1.1  matt 	 * If someone wanted a L2 page for I/O, allocate it now.
    550      1.1  matt 	 */
    551  1.3.2.4   tls 	if (iovbase) {
    552      1.1  matt #ifdef VERBOSE_INIT_ARM
    553      1.1  matt 		printf(" io");
    554      1.1  matt #endif
    555  1.3.2.4   tls 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    556  1.3.2.3   tls 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    557      1.1  matt 		add_pages(bmi, &bmi->bmi_io_l2pt);
    558      1.1  matt 	}
    559      1.1  matt 
    560  1.3.2.4   tls #ifdef VERBOSE_INIT_ARM
    561      1.1  matt 	printf("%s: allocating stacks\n", __func__);
    562      1.1  matt #endif
    563      1.1  matt 
    564  1.3.2.1   tls 	/* Allocate stacks for all modes and CPUs */
    565      1.1  matt 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    566  1.3.2.3   tls 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    567      1.1  matt 	add_pages(bmi, &abtstack);
    568      1.1  matt 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    569  1.3.2.3   tls 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    570      1.1  matt 	add_pages(bmi, &fiqstack);
    571      1.1  matt 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    572  1.3.2.3   tls 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    573      1.1  matt 	add_pages(bmi, &irqstack);
    574      1.1  matt 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    575  1.3.2.3   tls 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    576      1.1  matt 	add_pages(bmi, &undstack);
    577      1.1  matt 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    578  1.3.2.3   tls 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    579      1.1  matt 	add_pages(bmi, &idlestack);
    580      1.1  matt 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    581  1.3.2.3   tls 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    582      1.1  matt 	add_pages(bmi, &kernelstack);
    583      1.1  matt 
    584      1.1  matt 	/* Allocate the message buffer from the end of memory. */
    585      1.1  matt 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    586      1.1  matt 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    587  1.3.2.3   tls 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    588      1.1  matt 	add_pages(bmi, &msgbuf);
    589      1.1  matt 	msgbufphys = msgbuf.pv_pa;
    590  1.3.2.4   tls 	msgbufaddr = (void *)msgbuf.pv_va;
    591      1.1  matt 
    592  1.3.2.3   tls 	if (map_vectors_p) {
    593  1.3.2.3   tls 		/*
    594  1.3.2.3   tls 		 * Allocate a page for the system vector page.
    595  1.3.2.3   tls 		 * This page will just contain the system vectors and can be
    596  1.3.2.3   tls 		 * shared by all processes.
    597  1.3.2.3   tls 		 */
    598  1.3.2.3   tls 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
    599  1.3.2.3   tls 		    PTE_CACHE, true);
    600  1.3.2.3   tls 	}
    601      1.1  matt 	systempage.pv_va = vectors;
    602      1.1  matt 
    603      1.1  matt 	/*
    604      1.1  matt 	 * If the caller needed a few extra pages for some reason, allocate
    605      1.1  matt 	 * them now.
    606      1.1  matt 	 */
    607      1.1  matt #if ARM_MMU_XSCALE == 1
    608      1.1  matt #if (ARM_NMMUS > 1)
    609      1.1  matt 	if (xscale_use_minidata)
    610      1.1  matt #endif
    611  1.3.2.4   tls 		valloc_pages(bmi, &minidataclean, 1,
    612  1.3.2.3   tls 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    613      1.1  matt #endif
    614      1.1  matt 
    615      1.1  matt 	/*
    616      1.1  matt 	 * Ok we have allocated physical pages for the primary kernel
    617      1.1  matt 	 * page tables and stacks.  Let's just confirm that.
    618      1.1  matt 	 */
    619      1.1  matt 	if (kernel_l1pt.pv_va == 0
    620      1.1  matt 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    621      1.1  matt 		panic("%s: Failed to allocate or align the kernel "
    622      1.1  matt 		    "page directory", __func__);
    623      1.1  matt 
    624      1.1  matt 
    625      1.1  matt #ifdef VERBOSE_INIT_ARM
    626      1.1  matt 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    627      1.1  matt #endif
    628      1.1  matt 
    629      1.1  matt 	/*
    630      1.1  matt 	 * Now we start construction of the L1 page table
    631      1.1  matt 	 * We start by mapping the L2 page tables into the L1.
    632      1.1  matt 	 * This means that we can replace L1 mappings later on if necessary
    633      1.1  matt 	 */
    634      1.1  matt 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    635      1.1  matt 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    636      1.1  matt 
    637  1.3.2.3   tls 	if (map_vectors_p) {
    638  1.3.2.3   tls 		/* Map the L2 pages tables in the L1 page table */
    639  1.3.2.3   tls 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    640  1.3.2.3   tls 		    &bmi->bmi_vector_l2pt);
    641  1.3.2.3   tls #ifdef VERBOSE_INIT_ARM
    642  1.3.2.3   tls 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    643  1.3.2.3   tls 		    "for VA %#lx\n (vectors)",
    644  1.3.2.3   tls 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    645  1.3.2.3   tls 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    646      1.1  matt #endif
    647  1.3.2.3   tls 	}
    648      1.1  matt 
    649      1.1  matt 	const vaddr_t kernel_base =
    650      1.1  matt 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    651      1.1  matt 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    652      1.1  matt 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    653      1.1  matt 		    &kernel_l2pt[idx]);
    654      1.1  matt #ifdef VERBOSE_INIT_ARM
    655  1.3.2.1   tls 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    656  1.3.2.4   tls 		    __func__, kernel_l2pt[idx].pv_va,
    657  1.3.2.4   tls 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    658      1.1  matt #endif
    659      1.1  matt 	}
    660      1.1  matt 
    661      1.1  matt 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    662      1.1  matt 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    663      1.1  matt 		    &vmdata_l2pt[idx]);
    664      1.1  matt #ifdef VERBOSE_INIT_ARM
    665  1.3.2.1   tls 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    666      1.1  matt 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    667      1.1  matt 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    668      1.1  matt #endif
    669      1.1  matt 	}
    670      1.1  matt 	if (iovbase) {
    671      1.1  matt 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    672      1.1  matt #ifdef VERBOSE_INIT_ARM
    673  1.3.2.1   tls 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    674      1.1  matt 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    675      1.1  matt 		    iovbase & -L2_S_SEGSIZE);
    676      1.1  matt #endif
    677      1.1  matt 	}
    678      1.1  matt 
    679      1.1  matt 	/* update the top of the kernel VM */
    680      1.1  matt 	pmap_curmaxkvaddr =
    681      1.1  matt 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    682      1.1  matt 
    683      1.1  matt #ifdef VERBOSE_INIT_ARM
    684      1.1  matt 	printf("Mapping kernel\n");
    685      1.1  matt #endif
    686      1.1  matt 
    687      1.1  matt 	extern char etext[], _end[];
    688      1.1  matt 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    689      1.1  matt 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    690      1.1  matt 
    691      1.1  matt 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    692      1.1  matt 
    693      1.1  matt 	/* start at offset of kernel in RAM */
    694      1.1  matt 
    695      1.1  matt 	text.pv_pa = bmi->bmi_kernelstart;
    696      1.1  matt 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    697      1.1  matt 	text.pv_size = textsize;
    698      1.1  matt 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
    699      1.1  matt 	text.pv_cache = PTE_CACHE;
    700      1.1  matt 
    701      1.1  matt #ifdef VERBOSE_INIT_ARM
    702      1.1  matt 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    703      1.1  matt 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    704      1.1  matt #endif
    705      1.1  matt 
    706      1.1  matt 	add_pages(bmi, &text);
    707      1.1  matt 
    708      1.1  matt 	data.pv_pa = text.pv_pa + textsize;
    709      1.1  matt 	data.pv_va = text.pv_va + textsize;
    710      1.1  matt 	data.pv_size = totalsize - textsize;
    711      1.1  matt 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    712      1.1  matt 	data.pv_cache = PTE_CACHE;
    713      1.1  matt 
    714      1.1  matt #ifdef VERBOSE_INIT_ARM
    715      1.1  matt 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    716      1.1  matt 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    717      1.1  matt #endif
    718      1.1  matt 
    719      1.1  matt 	add_pages(bmi, &data);
    720      1.1  matt 
    721      1.1  matt #ifdef VERBOSE_INIT_ARM
    722      1.1  matt 	printf("Listing Chunks\n");
    723  1.3.2.4   tls 
    724  1.3.2.4   tls 	pv_addr_t *lpv;
    725  1.3.2.4   tls 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    726  1.3.2.4   tls 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    727  1.3.2.4   tls 		    "(PA %#lx, prot %d, cache %d)\n",
    728  1.3.2.4   tls 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    729  1.3.2.4   tls 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    730      1.1  matt 	}
    731      1.1  matt 	printf("\nMapping Chunks\n");
    732      1.1  matt #endif
    733      1.1  matt 
    734      1.1  matt 	pv_addr_t cur_pv;
    735      1.1  matt 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    736      1.1  matt 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    737      1.1  matt 		cur_pv = *pv;
    738      1.1  matt 		pv = SLIST_NEXT(pv, pv_list);
    739      1.1  matt 	} else {
    740  1.3.2.4   tls #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    741  1.3.2.4   tls 		cur_pv.pv_va = pmap_directbase;
    742  1.3.2.4   tls #else
    743  1.3.2.1   tls 		cur_pv.pv_va = KERNEL_BASE;
    744  1.3.2.4   tls #endif
    745      1.1  matt 		cur_pv.pv_pa = bmi->bmi_start;
    746      1.1  matt 		cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
    747      1.1  matt 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    748      1.1  matt 		cur_pv.pv_cache = PTE_CACHE;
    749      1.1  matt 	}
    750      1.1  matt 	while (pv != NULL) {
    751      1.1  matt 		if (mapallmem_p) {
    752      1.1  matt 			if (concat_pvaddr(&cur_pv, pv)) {
    753      1.1  matt 				pv = SLIST_NEXT(pv, pv_list);
    754      1.1  matt 				continue;
    755      1.1  matt 			}
    756      1.1  matt 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    757      1.1  matt 				/*
    758      1.1  matt 				 * See if we can extend the current pv to emcompass the
    759      1.1  matt 				 * hole, and if so do it and retry the concatenation.
    760      1.1  matt 				 */
    761      1.1  matt 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    762      1.1  matt 				    && cur_pv.pv_cache == PTE_CACHE) {
    763      1.1  matt 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    764      1.1  matt 					continue;
    765      1.1  matt 				}
    766      1.1  matt 
    767      1.1  matt 				/*
    768      1.1  matt 				 * We couldn't so emit the current chunk and then
    769      1.1  matt 				 */
    770      1.1  matt #ifdef VERBOSE_INIT_ARM
    771      1.1  matt 				printf("%s: mapping chunk VA %#lx..%#lx "
    772      1.1  matt 				    "(PA %#lx, prot %d, cache %d)\n",
    773      1.1  matt 				    __func__,
    774      1.1  matt 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    775      1.1  matt 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    776      1.1  matt #endif
    777      1.1  matt 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    778      1.1  matt 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    779      1.1  matt 
    780      1.1  matt 				/*
    781      1.1  matt 				 * set the current chunk to the hole and try again.
    782      1.1  matt 				 */
    783      1.1  matt 				cur_pv.pv_pa += cur_pv.pv_size;
    784      1.1  matt 				cur_pv.pv_va += cur_pv.pv_size;
    785      1.1  matt 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    786      1.1  matt 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    787      1.1  matt 				cur_pv.pv_cache = PTE_CACHE;
    788      1.1  matt 				continue;
    789      1.1  matt 			}
    790      1.1  matt 		}
    791      1.1  matt 
    792      1.1  matt 		/*
    793      1.1  matt 		 * The new pv didn't concatenate so emit the current one
    794      1.1  matt 		 * and use the new pv as the current pv.
    795      1.1  matt 		 */
    796      1.1  matt #ifdef VERBOSE_INIT_ARM
    797      1.1  matt 		printf("%s: mapping chunk VA %#lx..%#lx "
    798      1.1  matt 		    "(PA %#lx, prot %d, cache %d)\n",
    799      1.1  matt 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    800      1.1  matt 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    801      1.1  matt #endif
    802      1.1  matt 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    803      1.1  matt 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    804      1.1  matt 		cur_pv = *pv;
    805      1.1  matt 		pv = SLIST_NEXT(pv, pv_list);
    806      1.1  matt 	}
    807      1.1  matt 
    808      1.1  matt 	/*
    809      1.1  matt 	 * If we are mapping all of memory, let's map the rest of memory.
    810      1.1  matt 	 */
    811      1.1  matt 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    812      1.1  matt 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    813      1.1  matt 		    && cur_pv.pv_cache == PTE_CACHE) {
    814      1.1  matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    815      1.1  matt 		} else {
    816      1.1  matt #ifdef VERBOSE_INIT_ARM
    817      1.1  matt 			printf("%s: mapping chunk VA %#lx..%#lx "
    818      1.1  matt 			    "(PA %#lx, prot %d, cache %d)\n",
    819      1.1  matt 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    820      1.1  matt 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    821      1.1  matt #endif
    822      1.1  matt 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    823      1.1  matt 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    824      1.1  matt 			cur_pv.pv_pa += cur_pv.pv_size;
    825      1.1  matt 			cur_pv.pv_va += cur_pv.pv_size;
    826      1.1  matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    827      1.1  matt 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    828      1.1  matt 			cur_pv.pv_cache = PTE_CACHE;
    829      1.1  matt 		}
    830      1.1  matt 	}
    831      1.1  matt 
    832      1.1  matt 	/*
    833      1.1  matt 	 * Now we map the final chunk.
    834      1.1  matt 	 */
    835      1.1  matt #ifdef VERBOSE_INIT_ARM
    836      1.1  matt 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    837      1.1  matt 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    838      1.1  matt 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    839      1.1  matt #endif
    840      1.1  matt 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    841      1.1  matt 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    842      1.1  matt 
    843      1.1  matt 	/*
    844      1.1  matt 	 * Now we map the stuff that isn't directly after the kernel
    845      1.1  matt 	 */
    846      1.1  matt 
    847  1.3.2.3   tls 	if (map_vectors_p) {
    848  1.3.2.3   tls 		/* Map the vector page. */
    849  1.3.2.3   tls 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    850  1.3.2.3   tls 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    851  1.3.2.3   tls 	}
    852      1.1  matt 
    853      1.1  matt 	/* Map the Mini-Data cache clean area. */
    854      1.1  matt #if ARM_MMU_XSCALE == 1
    855      1.1  matt #if (ARM_NMMUS > 1)
    856      1.1  matt 	if (xscale_use_minidata)
    857      1.1  matt #endif
    858  1.3.2.4   tls 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    859      1.1  matt 		    minidataclean.pv_pa);
    860      1.1  matt #endif
    861      1.1  matt 
    862      1.1  matt 	/*
    863      1.1  matt 	 * Map integrated peripherals at same address in first level page
    864      1.1  matt 	 * table so that we can continue to use console.
    865      1.1  matt 	 */
    866      1.1  matt 	if (devmap)
    867      1.1  matt 		pmap_devmap_bootstrap(l1pt_va, devmap);
    868      1.1  matt 
    869      1.1  matt #ifdef VERBOSE_INIT_ARM
    870      1.1  matt 	/* Tell the user about where all the bits and pieces live. */
    871      1.1  matt 	printf("%22s       Physical              Virtual        Num\n", " ");
    872      1.1  matt 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    873      1.1  matt 
    874      1.1  matt 	static const char mem_fmt[] =
    875      1.1  matt 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    876      1.1  matt 	static const char mem_fmt_nov[] =
    877      1.1  matt 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    878      1.1  matt 
    879      1.1  matt 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    880      1.1  matt 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    881      1.1  matt 	    physmem);
    882      1.1  matt 	printf(mem_fmt, "text section",
    883      1.1  matt 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    884      1.1  matt 	       text.pv_va, text.pv_va + text.pv_size - 1,
    885      1.1  matt 	       (int)(text.pv_size / PAGE_SIZE));
    886      1.1  matt 	printf(mem_fmt, "data section",
    887      1.1  matt 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    888      1.1  matt 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    889      1.1  matt 	       (int)((round_page((vaddr_t)_edata)
    890      1.1  matt 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    891      1.1  matt 	printf(mem_fmt, "bss section",
    892      1.1  matt 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    893      1.1  matt 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    894      1.1  matt 	       (int)((round_page((vaddr_t)__bss_end__)
    895      1.1  matt 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    896      1.1  matt 	printf(mem_fmt, "L1 page directory",
    897      1.1  matt 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    898      1.1  matt 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    899      1.1  matt 	    L1_TABLE_SIZE / PAGE_SIZE);
    900  1.3.2.1   tls 	printf(mem_fmt, "ABT stack (CPU 0)",
    901  1.3.2.1   tls 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    902  1.3.2.1   tls 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    903  1.3.2.1   tls 	    ABT_STACK_SIZE);
    904      1.1  matt 	printf(mem_fmt, "FIQ stack (CPU 0)",
    905      1.1  matt 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    906      1.1  matt 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    907      1.1  matt 	    FIQ_STACK_SIZE);
    908      1.1  matt 	printf(mem_fmt, "IRQ stack (CPU 0)",
    909      1.1  matt 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    910      1.1  matt 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    911      1.1  matt 	    IRQ_STACK_SIZE);
    912      1.1  matt 	printf(mem_fmt, "UND stack (CPU 0)",
    913      1.1  matt 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    914      1.1  matt 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    915      1.1  matt 	    UND_STACK_SIZE);
    916      1.1  matt 	printf(mem_fmt, "IDLE stack (CPU 0)",
    917      1.1  matt 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    918      1.1  matt 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    919      1.1  matt 	    UPAGES);
    920      1.1  matt 	printf(mem_fmt, "SVC stack",
    921      1.1  matt 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    922      1.1  matt 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    923      1.1  matt 	    UPAGES);
    924  1.3.2.1   tls 	printf(mem_fmt, "Message Buffer",
    925  1.3.2.1   tls 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    926  1.3.2.1   tls 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    927  1.3.2.1   tls 	    (int)msgbuf_pgs);
    928  1.3.2.3   tls 	if (map_vectors_p) {
    929  1.3.2.3   tls 		printf(mem_fmt, "Exception Vectors",
    930  1.3.2.3   tls 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    931  1.3.2.3   tls 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    932  1.3.2.3   tls 		    1);
    933  1.3.2.3   tls 	}
    934      1.1  matt 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    935      1.1  matt 		pv = &bmi->bmi_freeblocks[i];
    936      1.1  matt 
    937      1.1  matt 		printf(mem_fmt_nov, "Free Memory",
    938      1.1  matt 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    939      1.1  matt 		    pv->pv_size / PAGE_SIZE);
    940      1.1  matt 	}
    941      1.1  matt #endif
    942      1.1  matt 	/*
    943      1.1  matt 	 * Now we have the real page tables in place so we can switch to them.
    944      1.1  matt 	 * Once this is done we will be running with the REAL kernel page
    945      1.1  matt 	 * tables.
    946      1.1  matt 	 */
    947      1.1  matt 
    948  1.3.2.4   tls #if defined(VERBOSE_INIT_ARM)
    949      1.2  matt 	printf("TTBR0=%#x", armreg_ttbr_read());
    950      1.2  matt #ifdef _ARM_ARCH_6
    951  1.3.2.4   tls 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    952  1.3.2.4   tls 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    953  1.3.2.4   tls 	    armreg_contextidr_read());
    954      1.2  matt #endif
    955      1.2  matt 	printf("\n");
    956      1.2  matt #endif
    957      1.2  matt 
    958      1.1  matt 	/* Switch tables */
    959      1.1  matt #ifdef VERBOSE_INIT_ARM
    960      1.3  matt 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    961      1.1  matt #endif
    962      1.1  matt 
    963  1.3.2.4   tls #ifdef ARM_MMU_EXTENDED
    964  1.3.2.4   tls 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    965  1.3.2.4   tls 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    966  1.3.2.4   tls #else
    967      1.1  matt 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    968  1.3.2.4   tls #endif
    969      1.3  matt 	cpu_idcache_wbinv_all();
    970  1.3.2.4   tls #ifdef VERBOSE_INIT_ARM
    971  1.3.2.4   tls 	printf(" ttb");
    972  1.3.2.4   tls #endif
    973  1.3.2.3   tls #ifdef ARM_MMU_EXTENDED
    974  1.3.2.4   tls 	/*
    975  1.3.2.4   tls 	 * TTBCR should have been initialized by the MD start code.
    976  1.3.2.4   tls 	 */
    977  1.3.2.4   tls 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    978  1.3.2.4   tls 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    979  1.3.2.4   tls 	/*
    980  1.3.2.4   tls 	 * Disable lookups via TTBR0 until there is an activated pmap.
    981  1.3.2.4   tls 	 */
    982  1.3.2.4   tls 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    983  1.3.2.3   tls 	cpu_setttb(l1pt_pa, KERNEL_PID);
    984  1.3.2.4   tls 	arm_isb();
    985  1.3.2.3   tls #else
    986  1.3.2.1   tls 	cpu_setttb(l1pt_pa, true);
    987  1.3.2.4   tls 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    988  1.3.2.3   tls #endif
    989      1.1  matt 	cpu_tlb_flushID();
    990      1.1  matt 
    991      1.1  matt #ifdef VERBOSE_INIT_ARM
    992  1.3.2.4   tls #ifdef ARM_MMU_EXTENDED
    993  1.3.2.4   tls 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    994  1.3.2.4   tls 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    995  1.3.2.4   tls #else
    996  1.3.2.4   tls 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
    997  1.3.2.4   tls #endif
    998  1.3.2.4   tls #endif
    999  1.3.2.4   tls 
   1000  1.3.2.4   tls #ifdef MULTIPROCESSOR
   1001  1.3.2.4   tls 	/*
   1002  1.3.2.4   tls 	 * Kick the secondaries to load the TTB.  After which they'll go
   1003  1.3.2.4   tls 	 * back to sleep to wait for the final kick so they will hatch.
   1004  1.3.2.4   tls 	 */
   1005  1.3.2.4   tls #ifdef VERBOSE_INIT_ARM
   1006  1.3.2.4   tls 	printf(" hatchlings");
   1007  1.3.2.4   tls #endif
   1008  1.3.2.4   tls 	cpu_boot_secondary_processors();
   1009  1.3.2.4   tls #endif
   1010  1.3.2.4   tls 
   1011  1.3.2.4   tls #ifdef VERBOSE_INIT_ARM
   1012  1.3.2.4   tls 	printf(" OK\n");
   1013      1.1  matt #endif
   1014      1.1  matt }
   1015