Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.32
      1  1.32     skrll /*	$NetBSD: arm32_kvminit.c,v 1.32 2014/10/29 14:14:14 skrll Exp $	*/
      2   1.1      matt 
      3   1.1      matt /*
      4   1.1      matt  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5   1.1      matt  * Written by Hiroyuki Bessho for Genetec Corporation.
      6   1.1      matt  *
      7   1.1      matt  * Redistribution and use in source and binary forms, with or without
      8   1.1      matt  * modification, are permitted provided that the following conditions
      9   1.1      matt  * are met:
     10   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     11   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     12   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      matt  *    documentation and/or other materials provided with the distribution.
     15   1.1      matt  * 3. The name of Genetec Corporation may not be used to endorse or
     16   1.1      matt  *    promote products derived from this software without specific prior
     17   1.1      matt  *    written permission.
     18   1.1      matt  *
     19   1.1      matt  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20   1.1      matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23   1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     30   1.1      matt  *
     31   1.1      matt  * Copyright (c) 2001 Wasabi Systems, Inc.
     32   1.1      matt  * All rights reserved.
     33   1.1      matt  *
     34   1.1      matt  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35   1.1      matt  *
     36   1.1      matt  * Redistribution and use in source and binary forms, with or without
     37   1.1      matt  * modification, are permitted provided that the following conditions
     38   1.1      matt  * are met:
     39   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     40   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     41   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     42   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     43   1.1      matt  *    documentation and/or other materials provided with the distribution.
     44   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     45   1.1      matt  *    must display the following acknowledgement:
     46   1.1      matt  *	This product includes software developed for the NetBSD Project by
     47   1.1      matt  *	Wasabi Systems, Inc.
     48   1.1      matt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49   1.1      matt  *    or promote products derived from this software without specific prior
     50   1.1      matt  *    written permission.
     51   1.1      matt  *
     52   1.1      matt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53   1.1      matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54   1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55   1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56   1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57   1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58   1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59   1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60   1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61   1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62   1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     63   1.1      matt  *
     64   1.1      matt  * Copyright (c) 1997,1998 Mark Brinicombe.
     65   1.1      matt  * Copyright (c) 1997,1998 Causality Limited.
     66   1.1      matt  * All rights reserved.
     67   1.1      matt  *
     68   1.1      matt  * Redistribution and use in source and binary forms, with or without
     69   1.1      matt  * modification, are permitted provided that the following conditions
     70   1.1      matt  * are met:
     71   1.1      matt  * 1. Redistributions of source code must retain the above copyright
     72   1.1      matt  *    notice, this list of conditions and the following disclaimer.
     73   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     74   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     75   1.1      matt  *    documentation and/or other materials provided with the distribution.
     76   1.1      matt  * 3. All advertising materials mentioning features or use of this software
     77   1.1      matt  *    must display the following acknowledgement:
     78   1.1      matt  *	This product includes software developed by Mark Brinicombe
     79   1.1      matt  *	for the NetBSD Project.
     80   1.1      matt  * 4. The name of the company nor the name of the author may be used to
     81   1.1      matt  *    endorse or promote products derived from this software without specific
     82   1.1      matt  *    prior written permission.
     83   1.1      matt  *
     84   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85   1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86   1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87   1.1      matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88   1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89   1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90   1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91   1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92   1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93   1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94   1.1      matt  * SUCH DAMAGE.
     95   1.1      matt  *
     96   1.1      matt  * Copyright (c) 2007 Microsoft
     97   1.1      matt  * All rights reserved.
     98   1.1      matt  *
     99   1.1      matt  * Redistribution and use in source and binary forms, with or without
    100   1.1      matt  * modification, are permitted provided that the following conditions
    101   1.1      matt  * are met:
    102   1.1      matt  * 1. Redistributions of source code must retain the above copyright
    103   1.1      matt  *    notice, this list of conditions and the following disclaimer.
    104   1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
    105   1.1      matt  *    notice, this list of conditions and the following disclaimer in the
    106   1.1      matt  *    documentation and/or other materials provided with the distribution.
    107   1.1      matt  * 3. All advertising materials mentioning features or use of this software
    108   1.1      matt  *    must display the following acknowledgement:
    109   1.1      matt  *	This product includes software developed by Microsoft
    110   1.1      matt  *
    111   1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112   1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113   1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114   1.1      matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115   1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116   1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117   1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118   1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119   1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120   1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121   1.1      matt  * SUCH DAMAGE.
    122   1.1      matt  */
    123   1.1      matt 
    124  1.32     skrll #include "opt_multiprocessor.h"
    125  1.32     skrll 
    126   1.1      matt #include <sys/cdefs.h>
    127  1.32     skrll __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.32 2014/10/29 14:14:14 skrll Exp $");
    128   1.1      matt 
    129   1.1      matt #include <sys/param.h>
    130   1.1      matt #include <sys/device.h>
    131   1.1      matt #include <sys/kernel.h>
    132   1.1      matt #include <sys/reboot.h>
    133   1.1      matt #include <sys/bus.h>
    134   1.1      matt 
    135   1.1      matt #include <dev/cons.h>
    136   1.1      matt 
    137   1.1      matt #include <uvm/uvm_extern.h>
    138   1.1      matt 
    139  1.24      matt #include <arm/locore.h>
    140   1.1      matt #include <arm/db_machdep.h>
    141   1.1      matt #include <arm/undefined.h>
    142   1.1      matt #include <arm/bootconfig.h>
    143   1.1      matt #include <arm/arm32/machdep.h>
    144   1.1      matt 
    145   1.1      matt struct bootmem_info bootmem_info;
    146   1.1      matt 
    147  1.27      matt extern void *msgbufaddr;
    148   1.1      matt paddr_t msgbufphys;
    149   1.1      matt paddr_t physical_start;
    150   1.1      matt paddr_t physical_end;
    151   1.1      matt 
    152   1.1      matt extern char etext[];
    153   1.1      matt extern char __data_start[], _edata[];
    154   1.1      matt extern char __bss_start[], __bss_end__[];
    155   1.1      matt extern char _end[];
    156   1.1      matt 
    157   1.1      matt /* Page tables for mapping kernel VM */
    158   1.1      matt #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    159   1.1      matt 
    160   1.1      matt /*
    161   1.1      matt  * Macros to translate between physical and virtual for a subset of the
    162   1.1      matt  * kernel address space.  *Not* for general use.
    163   1.1      matt  */
    164  1.28      matt #if defined(KERNEL_BASE_VOFFSET)
    165  1.28      matt #define KERN_VTOPHYS(bmi, va) \
    166  1.28      matt 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
    167  1.28      matt #define KERN_PHYSTOV(bmi, pa) \
    168  1.28      matt 	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
    169  1.28      matt #elif defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    170  1.28      matt #define KERN_VTOPHYS(bmi, va) \
    171  1.28      matt 	((paddr_t)((vaddr_t)(va) - pmap_directbase + (bmi)->bmi_start))
    172  1.28      matt #define KERN_PHYSTOV(bmi, pa) \
    173  1.28      matt 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + pmap_directbase))
    174  1.28      matt #else
    175   1.1      matt #define KERN_VTOPHYS(bmi, va) \
    176   1.1      matt 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    177   1.1      matt #define KERN_PHYSTOV(bmi, pa) \
    178   1.1      matt 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    179  1.28      matt #endif
    180   1.1      matt 
    181   1.1      matt void
    182   1.1      matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    183   1.1      matt {
    184   1.1      matt 	struct bootmem_info * const bmi = &bootmem_info;
    185   1.1      matt 	pv_addr_t *pv = bmi->bmi_freeblocks;
    186   1.1      matt 
    187   1.1      matt #ifdef VERBOSE_INIT_ARM
    188   1.1      matt 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    189   1.1      matt 	    __func__, memstart, memsize, kernelstart);
    190   1.1      matt #endif
    191   1.1      matt 
    192   1.1      matt 	physical_start = bmi->bmi_start = memstart;
    193   1.1      matt 	physical_end = bmi->bmi_end = memstart + memsize;
    194   1.1      matt 	physmem = memsize / PAGE_SIZE;
    195   1.1      matt 
    196   1.1      matt 	/*
    197   1.1      matt 	 * Let's record where the kernel lives.
    198   1.1      matt 	 */
    199   1.1      matt 	bmi->bmi_kernelstart = kernelstart;
    200   1.1      matt 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    201   1.1      matt 
    202   1.1      matt #ifdef VERBOSE_INIT_ARM
    203   1.1      matt 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    204   1.1      matt #endif
    205   1.1      matt 
    206   1.1      matt 	/*
    207   1.1      matt 	 * Now the rest of the free memory must be after the kernel.
    208   1.1      matt 	 */
    209   1.1      matt 	pv->pv_pa = bmi->bmi_kernelend;
    210   1.1      matt 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    211   1.1      matt 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    212   1.1      matt 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    213   1.1      matt #ifdef VERBOSE_INIT_ARM
    214   1.1      matt 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    215   1.1      matt 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    216   1.1      matt 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    217   1.1      matt #endif
    218   1.1      matt 	pv++;
    219   1.1      matt 
    220   1.1      matt 	/*
    221   1.1      matt 	 * Add a free block for any memory before the kernel.
    222   1.1      matt 	 */
    223   1.1      matt 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    224   1.1      matt 		pv->pv_pa = bmi->bmi_start;
    225  1.28      matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    226  1.28      matt 		pv->pv_va = pmap_directbase;
    227  1.28      matt #else
    228   1.1      matt 		pv->pv_va = KERNEL_BASE;
    229  1.28      matt #endif
    230   1.1      matt 		pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
    231   1.1      matt 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    232   1.1      matt #ifdef VERBOSE_INIT_ARM
    233   1.1      matt 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    234   1.1      matt 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    235   1.1      matt 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    236   1.1      matt #endif
    237   1.1      matt 		pv++;
    238   1.1      matt 	}
    239   1.1      matt 
    240   1.1      matt 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    241   1.1      matt 
    242   1.1      matt 	SLIST_INIT(&bmi->bmi_freechunks);
    243   1.1      matt 	SLIST_INIT(&bmi->bmi_chunks);
    244   1.1      matt }
    245   1.1      matt 
    246   1.1      matt static bool
    247   1.1      matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    248   1.1      matt {
    249   1.1      matt 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    250   1.1      matt 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    251   1.1      matt 	    && acc_pv->pv_prot == pv->pv_prot
    252   1.1      matt 	    && acc_pv->pv_cache == pv->pv_cache) {
    253   1.1      matt #ifdef VERBOSE_INIT_ARMX
    254   1.1      matt 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    255   1.1      matt 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    256   1.1      matt 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    257   1.1      matt #endif
    258   1.1      matt 		acc_pv->pv_size += pv->pv_size;
    259   1.1      matt 		return true;
    260   1.1      matt 	}
    261   1.1      matt 
    262   1.1      matt 	return false;
    263   1.1      matt }
    264   1.1      matt 
    265   1.1      matt static void
    266   1.1      matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    267   1.1      matt {
    268   1.1      matt 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    269  1.14     skrll 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    270   1.1      matt 		pv_addr_t * const pv0 = (*pvp);
    271   1.1      matt 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    272   1.1      matt 		if (concat_pvaddr(pv0, pv)) {
    273   1.1      matt #ifdef VERBOSE_INIT_ARM
    274   1.1      matt 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    275   1.1      matt 			    __func__, "appending", pv,
    276   1.1      matt 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    277   1.1      matt 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    278   1.1      matt #endif
    279   1.1      matt 			pv = SLIST_NEXT(pv0, pv_list);
    280   1.1      matt 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    281   1.1      matt #ifdef VERBOSE_INIT_ARM
    282   1.1      matt 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    283   1.1      matt 				    __func__, "merging", pv,
    284   1.1      matt 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    285   1.1      matt 				    pv0->pv_pa,
    286   1.1      matt 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    287   1.1      matt #endif
    288   1.1      matt 				SLIST_REMOVE_AFTER(pv0, pv_list);
    289   1.1      matt 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    290   1.1      matt 			}
    291   1.1      matt 			return;
    292   1.1      matt 		}
    293   1.1      matt 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    294   1.1      matt 		pvp = &SLIST_NEXT(*pvp, pv_list);
    295   1.1      matt 	}
    296   1.1      matt 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    297   1.1      matt 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    298   1.1      matt 	KASSERT(new_pv != NULL);
    299   1.1      matt 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    300   1.1      matt 	*new_pv = *pv;
    301   1.1      matt 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    302   1.1      matt 	(*pvp) = new_pv;
    303   1.1      matt #ifdef VERBOSE_INIT_ARM
    304   1.1      matt 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    305   1.1      matt 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    306   1.1      matt 	    new_pv->pv_size / PAGE_SIZE);
    307   1.1      matt 	if (SLIST_NEXT(new_pv, pv_list))
    308   1.1      matt 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    309   1.1      matt 	else
    310   1.1      matt 		printf("at tail\n");
    311   1.1      matt #endif
    312   1.1      matt }
    313   1.1      matt 
    314   1.1      matt static void
    315   1.1      matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    316  1.17      matt 	int prot, int cache, bool zero_p)
    317   1.1      matt {
    318   1.1      matt 	size_t nbytes = npages * PAGE_SIZE;
    319   1.1      matt 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    320   1.1      matt 	size_t free_idx = 0;
    321   1.1      matt 	static bool l1pt_found;
    322   1.1      matt 
    323  1.23      matt 	KASSERT(npages > 0);
    324  1.23      matt 
    325   1.1      matt 	/*
    326   1.6     skrll 	 * If we haven't allocated the kernel L1 page table and we are aligned
    327   1.1      matt 	 * at a L1 table boundary, alloc the memory for it.
    328   1.1      matt 	 */
    329   1.1      matt 	if (!l1pt_found
    330   1.1      matt 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    331   1.1      matt 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    332   1.1      matt 		l1pt_found = true;
    333   1.1      matt 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    334  1.17      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    335   1.1      matt 		add_pages(bmi, &kernel_l1pt);
    336   1.1      matt 	}
    337   1.1      matt 
    338   1.1      matt 	while (nbytes > free_pv->pv_size) {
    339   1.1      matt 		free_pv++;
    340   1.1      matt 		free_idx++;
    341   1.1      matt 		if (free_idx == bmi->bmi_nfreeblocks) {
    342   1.1      matt 			panic("%s: could not allocate %zu bytes",
    343   1.1      matt 			    __func__, nbytes);
    344   1.1      matt 		}
    345   1.1      matt 	}
    346   1.1      matt 
    347  1.12     skrll 	/*
    348  1.12     skrll 	 * As we allocate the memory, make sure that we don't walk over
    349  1.12     skrll 	 * our current first level translation table.
    350  1.12     skrll 	 */
    351  1.12     skrll 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    352  1.12     skrll 
    353   1.1      matt 	pv->pv_pa = free_pv->pv_pa;
    354   1.1      matt 	pv->pv_va = free_pv->pv_va;
    355   1.1      matt 	pv->pv_size = nbytes;
    356   1.1      matt 	pv->pv_prot = prot;
    357   1.1      matt 	pv->pv_cache = cache;
    358   1.1      matt 
    359   1.1      matt 	/*
    360   1.1      matt 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    361   1.1      matt 	 * just use PTE_CACHE.
    362   1.1      matt 	 */
    363   1.1      matt 	if (cache == PTE_PAGETABLE
    364   1.1      matt 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    365   1.1      matt 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    366   1.1      matt 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    367   1.1      matt 		pv->pv_cache = PTE_CACHE;
    368   1.1      matt 
    369   1.1      matt 	free_pv->pv_pa += nbytes;
    370   1.1      matt 	free_pv->pv_va += nbytes;
    371   1.1      matt 	free_pv->pv_size -= nbytes;
    372   1.1      matt 	if (free_pv->pv_size == 0) {
    373   1.1      matt 		--bmi->bmi_nfreeblocks;
    374   1.1      matt 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    375   1.1      matt 			free_pv[0] = free_pv[1];
    376   1.1      matt 		}
    377   1.1      matt 	}
    378   1.1      matt 
    379   1.1      matt 	bmi->bmi_freepages -= npages;
    380   1.1      matt 
    381  1.18      matt 	if (zero_p)
    382  1.18      matt 		memset((void *)pv->pv_va, 0, nbytes);
    383   1.1      matt }
    384   1.1      matt 
    385   1.1      matt void
    386   1.1      matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    387   1.1      matt 	const struct pmap_devmap *devmap, bool mapallmem_p)
    388   1.1      matt {
    389   1.1      matt 	struct bootmem_info * const bmi = &bootmem_info;
    390   1.1      matt #ifdef MULTIPROCESSOR
    391  1.25      matt 	const size_t cpu_num = arm_cpu_max;
    392   1.1      matt #else
    393   1.1      matt 	const size_t cpu_num = 1;
    394   1.1      matt #endif
    395  1.20      matt #ifdef ARM_HAS_VBAR
    396  1.20      matt 	const bool map_vectors_p = false;
    397  1.20      matt #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    398  1.21      matt 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    399  1.21      matt 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    400  1.19      matt #else
    401  1.19      matt 	const bool map_vectors_p = true;
    402  1.19      matt #endif
    403   1.1      matt 
    404  1.15      matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    405  1.15      matt 	KASSERT(mapallmem_p);
    406  1.28      matt #ifdef ARM_MMU_EXTENDED
    407  1.28      matt 	/*
    408  1.28      matt 	 * We can only use address beneath kernel_vm_base to map physical
    409  1.28      matt 	 * memory.
    410  1.28      matt 	 */
    411  1.29      matt 	const psize_t physical_size =
    412  1.29      matt 	    roundup(physical_end - physical_start, L1_SS_SIZE);
    413  1.29      matt 	KASSERT(kernel_vm_base >= physical_size);
    414  1.28      matt 	/*
    415  1.28      matt 	 * If we don't have enough memory via TTBR1, we have use addresses
    416  1.28      matt 	 * from TTBR0 to map some of the physical memory.  But try to use as
    417  1.28      matt 	 * much high memory space as possible.
    418  1.28      matt 	 */
    419  1.29      matt 	if (kernel_vm_base - KERNEL_BASE < physical_size) {
    420  1.29      matt 		pmap_directbase = kernel_vm_base - physical_size;
    421  1.28      matt 		printf("%s: changing pmap_directbase to %#lx\n", __func__,
    422  1.28      matt 		    pmap_directbase);
    423  1.28      matt 	}
    424  1.28      matt #else
    425  1.28      matt 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    426  1.28      matt #endif /* ARM_MMU_EXTENDED */
    427  1.28      matt #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    428  1.15      matt 
    429   1.1      matt 	/*
    430   1.1      matt 	 * Calculate the number of L2 pages needed for mapping the
    431  1.11     skrll 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    432  1.11     skrll 	 * and 1 for IO
    433   1.1      matt 	 */
    434   1.1      matt 	size_t kernel_size = bmi->bmi_kernelend;
    435   1.1      matt 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    436  1.23      matt 	kernel_size += L1_TABLE_SIZE_REAL;
    437  1.23      matt 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    438  1.23      matt 	if (map_vectors_p) {
    439  1.23      matt 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    440  1.23      matt 	}
    441  1.23      matt 	if (iovbase) {
    442  1.23      matt 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    443  1.23      matt 	}
    444   1.1      matt 	kernel_size +=
    445   1.1      matt 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    446   1.1      matt 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    447  1.11     skrll 	kernel_size += round_page(MSGBUFSIZE);
    448   1.1      matt 	kernel_size += 0x10000;	/* slop */
    449  1.23      matt 	if (!mapallmem_p) {
    450  1.23      matt 		kernel_size += PAGE_SIZE
    451  1.23      matt 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    452  1.23      matt 	}
    453   1.1      matt 	kernel_size = round_page(kernel_size);
    454   1.1      matt 
    455   1.1      matt 	/*
    456  1.23      matt 	 * Now we know how many L2 pages it will take.  If we've mapped
    457  1.23      matt 	 * all of memory, then it won't take any.
    458   1.1      matt 	 */
    459  1.23      matt 	const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
    460  1.23      matt 	    ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    461   1.1      matt 
    462   1.1      matt #ifdef VERBOSE_INIT_ARM
    463   1.1      matt 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    464   1.1      matt 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    465   1.1      matt #endif
    466   1.1      matt 
    467   1.1      matt 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    468   1.1      matt 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    469   1.1      matt 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    470   1.1      matt 	pv_addr_t msgbuf;
    471   1.1      matt 	pv_addr_t text;
    472   1.1      matt 	pv_addr_t data;
    473   1.1      matt 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    474   1.1      matt #if ARM_MMU_XSCALE == 1
    475   1.1      matt 	pv_addr_t minidataclean;
    476   1.1      matt #endif
    477   1.1      matt 
    478   1.1      matt 	/*
    479   1.1      matt 	 * We need to allocate some fixed page tables to get the kernel going.
    480   1.1      matt 	 *
    481   1.1      matt 	 * We are going to allocate our bootstrap pages from the beginning of
    482   1.1      matt 	 * the free space that we just calculated.  We allocate one page
    483   1.1      matt 	 * directory and a number of page tables and store the physical
    484  1.10     skrll 	 * addresses in the bmi_l2pts array in bootmem_info.
    485   1.1      matt 	 *
    486   1.1      matt 	 * The kernel page directory must be on a 16K boundary.  The page
    487   1.1      matt 	 * tables must be on 4K boundaries.  What we do is allocate the
    488   1.1      matt 	 * page directory on the first 16K boundary that we encounter, and
    489   1.1      matt 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    490   1.1      matt 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    491   1.1      matt 	 * least one 16K aligned region.
    492   1.1      matt 	 */
    493   1.1      matt 
    494   1.1      matt #ifdef VERBOSE_INIT_ARM
    495   1.1      matt 	printf("%s: allocating page tables for", __func__);
    496   1.1      matt #endif
    497   1.1      matt 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    498   1.1      matt 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    499   1.1      matt 	}
    500   1.1      matt 
    501   1.1      matt 	kernel_l1pt.pv_pa = 0;
    502   1.1      matt 	kernel_l1pt.pv_va = 0;
    503   1.1      matt 
    504   1.1      matt 	/*
    505  1.10     skrll 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    506  1.10     skrll 	 * an L1 page table, we will allocate the pages for it first and then
    507  1.10     skrll 	 * allocate the L2 page.
    508  1.10     skrll 	 */
    509  1.10     skrll 
    510  1.19      matt 	if (map_vectors_p) {
    511  1.19      matt 		/*
    512  1.19      matt 		 * First allocate L2 page for the vectors.
    513  1.19      matt 		 */
    514   1.1      matt #ifdef VERBOSE_INIT_ARM
    515  1.19      matt 		printf(" vector");
    516   1.1      matt #endif
    517  1.23      matt 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    518  1.23      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    519  1.19      matt 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    520  1.19      matt 	}
    521   1.1      matt 
    522   1.1      matt 	/*
    523  1.10     skrll 	 * Now allocate L2 pages for the kernel
    524   1.1      matt 	 */
    525   1.1      matt #ifdef VERBOSE_INIT_ARM
    526   1.1      matt 	printf(" kernel");
    527   1.1      matt #endif
    528  1.23      matt 	KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
    529  1.23      matt 	KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
    530   1.8     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    531  1.23      matt 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    532  1.17      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    533   1.1      matt 		add_pages(bmi, &kernel_l2pt[idx]);
    534   1.1      matt 	}
    535  1.10     skrll 
    536  1.10     skrll 	/*
    537  1.10     skrll 	 * Now allocate L2 pages for the initial kernel VA space.
    538  1.10     skrll 	 */
    539   1.1      matt #ifdef VERBOSE_INIT_ARM
    540   1.1      matt 	printf(" vm");
    541   1.1      matt #endif
    542   1.8     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    543  1.23      matt 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    544  1.17      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    545   1.1      matt 		add_pages(bmi, &vmdata_l2pt[idx]);
    546   1.1      matt 	}
    547   1.1      matt 
    548   1.1      matt 	/*
    549   1.1      matt 	 * If someone wanted a L2 page for I/O, allocate it now.
    550   1.1      matt 	 */
    551  1.23      matt 	if (iovbase) {
    552   1.1      matt #ifdef VERBOSE_INIT_ARM
    553   1.1      matt 		printf(" io");
    554   1.1      matt #endif
    555  1.23      matt 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    556  1.17      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    557   1.1      matt 		add_pages(bmi, &bmi->bmi_io_l2pt);
    558   1.1      matt 	}
    559   1.1      matt 
    560  1.22       riz #ifdef VERBOSE_INIT_ARM
    561   1.1      matt 	printf("%s: allocating stacks\n", __func__);
    562   1.1      matt #endif
    563   1.1      matt 
    564  1.10     skrll 	/* Allocate stacks for all modes and CPUs */
    565   1.1      matt 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    566  1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    567   1.1      matt 	add_pages(bmi, &abtstack);
    568   1.1      matt 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    569  1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    570   1.1      matt 	add_pages(bmi, &fiqstack);
    571   1.1      matt 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    572  1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    573   1.1      matt 	add_pages(bmi, &irqstack);
    574   1.1      matt 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    575  1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    576   1.1      matt 	add_pages(bmi, &undstack);
    577   1.1      matt 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    578  1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    579   1.1      matt 	add_pages(bmi, &idlestack);
    580   1.1      matt 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    581  1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    582   1.1      matt 	add_pages(bmi, &kernelstack);
    583   1.1      matt 
    584   1.1      matt 	/* Allocate the message buffer from the end of memory. */
    585   1.1      matt 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    586   1.1      matt 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    587  1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    588   1.1      matt 	add_pages(bmi, &msgbuf);
    589   1.1      matt 	msgbufphys = msgbuf.pv_pa;
    590  1.27      matt 	msgbufaddr = (void *)msgbuf.pv_va;
    591   1.1      matt 
    592  1.19      matt 	if (map_vectors_p) {
    593  1.19      matt 		/*
    594  1.19      matt 		 * Allocate a page for the system vector page.
    595  1.19      matt 		 * This page will just contain the system vectors and can be
    596  1.19      matt 		 * shared by all processes.
    597  1.19      matt 		 */
    598  1.19      matt 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
    599  1.19      matt 		    PTE_CACHE, true);
    600  1.19      matt 	}
    601   1.1      matt 	systempage.pv_va = vectors;
    602   1.1      matt 
    603   1.1      matt 	/*
    604   1.1      matt 	 * If the caller needed a few extra pages for some reason, allocate
    605   1.1      matt 	 * them now.
    606   1.1      matt 	 */
    607   1.1      matt #if ARM_MMU_XSCALE == 1
    608   1.1      matt #if (ARM_NMMUS > 1)
    609   1.1      matt 	if (xscale_use_minidata)
    610   1.1      matt #endif
    611  1.30  kiyohara 		valloc_pages(bmi, &minidataclean, 1,
    612  1.18      matt 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    613   1.1      matt #endif
    614   1.1      matt 
    615   1.1      matt 	/*
    616   1.1      matt 	 * Ok we have allocated physical pages for the primary kernel
    617   1.1      matt 	 * page tables and stacks.  Let's just confirm that.
    618   1.1      matt 	 */
    619   1.1      matt 	if (kernel_l1pt.pv_va == 0
    620   1.1      matt 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    621   1.1      matt 		panic("%s: Failed to allocate or align the kernel "
    622   1.1      matt 		    "page directory", __func__);
    623   1.1      matt 
    624   1.1      matt 
    625   1.1      matt #ifdef VERBOSE_INIT_ARM
    626   1.1      matt 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    627   1.1      matt #endif
    628   1.1      matt 
    629   1.1      matt 	/*
    630   1.1      matt 	 * Now we start construction of the L1 page table
    631   1.1      matt 	 * We start by mapping the L2 page tables into the L1.
    632   1.1      matt 	 * This means that we can replace L1 mappings later on if necessary
    633   1.1      matt 	 */
    634   1.1      matt 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    635   1.1      matt 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    636   1.1      matt 
    637  1.19      matt 	if (map_vectors_p) {
    638  1.19      matt 		/* Map the L2 pages tables in the L1 page table */
    639  1.19      matt 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    640  1.19      matt 		    &bmi->bmi_vector_l2pt);
    641  1.19      matt #ifdef VERBOSE_INIT_ARM
    642  1.19      matt 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    643  1.19      matt 		    "for VA %#lx\n (vectors)",
    644  1.19      matt 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    645  1.19      matt 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    646   1.1      matt #endif
    647  1.19      matt 	}
    648   1.1      matt 
    649   1.1      matt 	const vaddr_t kernel_base =
    650   1.1      matt 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    651   1.1      matt 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    652   1.1      matt 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    653   1.1      matt 		    &kernel_l2pt[idx]);
    654   1.1      matt #ifdef VERBOSE_INIT_ARM
    655   1.7     skrll 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    656  1.23      matt 		    __func__, kernel_l2pt[idx].pv_va,
    657  1.23      matt 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    658   1.1      matt #endif
    659   1.1      matt 	}
    660   1.1      matt 
    661   1.1      matt 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    662   1.1      matt 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    663   1.1      matt 		    &vmdata_l2pt[idx]);
    664   1.1      matt #ifdef VERBOSE_INIT_ARM
    665   1.7     skrll 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    666   1.1      matt 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    667   1.1      matt 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    668   1.1      matt #endif
    669   1.1      matt 	}
    670   1.1      matt 	if (iovbase) {
    671   1.1      matt 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    672   1.1      matt #ifdef VERBOSE_INIT_ARM
    673   1.7     skrll 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    674   1.1      matt 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    675   1.1      matt 		    iovbase & -L2_S_SEGSIZE);
    676   1.1      matt #endif
    677   1.1      matt 	}
    678   1.1      matt 
    679   1.1      matt 	/* update the top of the kernel VM */
    680   1.1      matt 	pmap_curmaxkvaddr =
    681   1.1      matt 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    682   1.1      matt 
    683   1.1      matt #ifdef VERBOSE_INIT_ARM
    684   1.1      matt 	printf("Mapping kernel\n");
    685   1.1      matt #endif
    686   1.1      matt 
    687   1.1      matt 	extern char etext[], _end[];
    688   1.1      matt 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    689   1.1      matt 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    690   1.1      matt 
    691   1.1      matt 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    692   1.1      matt 
    693   1.1      matt 	/* start at offset of kernel in RAM */
    694   1.1      matt 
    695   1.1      matt 	text.pv_pa = bmi->bmi_kernelstart;
    696   1.1      matt 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    697   1.1      matt 	text.pv_size = textsize;
    698   1.1      matt 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
    699   1.1      matt 	text.pv_cache = PTE_CACHE;
    700   1.1      matt 
    701   1.1      matt #ifdef VERBOSE_INIT_ARM
    702   1.1      matt 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    703   1.1      matt 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    704   1.1      matt #endif
    705   1.1      matt 
    706   1.1      matt 	add_pages(bmi, &text);
    707   1.1      matt 
    708   1.1      matt 	data.pv_pa = text.pv_pa + textsize;
    709   1.1      matt 	data.pv_va = text.pv_va + textsize;
    710   1.1      matt 	data.pv_size = totalsize - textsize;
    711   1.1      matt 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    712   1.1      matt 	data.pv_cache = PTE_CACHE;
    713   1.1      matt 
    714   1.1      matt #ifdef VERBOSE_INIT_ARM
    715   1.1      matt 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    716   1.1      matt 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    717   1.1      matt #endif
    718   1.1      matt 
    719   1.1      matt 	add_pages(bmi, &data);
    720   1.1      matt 
    721   1.1      matt #ifdef VERBOSE_INIT_ARM
    722   1.1      matt 	printf("Listing Chunks\n");
    723  1.26     skrll 
    724  1.26     skrll 	pv_addr_t *lpv;
    725  1.26     skrll 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    726  1.26     skrll 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    727  1.26     skrll 		    "(PA %#lx, prot %d, cache %d)\n",
    728  1.26     skrll 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    729  1.26     skrll 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    730   1.1      matt 	}
    731   1.1      matt 	printf("\nMapping Chunks\n");
    732   1.1      matt #endif
    733   1.1      matt 
    734   1.1      matt 	pv_addr_t cur_pv;
    735   1.1      matt 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    736   1.1      matt 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    737   1.1      matt 		cur_pv = *pv;
    738   1.1      matt 		pv = SLIST_NEXT(pv, pv_list);
    739   1.1      matt 	} else {
    740  1.28      matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    741  1.28      matt 		cur_pv.pv_va = pmap_directbase;
    742  1.28      matt #else
    743  1.13      matt 		cur_pv.pv_va = KERNEL_BASE;
    744  1.28      matt #endif
    745   1.1      matt 		cur_pv.pv_pa = bmi->bmi_start;
    746   1.1      matt 		cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
    747   1.1      matt 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    748   1.1      matt 		cur_pv.pv_cache = PTE_CACHE;
    749   1.1      matt 	}
    750   1.1      matt 	while (pv != NULL) {
    751   1.1      matt 		if (mapallmem_p) {
    752   1.1      matt 			if (concat_pvaddr(&cur_pv, pv)) {
    753   1.1      matt 				pv = SLIST_NEXT(pv, pv_list);
    754   1.1      matt 				continue;
    755   1.1      matt 			}
    756   1.1      matt 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    757   1.1      matt 				/*
    758   1.1      matt 				 * See if we can extend the current pv to emcompass the
    759   1.1      matt 				 * hole, and if so do it and retry the concatenation.
    760   1.1      matt 				 */
    761   1.1      matt 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    762   1.1      matt 				    && cur_pv.pv_cache == PTE_CACHE) {
    763   1.1      matt 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    764   1.1      matt 					continue;
    765   1.1      matt 				}
    766   1.1      matt 
    767   1.1      matt 				/*
    768   1.1      matt 				 * We couldn't so emit the current chunk and then
    769   1.1      matt 				 */
    770   1.1      matt #ifdef VERBOSE_INIT_ARM
    771   1.1      matt 				printf("%s: mapping chunk VA %#lx..%#lx "
    772   1.1      matt 				    "(PA %#lx, prot %d, cache %d)\n",
    773   1.1      matt 				    __func__,
    774   1.1      matt 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    775   1.1      matt 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    776   1.1      matt #endif
    777   1.1      matt 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    778   1.1      matt 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    779   1.1      matt 
    780   1.1      matt 				/*
    781   1.1      matt 				 * set the current chunk to the hole and try again.
    782   1.1      matt 				 */
    783   1.1      matt 				cur_pv.pv_pa += cur_pv.pv_size;
    784   1.1      matt 				cur_pv.pv_va += cur_pv.pv_size;
    785   1.1      matt 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    786   1.1      matt 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    787   1.1      matt 				cur_pv.pv_cache = PTE_CACHE;
    788   1.1      matt 				continue;
    789   1.1      matt 			}
    790   1.1      matt 		}
    791   1.1      matt 
    792   1.1      matt 		/*
    793   1.1      matt 		 * The new pv didn't concatenate so emit the current one
    794   1.1      matt 		 * and use the new pv as the current pv.
    795   1.1      matt 		 */
    796   1.1      matt #ifdef VERBOSE_INIT_ARM
    797   1.1      matt 		printf("%s: mapping chunk VA %#lx..%#lx "
    798   1.1      matt 		    "(PA %#lx, prot %d, cache %d)\n",
    799   1.1      matt 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    800   1.1      matt 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    801   1.1      matt #endif
    802   1.1      matt 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    803   1.1      matt 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    804   1.1      matt 		cur_pv = *pv;
    805   1.1      matt 		pv = SLIST_NEXT(pv, pv_list);
    806   1.1      matt 	}
    807   1.1      matt 
    808   1.1      matt 	/*
    809   1.1      matt 	 * If we are mapping all of memory, let's map the rest of memory.
    810   1.1      matt 	 */
    811   1.1      matt 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    812   1.1      matt 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    813   1.1      matt 		    && cur_pv.pv_cache == PTE_CACHE) {
    814   1.1      matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    815   1.1      matt 		} else {
    816   1.1      matt #ifdef VERBOSE_INIT_ARM
    817   1.1      matt 			printf("%s: mapping chunk VA %#lx..%#lx "
    818   1.1      matt 			    "(PA %#lx, prot %d, cache %d)\n",
    819   1.1      matt 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    820   1.1      matt 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    821   1.1      matt #endif
    822   1.1      matt 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    823   1.1      matt 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    824   1.1      matt 			cur_pv.pv_pa += cur_pv.pv_size;
    825   1.1      matt 			cur_pv.pv_va += cur_pv.pv_size;
    826   1.1      matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    827   1.1      matt 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    828   1.1      matt 			cur_pv.pv_cache = PTE_CACHE;
    829   1.1      matt 		}
    830   1.1      matt 	}
    831   1.1      matt 
    832   1.1      matt 	/*
    833   1.1      matt 	 * Now we map the final chunk.
    834   1.1      matt 	 */
    835   1.1      matt #ifdef VERBOSE_INIT_ARM
    836   1.1      matt 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    837   1.1      matt 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    838   1.1      matt 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    839   1.1      matt #endif
    840   1.1      matt 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    841   1.1      matt 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    842   1.1      matt 
    843   1.1      matt 	/*
    844   1.1      matt 	 * Now we map the stuff that isn't directly after the kernel
    845   1.1      matt 	 */
    846   1.1      matt 
    847  1.19      matt 	if (map_vectors_p) {
    848  1.19      matt 		/* Map the vector page. */
    849  1.19      matt 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    850  1.19      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    851  1.19      matt 	}
    852   1.1      matt 
    853   1.1      matt 	/* Map the Mini-Data cache clean area. */
    854   1.1      matt #if ARM_MMU_XSCALE == 1
    855   1.1      matt #if (ARM_NMMUS > 1)
    856   1.1      matt 	if (xscale_use_minidata)
    857   1.1      matt #endif
    858  1.30  kiyohara 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    859   1.1      matt 		    minidataclean.pv_pa);
    860   1.1      matt #endif
    861   1.1      matt 
    862   1.1      matt 	/*
    863   1.1      matt 	 * Map integrated peripherals at same address in first level page
    864   1.1      matt 	 * table so that we can continue to use console.
    865   1.1      matt 	 */
    866   1.1      matt 	if (devmap)
    867   1.1      matt 		pmap_devmap_bootstrap(l1pt_va, devmap);
    868   1.1      matt 
    869   1.1      matt #ifdef VERBOSE_INIT_ARM
    870   1.1      matt 	/* Tell the user about where all the bits and pieces live. */
    871   1.1      matt 	printf("%22s       Physical              Virtual        Num\n", " ");
    872   1.1      matt 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    873   1.1      matt 
    874   1.1      matt 	static const char mem_fmt[] =
    875   1.1      matt 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    876   1.1      matt 	static const char mem_fmt_nov[] =
    877   1.1      matt 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    878   1.1      matt 
    879   1.1      matt 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    880   1.1      matt 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    881   1.1      matt 	    physmem);
    882   1.1      matt 	printf(mem_fmt, "text section",
    883   1.1      matt 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    884   1.1      matt 	       text.pv_va, text.pv_va + text.pv_size - 1,
    885   1.1      matt 	       (int)(text.pv_size / PAGE_SIZE));
    886   1.1      matt 	printf(mem_fmt, "data section",
    887   1.1      matt 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    888   1.1      matt 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    889   1.1      matt 	       (int)((round_page((vaddr_t)_edata)
    890   1.1      matt 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    891   1.1      matt 	printf(mem_fmt, "bss section",
    892   1.1      matt 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    893   1.1      matt 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    894   1.1      matt 	       (int)((round_page((vaddr_t)__bss_end__)
    895   1.1      matt 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    896   1.1      matt 	printf(mem_fmt, "L1 page directory",
    897   1.1      matt 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    898   1.1      matt 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    899   1.1      matt 	    L1_TABLE_SIZE / PAGE_SIZE);
    900   1.7     skrll 	printf(mem_fmt, "ABT stack (CPU 0)",
    901   1.7     skrll 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    902   1.7     skrll 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    903   1.7     skrll 	    ABT_STACK_SIZE);
    904   1.1      matt 	printf(mem_fmt, "FIQ stack (CPU 0)",
    905   1.1      matt 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    906   1.1      matt 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    907   1.1      matt 	    FIQ_STACK_SIZE);
    908   1.1      matt 	printf(mem_fmt, "IRQ stack (CPU 0)",
    909   1.1      matt 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    910   1.1      matt 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    911   1.1      matt 	    IRQ_STACK_SIZE);
    912   1.1      matt 	printf(mem_fmt, "UND stack (CPU 0)",
    913   1.1      matt 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    914   1.1      matt 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    915   1.1      matt 	    UND_STACK_SIZE);
    916   1.1      matt 	printf(mem_fmt, "IDLE stack (CPU 0)",
    917   1.1      matt 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    918   1.1      matt 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    919   1.1      matt 	    UPAGES);
    920   1.1      matt 	printf(mem_fmt, "SVC stack",
    921   1.1      matt 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    922   1.1      matt 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    923   1.1      matt 	    UPAGES);
    924   1.9     skrll 	printf(mem_fmt, "Message Buffer",
    925   1.9     skrll 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    926   1.9     skrll 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    927   1.9     skrll 	    (int)msgbuf_pgs);
    928  1.19      matt 	if (map_vectors_p) {
    929  1.19      matt 		printf(mem_fmt, "Exception Vectors",
    930  1.19      matt 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    931  1.19      matt 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    932  1.19      matt 		    1);
    933  1.19      matt 	}
    934   1.1      matt 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    935   1.1      matt 		pv = &bmi->bmi_freeblocks[i];
    936   1.1      matt 
    937   1.1      matt 		printf(mem_fmt_nov, "Free Memory",
    938   1.1      matt 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    939   1.1      matt 		    pv->pv_size / PAGE_SIZE);
    940   1.1      matt 	}
    941   1.1      matt #endif
    942   1.1      matt 	/*
    943   1.1      matt 	 * Now we have the real page tables in place so we can switch to them.
    944   1.1      matt 	 * Once this is done we will be running with the REAL kernel page
    945   1.1      matt 	 * tables.
    946   1.1      matt 	 */
    947   1.1      matt 
    948  1.25      matt #if defined(VERBOSE_INIT_ARM)
    949   1.2      matt 	printf("TTBR0=%#x", armreg_ttbr_read());
    950   1.2      matt #ifdef _ARM_ARCH_6
    951  1.25      matt 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    952  1.25      matt 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    953  1.25      matt 	    armreg_contextidr_read());
    954   1.2      matt #endif
    955   1.2      matt 	printf("\n");
    956   1.2      matt #endif
    957   1.2      matt 
    958   1.1      matt 	/* Switch tables */
    959   1.1      matt #ifdef VERBOSE_INIT_ARM
    960   1.3      matt 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    961   1.1      matt #endif
    962   1.1      matt 
    963  1.23      matt #ifdef ARM_MMU_EXTENDED
    964  1.23      matt 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    965  1.23      matt 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    966  1.23      matt #else
    967   1.1      matt 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    968  1.23      matt #endif
    969   1.3      matt 	cpu_idcache_wbinv_all();
    970  1.23      matt #ifdef VERBOSE_INIT_ARM
    971  1.23      matt 	printf(" ttb");
    972  1.23      matt #endif
    973  1.17      matt #ifdef ARM_MMU_EXTENDED
    974  1.23      matt 	/*
    975  1.23      matt 	 * TTBCR should have been initialized by the MD start code.
    976  1.23      matt 	 */
    977  1.25      matt 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    978  1.23      matt 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    979  1.24      matt 	/*
    980  1.24      matt 	 * Disable lookups via TTBR0 until there is an activated pmap.
    981  1.24      matt 	 */
    982  1.24      matt 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    983  1.17      matt 	cpu_setttb(l1pt_pa, KERNEL_PID);
    984  1.24      matt 	arm_isb();
    985  1.17      matt #else
    986   1.4      matt 	cpu_setttb(l1pt_pa, true);
    987  1.23      matt 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    988  1.17      matt #endif
    989   1.1      matt 	cpu_tlb_flushID();
    990   1.1      matt 
    991   1.1      matt #ifdef VERBOSE_INIT_ARM
    992  1.23      matt #ifdef ARM_MMU_EXTENDED
    993  1.24      matt 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    994  1.24      matt 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    995  1.23      matt #else
    996  1.24      matt 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
    997   1.1      matt #endif
    998  1.25      matt #endif
    999  1.25      matt 
   1000  1.25      matt #ifdef MULTIPROCESSOR
   1001  1.25      matt 	/*
   1002  1.25      matt 	 * Kick the secondaries to load the TTB.  After which they'll go
   1003  1.25      matt 	 * back to sleep to wait for the final kick so they will hatch.
   1004  1.25      matt 	 */
   1005  1.25      matt #ifdef VERBOSE_INIT_ARM
   1006  1.25      matt 	printf(" hatchlings");
   1007  1.25      matt #endif
   1008  1.25      matt 	cpu_boot_secondary_processors();
   1009  1.25      matt #endif
   1010  1.25      matt 
   1011  1.25      matt #ifdef VERBOSE_INIT_ARM
   1012  1.24      matt 	printf(" OK\n");
   1013  1.23      matt #endif
   1014   1.1      matt }
   1015