Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.32.2.3
      1  1.32.2.3     skrll /*	$NetBSD: arm32_kvminit.c,v 1.32.2.3 2017/02/05 13:40:03 skrll Exp $	*/
      2       1.1      matt 
      3       1.1      matt /*
      4       1.1      matt  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5       1.1      matt  * Written by Hiroyuki Bessho for Genetec Corporation.
      6       1.1      matt  *
      7       1.1      matt  * Redistribution and use in source and binary forms, with or without
      8       1.1      matt  * modification, are permitted provided that the following conditions
      9       1.1      matt  * are met:
     10       1.1      matt  * 1. Redistributions of source code must retain the above copyright
     11       1.1      matt  *    notice, this list of conditions and the following disclaimer.
     12       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     14       1.1      matt  *    documentation and/or other materials provided with the distribution.
     15       1.1      matt  * 3. The name of Genetec Corporation may not be used to endorse or
     16       1.1      matt  *    promote products derived from this software without specific prior
     17       1.1      matt  *    written permission.
     18       1.1      matt  *
     19       1.1      matt  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20       1.1      matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23       1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1      matt  *
     31       1.1      matt  * Copyright (c) 2001 Wasabi Systems, Inc.
     32       1.1      matt  * All rights reserved.
     33       1.1      matt  *
     34       1.1      matt  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35       1.1      matt  *
     36       1.1      matt  * Redistribution and use in source and binary forms, with or without
     37       1.1      matt  * modification, are permitted provided that the following conditions
     38       1.1      matt  * are met:
     39       1.1      matt  * 1. Redistributions of source code must retain the above copyright
     40       1.1      matt  *    notice, this list of conditions and the following disclaimer.
     41       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     42       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     43       1.1      matt  *    documentation and/or other materials provided with the distribution.
     44       1.1      matt  * 3. All advertising materials mentioning features or use of this software
     45       1.1      matt  *    must display the following acknowledgement:
     46       1.1      matt  *	This product includes software developed for the NetBSD Project by
     47       1.1      matt  *	Wasabi Systems, Inc.
     48       1.1      matt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49       1.1      matt  *    or promote products derived from this software without specific prior
     50       1.1      matt  *    written permission.
     51       1.1      matt  *
     52       1.1      matt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53       1.1      matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54       1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55       1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56       1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57       1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58       1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59       1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60       1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61       1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62       1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     63       1.1      matt  *
     64       1.1      matt  * Copyright (c) 1997,1998 Mark Brinicombe.
     65       1.1      matt  * Copyright (c) 1997,1998 Causality Limited.
     66       1.1      matt  * All rights reserved.
     67       1.1      matt  *
     68       1.1      matt  * Redistribution and use in source and binary forms, with or without
     69       1.1      matt  * modification, are permitted provided that the following conditions
     70       1.1      matt  * are met:
     71       1.1      matt  * 1. Redistributions of source code must retain the above copyright
     72       1.1      matt  *    notice, this list of conditions and the following disclaimer.
     73       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     74       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     75       1.1      matt  *    documentation and/or other materials provided with the distribution.
     76       1.1      matt  * 3. All advertising materials mentioning features or use of this software
     77       1.1      matt  *    must display the following acknowledgement:
     78       1.1      matt  *	This product includes software developed by Mark Brinicombe
     79       1.1      matt  *	for the NetBSD Project.
     80       1.1      matt  * 4. The name of the company nor the name of the author may be used to
     81       1.1      matt  *    endorse or promote products derived from this software without specific
     82       1.1      matt  *    prior written permission.
     83       1.1      matt  *
     84       1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85       1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86       1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87       1.1      matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88       1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89       1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90       1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91       1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92       1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93       1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94       1.1      matt  * SUCH DAMAGE.
     95       1.1      matt  *
     96       1.1      matt  * Copyright (c) 2007 Microsoft
     97       1.1      matt  * All rights reserved.
     98       1.1      matt  *
     99       1.1      matt  * Redistribution and use in source and binary forms, with or without
    100       1.1      matt  * modification, are permitted provided that the following conditions
    101       1.1      matt  * are met:
    102       1.1      matt  * 1. Redistributions of source code must retain the above copyright
    103       1.1      matt  *    notice, this list of conditions and the following disclaimer.
    104       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
    105       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
    106       1.1      matt  *    documentation and/or other materials provided with the distribution.
    107       1.1      matt  * 3. All advertising materials mentioning features or use of this software
    108       1.1      matt  *    must display the following acknowledgement:
    109       1.1      matt  *	This product includes software developed by Microsoft
    110       1.1      matt  *
    111       1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112       1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113       1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114       1.1      matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115       1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116       1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117       1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118       1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119       1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120       1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121       1.1      matt  * SUCH DAMAGE.
    122       1.1      matt  */
    123       1.1      matt 
    124      1.32     skrll #include "opt_multiprocessor.h"
    125      1.32     skrll 
    126       1.1      matt #include <sys/cdefs.h>
    127  1.32.2.3     skrll __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.32.2.3 2017/02/05 13:40:03 skrll Exp $");
    128       1.1      matt 
    129       1.1      matt #include <sys/param.h>
    130       1.1      matt #include <sys/device.h>
    131       1.1      matt #include <sys/kernel.h>
    132       1.1      matt #include <sys/reboot.h>
    133       1.1      matt #include <sys/bus.h>
    134       1.1      matt 
    135       1.1      matt #include <dev/cons.h>
    136       1.1      matt 
    137       1.1      matt #include <uvm/uvm_extern.h>
    138       1.1      matt 
    139      1.24      matt #include <arm/locore.h>
    140       1.1      matt #include <arm/db_machdep.h>
    141       1.1      matt #include <arm/undefined.h>
    142       1.1      matt #include <arm/bootconfig.h>
    143       1.1      matt #include <arm/arm32/machdep.h>
    144       1.1      matt 
    145       1.1      matt struct bootmem_info bootmem_info;
    146       1.1      matt 
    147      1.27      matt extern void *msgbufaddr;
    148       1.1      matt paddr_t msgbufphys;
    149       1.1      matt paddr_t physical_start;
    150       1.1      matt paddr_t physical_end;
    151       1.1      matt 
    152       1.1      matt extern char etext[];
    153       1.1      matt extern char __data_start[], _edata[];
    154       1.1      matt extern char __bss_start[], __bss_end__[];
    155       1.1      matt extern char _end[];
    156       1.1      matt 
    157       1.1      matt /* Page tables for mapping kernel VM */
    158       1.1      matt #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    159       1.1      matt 
    160       1.1      matt /*
    161       1.1      matt  * Macros to translate between physical and virtual for a subset of the
    162       1.1      matt  * kernel address space.  *Not* for general use.
    163       1.1      matt  */
    164      1.28      matt #if defined(KERNEL_BASE_VOFFSET)
    165      1.28      matt #define KERN_VTOPHYS(bmi, va) \
    166      1.28      matt 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
    167      1.28      matt #define KERN_PHYSTOV(bmi, pa) \
    168      1.28      matt 	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
    169      1.28      matt #else
    170       1.1      matt #define KERN_VTOPHYS(bmi, va) \
    171       1.1      matt 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    172       1.1      matt #define KERN_PHYSTOV(bmi, pa) \
    173       1.1      matt 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    174      1.28      matt #endif
    175       1.1      matt 
    176       1.1      matt void
    177       1.1      matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    178       1.1      matt {
    179       1.1      matt 	struct bootmem_info * const bmi = &bootmem_info;
    180       1.1      matt 	pv_addr_t *pv = bmi->bmi_freeblocks;
    181       1.1      matt 
    182       1.1      matt #ifdef VERBOSE_INIT_ARM
    183       1.1      matt 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    184       1.1      matt 	    __func__, memstart, memsize, kernelstart);
    185       1.1      matt #endif
    186       1.1      matt 
    187       1.1      matt 	physical_start = bmi->bmi_start = memstart;
    188       1.1      matt 	physical_end = bmi->bmi_end = memstart + memsize;
    189  1.32.2.1     skrll #ifndef ARM_HAS_LPAE
    190  1.32.2.1     skrll 	if (physical_end == 0) {
    191  1.32.2.1     skrll 		physical_end = -PAGE_SIZE;
    192  1.32.2.1     skrll 		memsize -= PAGE_SIZE;
    193  1.32.2.1     skrll 		bmi->bmi_end -= PAGE_SIZE;
    194  1.32.2.1     skrll #ifdef VERBOSE_INIT_ARM
    195  1.32.2.1     skrll 		printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    196  1.32.2.1     skrll 		    __func__);
    197  1.32.2.1     skrll #endif
    198  1.32.2.1     skrll 	}
    199  1.32.2.1     skrll #endif
    200       1.1      matt 	physmem = memsize / PAGE_SIZE;
    201       1.1      matt 
    202       1.1      matt 	/*
    203       1.1      matt 	 * Let's record where the kernel lives.
    204       1.1      matt 	 */
    205       1.1      matt 	bmi->bmi_kernelstart = kernelstart;
    206       1.1      matt 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    207       1.1      matt 
    208       1.1      matt #ifdef VERBOSE_INIT_ARM
    209       1.1      matt 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    210       1.1      matt #endif
    211       1.1      matt 
    212       1.1      matt 	/*
    213       1.1      matt 	 * Now the rest of the free memory must be after the kernel.
    214       1.1      matt 	 */
    215       1.1      matt 	pv->pv_pa = bmi->bmi_kernelend;
    216       1.1      matt 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    217       1.1      matt 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    218       1.1      matt 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    219       1.1      matt #ifdef VERBOSE_INIT_ARM
    220       1.1      matt 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    221       1.1      matt 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    222       1.1      matt 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    223       1.1      matt #endif
    224       1.1      matt 	pv++;
    225       1.1      matt 
    226       1.1      matt 	/*
    227       1.1      matt 	 * Add a free block for any memory before the kernel.
    228       1.1      matt 	 */
    229       1.1      matt 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    230       1.1      matt 		pv->pv_pa = bmi->bmi_start;
    231  1.32.2.1     skrll 		pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    232  1.32.2.1     skrll 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    233       1.1      matt 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    234       1.1      matt #ifdef VERBOSE_INIT_ARM
    235       1.1      matt 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    236       1.1      matt 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    237       1.1      matt 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    238       1.1      matt #endif
    239       1.1      matt 		pv++;
    240       1.1      matt 	}
    241       1.1      matt 
    242       1.1      matt 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    243  1.32.2.2     skrll 
    244       1.1      matt 	SLIST_INIT(&bmi->bmi_freechunks);
    245       1.1      matt 	SLIST_INIT(&bmi->bmi_chunks);
    246       1.1      matt }
    247       1.1      matt 
    248       1.1      matt static bool
    249       1.1      matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    250       1.1      matt {
    251       1.1      matt 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    252       1.1      matt 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    253       1.1      matt 	    && acc_pv->pv_prot == pv->pv_prot
    254       1.1      matt 	    && acc_pv->pv_cache == pv->pv_cache) {
    255       1.1      matt #ifdef VERBOSE_INIT_ARMX
    256       1.1      matt 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    257       1.1      matt 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    258       1.1      matt 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    259       1.1      matt #endif
    260       1.1      matt 		acc_pv->pv_size += pv->pv_size;
    261       1.1      matt 		return true;
    262       1.1      matt 	}
    263       1.1      matt 
    264       1.1      matt 	return false;
    265       1.1      matt }
    266       1.1      matt 
    267       1.1      matt static void
    268       1.1      matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    269       1.1      matt {
    270       1.1      matt 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    271      1.14     skrll 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    272       1.1      matt 		pv_addr_t * const pv0 = (*pvp);
    273       1.1      matt 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    274       1.1      matt 		if (concat_pvaddr(pv0, pv)) {
    275       1.1      matt #ifdef VERBOSE_INIT_ARM
    276       1.1      matt 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    277       1.1      matt 			    __func__, "appending", pv,
    278       1.1      matt 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    279       1.1      matt 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    280       1.1      matt #endif
    281       1.1      matt 			pv = SLIST_NEXT(pv0, pv_list);
    282       1.1      matt 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    283       1.1      matt #ifdef VERBOSE_INIT_ARM
    284       1.1      matt 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    285       1.1      matt 				    __func__, "merging", pv,
    286       1.1      matt 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    287       1.1      matt 				    pv0->pv_pa,
    288       1.1      matt 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    289       1.1      matt #endif
    290       1.1      matt 				SLIST_REMOVE_AFTER(pv0, pv_list);
    291       1.1      matt 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    292       1.1      matt 			}
    293       1.1      matt 			return;
    294       1.1      matt 		}
    295       1.1      matt 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    296       1.1      matt 		pvp = &SLIST_NEXT(*pvp, pv_list);
    297       1.1      matt 	}
    298       1.1      matt 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    299       1.1      matt 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    300       1.1      matt 	KASSERT(new_pv != NULL);
    301       1.1      matt 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    302       1.1      matt 	*new_pv = *pv;
    303       1.1      matt 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    304       1.1      matt 	(*pvp) = new_pv;
    305       1.1      matt #ifdef VERBOSE_INIT_ARM
    306       1.1      matt 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    307       1.1      matt 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    308       1.1      matt 	    new_pv->pv_size / PAGE_SIZE);
    309       1.1      matt 	if (SLIST_NEXT(new_pv, pv_list))
    310       1.1      matt 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    311       1.1      matt 	else
    312       1.1      matt 		printf("at tail\n");
    313       1.1      matt #endif
    314       1.1      matt }
    315       1.1      matt 
    316       1.1      matt static void
    317       1.1      matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    318      1.17      matt 	int prot, int cache, bool zero_p)
    319       1.1      matt {
    320       1.1      matt 	size_t nbytes = npages * PAGE_SIZE;
    321       1.1      matt 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    322       1.1      matt 	size_t free_idx = 0;
    323       1.1      matt 	static bool l1pt_found;
    324       1.1      matt 
    325      1.23      matt 	KASSERT(npages > 0);
    326      1.23      matt 
    327       1.1      matt 	/*
    328       1.6     skrll 	 * If we haven't allocated the kernel L1 page table and we are aligned
    329       1.1      matt 	 * at a L1 table boundary, alloc the memory for it.
    330       1.1      matt 	 */
    331       1.1      matt 	if (!l1pt_found
    332       1.1      matt 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    333       1.1      matt 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    334       1.1      matt 		l1pt_found = true;
    335       1.1      matt 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    336      1.17      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    337       1.1      matt 		add_pages(bmi, &kernel_l1pt);
    338       1.1      matt 	}
    339       1.1      matt 
    340       1.1      matt 	while (nbytes > free_pv->pv_size) {
    341       1.1      matt 		free_pv++;
    342       1.1      matt 		free_idx++;
    343       1.1      matt 		if (free_idx == bmi->bmi_nfreeblocks) {
    344       1.1      matt 			panic("%s: could not allocate %zu bytes",
    345       1.1      matt 			    __func__, nbytes);
    346       1.1      matt 		}
    347       1.1      matt 	}
    348       1.1      matt 
    349      1.12     skrll 	/*
    350      1.12     skrll 	 * As we allocate the memory, make sure that we don't walk over
    351      1.12     skrll 	 * our current first level translation table.
    352      1.12     skrll 	 */
    353      1.12     skrll 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    354      1.12     skrll 
    355       1.1      matt 	pv->pv_pa = free_pv->pv_pa;
    356       1.1      matt 	pv->pv_va = free_pv->pv_va;
    357       1.1      matt 	pv->pv_size = nbytes;
    358       1.1      matt 	pv->pv_prot = prot;
    359       1.1      matt 	pv->pv_cache = cache;
    360       1.1      matt 
    361       1.1      matt 	/*
    362       1.1      matt 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    363       1.1      matt 	 * just use PTE_CACHE.
    364       1.1      matt 	 */
    365       1.1      matt 	if (cache == PTE_PAGETABLE
    366       1.1      matt 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    367       1.1      matt 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    368       1.1      matt 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    369       1.1      matt 		pv->pv_cache = PTE_CACHE;
    370       1.1      matt 
    371       1.1      matt 	free_pv->pv_pa += nbytes;
    372       1.1      matt 	free_pv->pv_va += nbytes;
    373       1.1      matt 	free_pv->pv_size -= nbytes;
    374       1.1      matt 	if (free_pv->pv_size == 0) {
    375       1.1      matt 		--bmi->bmi_nfreeblocks;
    376       1.1      matt 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    377       1.1      matt 			free_pv[0] = free_pv[1];
    378       1.1      matt 		}
    379       1.1      matt 	}
    380       1.1      matt 
    381       1.1      matt 	bmi->bmi_freepages -= npages;
    382       1.1      matt 
    383      1.18      matt 	if (zero_p)
    384      1.18      matt 		memset((void *)pv->pv_va, 0, nbytes);
    385       1.1      matt }
    386       1.1      matt 
    387       1.1      matt void
    388       1.1      matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    389       1.1      matt 	const struct pmap_devmap *devmap, bool mapallmem_p)
    390       1.1      matt {
    391       1.1      matt 	struct bootmem_info * const bmi = &bootmem_info;
    392       1.1      matt #ifdef MULTIPROCESSOR
    393      1.25      matt 	const size_t cpu_num = arm_cpu_max;
    394       1.1      matt #else
    395       1.1      matt 	const size_t cpu_num = 1;
    396       1.1      matt #endif
    397      1.20      matt #ifdef ARM_HAS_VBAR
    398      1.20      matt 	const bool map_vectors_p = false;
    399      1.20      matt #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    400      1.21      matt 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    401      1.21      matt 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    402      1.19      matt #else
    403      1.19      matt 	const bool map_vectors_p = true;
    404      1.19      matt #endif
    405       1.1      matt 
    406      1.15      matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    407      1.15      matt 	KASSERT(mapallmem_p);
    408      1.28      matt #ifdef ARM_MMU_EXTENDED
    409      1.28      matt 	/*
    410  1.32.2.1     skrll 	 * The direct map VA space ends at the start of the kernel VM space.
    411      1.28      matt 	 */
    412  1.32.2.1     skrll 	pmap_directlimit = kernel_vm_base;
    413      1.28      matt #else
    414      1.28      matt 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    415      1.28      matt #endif /* ARM_MMU_EXTENDED */
    416      1.28      matt #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    417      1.15      matt 
    418       1.1      matt 	/*
    419       1.1      matt 	 * Calculate the number of L2 pages needed for mapping the
    420      1.11     skrll 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    421      1.11     skrll 	 * and 1 for IO
    422       1.1      matt 	 */
    423       1.1      matt 	size_t kernel_size = bmi->bmi_kernelend;
    424       1.1      matt 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    425      1.23      matt 	kernel_size += L1_TABLE_SIZE_REAL;
    426      1.23      matt 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    427      1.23      matt 	if (map_vectors_p) {
    428      1.23      matt 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    429      1.23      matt 	}
    430      1.23      matt 	if (iovbase) {
    431      1.23      matt 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    432      1.23      matt 	}
    433       1.1      matt 	kernel_size +=
    434       1.1      matt 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    435       1.1      matt 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    436      1.11     skrll 	kernel_size += round_page(MSGBUFSIZE);
    437       1.1      matt 	kernel_size += 0x10000;	/* slop */
    438      1.23      matt 	if (!mapallmem_p) {
    439      1.23      matt 		kernel_size += PAGE_SIZE
    440      1.23      matt 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    441      1.23      matt 	}
    442       1.1      matt 	kernel_size = round_page(kernel_size);
    443       1.1      matt 
    444       1.1      matt 	/*
    445  1.32.2.2     skrll 	 * Now we know how many L2 pages it will take.
    446       1.1      matt 	 */
    447  1.32.2.2     skrll 	const size_t KERNEL_L2PT_KERNEL_NUM =
    448  1.32.2.2     skrll 	    round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    449       1.1      matt 
    450       1.1      matt #ifdef VERBOSE_INIT_ARM
    451       1.1      matt 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    452       1.1      matt 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    453       1.1      matt #endif
    454       1.1      matt 
    455       1.1      matt 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    456       1.1      matt 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    457       1.1      matt 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    458       1.1      matt 	pv_addr_t msgbuf;
    459       1.1      matt 	pv_addr_t text;
    460       1.1      matt 	pv_addr_t data;
    461       1.1      matt 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    462       1.1      matt #if ARM_MMU_XSCALE == 1
    463       1.1      matt 	pv_addr_t minidataclean;
    464       1.1      matt #endif
    465       1.1      matt 
    466       1.1      matt 	/*
    467       1.1      matt 	 * We need to allocate some fixed page tables to get the kernel going.
    468       1.1      matt 	 *
    469       1.1      matt 	 * We are going to allocate our bootstrap pages from the beginning of
    470       1.1      matt 	 * the free space that we just calculated.  We allocate one page
    471       1.1      matt 	 * directory and a number of page tables and store the physical
    472      1.10     skrll 	 * addresses in the bmi_l2pts array in bootmem_info.
    473       1.1      matt 	 *
    474       1.1      matt 	 * The kernel page directory must be on a 16K boundary.  The page
    475       1.1      matt 	 * tables must be on 4K boundaries.  What we do is allocate the
    476       1.1      matt 	 * page directory on the first 16K boundary that we encounter, and
    477       1.1      matt 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    478       1.1      matt 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    479       1.1      matt 	 * least one 16K aligned region.
    480       1.1      matt 	 */
    481       1.1      matt 
    482       1.1      matt #ifdef VERBOSE_INIT_ARM
    483       1.1      matt 	printf("%s: allocating page tables for", __func__);
    484       1.1      matt #endif
    485       1.1      matt 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    486       1.1      matt 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    487       1.1      matt 	}
    488       1.1      matt 
    489       1.1      matt 	kernel_l1pt.pv_pa = 0;
    490       1.1      matt 	kernel_l1pt.pv_va = 0;
    491       1.1      matt 
    492       1.1      matt 	/*
    493      1.10     skrll 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    494      1.10     skrll 	 * an L1 page table, we will allocate the pages for it first and then
    495      1.10     skrll 	 * allocate the L2 page.
    496      1.10     skrll 	 */
    497      1.10     skrll 
    498      1.19      matt 	if (map_vectors_p) {
    499      1.19      matt 		/*
    500      1.19      matt 		 * First allocate L2 page for the vectors.
    501      1.19      matt 		 */
    502       1.1      matt #ifdef VERBOSE_INIT_ARM
    503      1.19      matt 		printf(" vector");
    504       1.1      matt #endif
    505      1.23      matt 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    506      1.23      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    507      1.19      matt 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    508      1.19      matt 	}
    509       1.1      matt 
    510       1.1      matt 	/*
    511      1.10     skrll 	 * Now allocate L2 pages for the kernel
    512       1.1      matt 	 */
    513       1.1      matt #ifdef VERBOSE_INIT_ARM
    514       1.1      matt 	printf(" kernel");
    515       1.1      matt #endif
    516       1.8     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    517      1.23      matt 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    518      1.17      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    519       1.1      matt 		add_pages(bmi, &kernel_l2pt[idx]);
    520       1.1      matt 	}
    521      1.10     skrll 
    522      1.10     skrll 	/*
    523      1.10     skrll 	 * Now allocate L2 pages for the initial kernel VA space.
    524      1.10     skrll 	 */
    525       1.1      matt #ifdef VERBOSE_INIT_ARM
    526       1.1      matt 	printf(" vm");
    527       1.1      matt #endif
    528       1.8     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    529      1.23      matt 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    530      1.17      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    531       1.1      matt 		add_pages(bmi, &vmdata_l2pt[idx]);
    532       1.1      matt 	}
    533       1.1      matt 
    534       1.1      matt 	/*
    535       1.1      matt 	 * If someone wanted a L2 page for I/O, allocate it now.
    536       1.1      matt 	 */
    537      1.23      matt 	if (iovbase) {
    538       1.1      matt #ifdef VERBOSE_INIT_ARM
    539       1.1      matt 		printf(" io");
    540       1.1      matt #endif
    541      1.23      matt 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    542      1.17      matt 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    543       1.1      matt 		add_pages(bmi, &bmi->bmi_io_l2pt);
    544       1.1      matt 	}
    545       1.1      matt 
    546      1.22       riz #ifdef VERBOSE_INIT_ARM
    547       1.1      matt 	printf("%s: allocating stacks\n", __func__);
    548       1.1      matt #endif
    549       1.1      matt 
    550      1.10     skrll 	/* Allocate stacks for all modes and CPUs */
    551       1.1      matt 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    552      1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    553       1.1      matt 	add_pages(bmi, &abtstack);
    554       1.1      matt 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    555      1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    556       1.1      matt 	add_pages(bmi, &fiqstack);
    557       1.1      matt 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    558      1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    559       1.1      matt 	add_pages(bmi, &irqstack);
    560       1.1      matt 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    561      1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    562       1.1      matt 	add_pages(bmi, &undstack);
    563       1.1      matt 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    564      1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    565       1.1      matt 	add_pages(bmi, &idlestack);
    566       1.1      matt 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    567      1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    568       1.1      matt 	add_pages(bmi, &kernelstack);
    569       1.1      matt 
    570       1.1      matt 	/* Allocate the message buffer from the end of memory. */
    571       1.1      matt 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    572       1.1      matt 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    573      1.17      matt 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    574       1.1      matt 	add_pages(bmi, &msgbuf);
    575       1.1      matt 	msgbufphys = msgbuf.pv_pa;
    576      1.27      matt 	msgbufaddr = (void *)msgbuf.pv_va;
    577       1.1      matt 
    578      1.19      matt 	if (map_vectors_p) {
    579      1.19      matt 		/*
    580      1.19      matt 		 * Allocate a page for the system vector page.
    581      1.19      matt 		 * This page will just contain the system vectors and can be
    582      1.19      matt 		 * shared by all processes.
    583      1.19      matt 		 */
    584  1.32.2.2     skrll 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
    585      1.19      matt 		    PTE_CACHE, true);
    586      1.19      matt 	}
    587       1.1      matt 	systempage.pv_va = vectors;
    588       1.1      matt 
    589       1.1      matt 	/*
    590       1.1      matt 	 * If the caller needed a few extra pages for some reason, allocate
    591       1.1      matt 	 * them now.
    592       1.1      matt 	 */
    593       1.1      matt #if ARM_MMU_XSCALE == 1
    594       1.1      matt #if (ARM_NMMUS > 1)
    595       1.1      matt 	if (xscale_use_minidata)
    596  1.32.2.2     skrll #endif
    597      1.30  kiyohara 		valloc_pages(bmi, &minidataclean, 1,
    598      1.18      matt 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    599       1.1      matt #endif
    600       1.1      matt 
    601       1.1      matt 	/*
    602       1.1      matt 	 * Ok we have allocated physical pages for the primary kernel
    603       1.1      matt 	 * page tables and stacks.  Let's just confirm that.
    604       1.1      matt 	 */
    605       1.1      matt 	if (kernel_l1pt.pv_va == 0
    606       1.1      matt 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    607       1.1      matt 		panic("%s: Failed to allocate or align the kernel "
    608       1.1      matt 		    "page directory", __func__);
    609       1.1      matt 
    610       1.1      matt 
    611       1.1      matt #ifdef VERBOSE_INIT_ARM
    612       1.1      matt 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    613       1.1      matt #endif
    614       1.1      matt 
    615       1.1      matt 	/*
    616       1.1      matt 	 * Now we start construction of the L1 page table
    617       1.1      matt 	 * We start by mapping the L2 page tables into the L1.
    618       1.1      matt 	 * This means that we can replace L1 mappings later on if necessary
    619       1.1      matt 	 */
    620       1.1      matt 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    621       1.1      matt 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    622       1.1      matt 
    623      1.19      matt 	if (map_vectors_p) {
    624      1.19      matt 		/* Map the L2 pages tables in the L1 page table */
    625      1.19      matt 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    626      1.19      matt 		    &bmi->bmi_vector_l2pt);
    627      1.19      matt #ifdef VERBOSE_INIT_ARM
    628      1.19      matt 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    629      1.19      matt 		    "for VA %#lx\n (vectors)",
    630      1.19      matt 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    631      1.19      matt 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    632       1.1      matt #endif
    633      1.19      matt 	}
    634       1.1      matt 
    635       1.1      matt 	const vaddr_t kernel_base =
    636       1.1      matt 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    637       1.1      matt 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    638       1.1      matt 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    639       1.1      matt 		    &kernel_l2pt[idx]);
    640       1.1      matt #ifdef VERBOSE_INIT_ARM
    641       1.7     skrll 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    642      1.23      matt 		    __func__, kernel_l2pt[idx].pv_va,
    643      1.23      matt 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    644       1.1      matt #endif
    645       1.1      matt 	}
    646       1.1      matt 
    647       1.1      matt 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    648       1.1      matt 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    649       1.1      matt 		    &vmdata_l2pt[idx]);
    650       1.1      matt #ifdef VERBOSE_INIT_ARM
    651       1.7     skrll 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    652       1.1      matt 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    653       1.1      matt 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    654       1.1      matt #endif
    655       1.1      matt 	}
    656       1.1      matt 	if (iovbase) {
    657       1.1      matt 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    658       1.1      matt #ifdef VERBOSE_INIT_ARM
    659       1.7     skrll 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    660       1.1      matt 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    661       1.1      matt 		    iovbase & -L2_S_SEGSIZE);
    662       1.1      matt #endif
    663       1.1      matt 	}
    664       1.1      matt 
    665       1.1      matt 	/* update the top of the kernel VM */
    666       1.1      matt 	pmap_curmaxkvaddr =
    667       1.1      matt 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    668       1.1      matt 
    669       1.1      matt #ifdef VERBOSE_INIT_ARM
    670       1.1      matt 	printf("Mapping kernel\n");
    671       1.1      matt #endif
    672       1.1      matt 
    673       1.1      matt 	extern char etext[], _end[];
    674       1.1      matt 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    675       1.1      matt 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    676       1.1      matt 
    677       1.1      matt 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    678       1.1      matt 
    679       1.1      matt 	/* start at offset of kernel in RAM */
    680       1.1      matt 
    681       1.1      matt 	text.pv_pa = bmi->bmi_kernelstart;
    682       1.1      matt 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    683       1.1      matt 	text.pv_size = textsize;
    684  1.32.2.2     skrll 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE;
    685       1.1      matt 	text.pv_cache = PTE_CACHE;
    686       1.1      matt 
    687       1.1      matt #ifdef VERBOSE_INIT_ARM
    688       1.1      matt 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    689       1.1      matt 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    690       1.1      matt #endif
    691       1.1      matt 
    692       1.1      matt 	add_pages(bmi, &text);
    693       1.1      matt 
    694       1.1      matt 	data.pv_pa = text.pv_pa + textsize;
    695       1.1      matt 	data.pv_va = text.pv_va + textsize;
    696       1.1      matt 	data.pv_size = totalsize - textsize;
    697       1.1      matt 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    698       1.1      matt 	data.pv_cache = PTE_CACHE;
    699       1.1      matt 
    700       1.1      matt #ifdef VERBOSE_INIT_ARM
    701       1.1      matt 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    702       1.1      matt 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    703       1.1      matt #endif
    704       1.1      matt 
    705       1.1      matt 	add_pages(bmi, &data);
    706       1.1      matt 
    707       1.1      matt #ifdef VERBOSE_INIT_ARM
    708       1.1      matt 	printf("Listing Chunks\n");
    709      1.26     skrll 
    710      1.26     skrll 	pv_addr_t *lpv;
    711      1.26     skrll 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    712      1.26     skrll 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    713      1.26     skrll 		    "(PA %#lx, prot %d, cache %d)\n",
    714      1.26     skrll 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    715      1.26     skrll 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    716       1.1      matt 	}
    717       1.1      matt 	printf("\nMapping Chunks\n");
    718       1.1      matt #endif
    719       1.1      matt 
    720       1.1      matt 	pv_addr_t cur_pv;
    721       1.1      matt 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    722       1.1      matt 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    723       1.1      matt 		cur_pv = *pv;
    724  1.32.2.1     skrll 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    725       1.1      matt 		pv = SLIST_NEXT(pv, pv_list);
    726       1.1      matt 	} else {
    727      1.13      matt 		cur_pv.pv_va = KERNEL_BASE;
    728  1.32.2.1     skrll 		cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
    729  1.32.2.1     skrll 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    730       1.1      matt 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    731       1.1      matt 		cur_pv.pv_cache = PTE_CACHE;
    732       1.1      matt 	}
    733       1.1      matt 	while (pv != NULL) {
    734       1.1      matt 		if (mapallmem_p) {
    735       1.1      matt 			if (concat_pvaddr(&cur_pv, pv)) {
    736       1.1      matt 				pv = SLIST_NEXT(pv, pv_list);
    737       1.1      matt 				continue;
    738       1.1      matt 			}
    739       1.1      matt 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    740       1.1      matt 				/*
    741       1.1      matt 				 * See if we can extend the current pv to emcompass the
    742       1.1      matt 				 * hole, and if so do it and retry the concatenation.
    743       1.1      matt 				 */
    744       1.1      matt 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    745       1.1      matt 				    && cur_pv.pv_cache == PTE_CACHE) {
    746       1.1      matt 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    747       1.1      matt 					continue;
    748       1.1      matt 				}
    749       1.1      matt 
    750       1.1      matt 				/*
    751       1.1      matt 				 * We couldn't so emit the current chunk and then
    752       1.1      matt 				 */
    753       1.1      matt #ifdef VERBOSE_INIT_ARM
    754       1.1      matt 				printf("%s: mapping chunk VA %#lx..%#lx "
    755       1.1      matt 				    "(PA %#lx, prot %d, cache %d)\n",
    756       1.1      matt 				    __func__,
    757       1.1      matt 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    758       1.1      matt 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    759       1.1      matt #endif
    760       1.1      matt 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    761       1.1      matt 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    762       1.1      matt 
    763       1.1      matt 				/*
    764       1.1      matt 				 * set the current chunk to the hole and try again.
    765       1.1      matt 				 */
    766       1.1      matt 				cur_pv.pv_pa += cur_pv.pv_size;
    767       1.1      matt 				cur_pv.pv_va += cur_pv.pv_size;
    768       1.1      matt 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    769       1.1      matt 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    770       1.1      matt 				cur_pv.pv_cache = PTE_CACHE;
    771       1.1      matt 				continue;
    772       1.1      matt 			}
    773       1.1      matt 		}
    774       1.1      matt 
    775       1.1      matt 		/*
    776       1.1      matt 		 * The new pv didn't concatenate so emit the current one
    777       1.1      matt 		 * and use the new pv as the current pv.
    778       1.1      matt 		 */
    779       1.1      matt #ifdef VERBOSE_INIT_ARM
    780       1.1      matt 		printf("%s: mapping chunk VA %#lx..%#lx "
    781       1.1      matt 		    "(PA %#lx, prot %d, cache %d)\n",
    782       1.1      matt 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    783       1.1      matt 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    784       1.1      matt #endif
    785       1.1      matt 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    786       1.1      matt 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    787       1.1      matt 		cur_pv = *pv;
    788       1.1      matt 		pv = SLIST_NEXT(pv, pv_list);
    789       1.1      matt 	}
    790       1.1      matt 
    791       1.1      matt 	/*
    792       1.1      matt 	 * If we are mapping all of memory, let's map the rest of memory.
    793       1.1      matt 	 */
    794       1.1      matt 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    795       1.1      matt 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    796       1.1      matt 		    && cur_pv.pv_cache == PTE_CACHE) {
    797       1.1      matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    798       1.1      matt 		} else {
    799  1.32.2.1     skrll 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    800  1.32.2.1     skrll 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    801  1.32.2.1     skrll 			    kernel_vm_base);
    802       1.1      matt #ifdef VERBOSE_INIT_ARM
    803       1.1      matt 			printf("%s: mapping chunk VA %#lx..%#lx "
    804       1.1      matt 			    "(PA %#lx, prot %d, cache %d)\n",
    805       1.1      matt 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    806       1.1      matt 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    807       1.1      matt #endif
    808       1.1      matt 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    809       1.1      matt 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    810       1.1      matt 			cur_pv.pv_pa += cur_pv.pv_size;
    811       1.1      matt 			cur_pv.pv_va += cur_pv.pv_size;
    812       1.1      matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    813       1.1      matt 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    814       1.1      matt 			cur_pv.pv_cache = PTE_CACHE;
    815       1.1      matt 		}
    816       1.1      matt 	}
    817       1.1      matt 
    818  1.32.2.1     skrll 	// The amount we can direct is limited by the start of the
    819  1.32.2.1     skrll 	// virtual part of the kernel address space.  Don't overrun
    820  1.32.2.1     skrll 	// into it.
    821  1.32.2.1     skrll 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    822  1.32.2.1     skrll 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    823  1.32.2.1     skrll 	}
    824  1.32.2.1     skrll 
    825       1.1      matt 	/*
    826       1.1      matt 	 * Now we map the final chunk.
    827       1.1      matt 	 */
    828       1.1      matt #ifdef VERBOSE_INIT_ARM
    829       1.1      matt 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    830       1.1      matt 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    831       1.1      matt 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    832       1.1      matt #endif
    833       1.1      matt 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    834       1.1      matt 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    835       1.1      matt 
    836       1.1      matt 	/*
    837       1.1      matt 	 * Now we map the stuff that isn't directly after the kernel
    838       1.1      matt 	 */
    839      1.19      matt 	if (map_vectors_p) {
    840      1.19      matt 		/* Map the vector page. */
    841      1.19      matt 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    842  1.32.2.2     skrll 		    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
    843      1.19      matt 	}
    844       1.1      matt 
    845  1.32.2.2     skrll 	/* Map the Mini-Data cache clean area. */
    846       1.1      matt #if ARM_MMU_XSCALE == 1
    847       1.1      matt #if (ARM_NMMUS > 1)
    848       1.1      matt 	if (xscale_use_minidata)
    849  1.32.2.2     skrll #endif
    850      1.30  kiyohara 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    851  1.32.2.2     skrll 		    minidataclean.pv_pa);
    852       1.1      matt #endif
    853       1.1      matt 
    854       1.1      matt 	/*
    855       1.1      matt 	 * Map integrated peripherals at same address in first level page
    856       1.1      matt 	 * table so that we can continue to use console.
    857       1.1      matt 	 */
    858       1.1      matt 	if (devmap)
    859       1.1      matt 		pmap_devmap_bootstrap(l1pt_va, devmap);
    860       1.1      matt 
    861       1.1      matt #ifdef VERBOSE_INIT_ARM
    862       1.1      matt 	/* Tell the user about where all the bits and pieces live. */
    863       1.1      matt 	printf("%22s       Physical              Virtual        Num\n", " ");
    864       1.1      matt 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    865       1.1      matt 
    866       1.1      matt 	static const char mem_fmt[] =
    867       1.1      matt 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    868       1.1      matt 	static const char mem_fmt_nov[] =
    869       1.1      matt 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    870       1.1      matt 
    871       1.1      matt 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    872       1.1      matt 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    873  1.32.2.3     skrll 	    (int)physmem);
    874       1.1      matt 	printf(mem_fmt, "text section",
    875       1.1      matt 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    876       1.1      matt 	       text.pv_va, text.pv_va + text.pv_size - 1,
    877       1.1      matt 	       (int)(text.pv_size / PAGE_SIZE));
    878       1.1      matt 	printf(mem_fmt, "data section",
    879       1.1      matt 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    880       1.1      matt 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    881       1.1      matt 	       (int)((round_page((vaddr_t)_edata)
    882       1.1      matt 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    883       1.1      matt 	printf(mem_fmt, "bss section",
    884       1.1      matt 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    885       1.1      matt 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    886       1.1      matt 	       (int)((round_page((vaddr_t)__bss_end__)
    887       1.1      matt 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    888       1.1      matt 	printf(mem_fmt, "L1 page directory",
    889       1.1      matt 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    890       1.1      matt 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    891       1.1      matt 	    L1_TABLE_SIZE / PAGE_SIZE);
    892       1.7     skrll 	printf(mem_fmt, "ABT stack (CPU 0)",
    893       1.7     skrll 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    894       1.7     skrll 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    895       1.7     skrll 	    ABT_STACK_SIZE);
    896       1.1      matt 	printf(mem_fmt, "FIQ stack (CPU 0)",
    897       1.1      matt 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    898       1.1      matt 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    899       1.1      matt 	    FIQ_STACK_SIZE);
    900       1.1      matt 	printf(mem_fmt, "IRQ stack (CPU 0)",
    901       1.1      matt 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    902       1.1      matt 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    903       1.1      matt 	    IRQ_STACK_SIZE);
    904       1.1      matt 	printf(mem_fmt, "UND stack (CPU 0)",
    905       1.1      matt 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    906       1.1      matt 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    907       1.1      matt 	    UND_STACK_SIZE);
    908       1.1      matt 	printf(mem_fmt, "IDLE stack (CPU 0)",
    909       1.1      matt 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    910       1.1      matt 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    911       1.1      matt 	    UPAGES);
    912       1.1      matt 	printf(mem_fmt, "SVC stack",
    913       1.1      matt 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    914       1.1      matt 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    915       1.1      matt 	    UPAGES);
    916       1.9     skrll 	printf(mem_fmt, "Message Buffer",
    917       1.9     skrll 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    918       1.9     skrll 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    919       1.9     skrll 	    (int)msgbuf_pgs);
    920      1.19      matt 	if (map_vectors_p) {
    921      1.19      matt 		printf(mem_fmt, "Exception Vectors",
    922      1.19      matt 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    923      1.19      matt 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    924      1.19      matt 		    1);
    925      1.19      matt 	}
    926       1.1      matt 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    927       1.1      matt 		pv = &bmi->bmi_freeblocks[i];
    928       1.1      matt 
    929       1.1      matt 		printf(mem_fmt_nov, "Free Memory",
    930       1.1      matt 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    931       1.1      matt 		    pv->pv_size / PAGE_SIZE);
    932       1.1      matt 	}
    933       1.1      matt #endif
    934       1.1      matt 	/*
    935       1.1      matt 	 * Now we have the real page tables in place so we can switch to them.
    936       1.1      matt 	 * Once this is done we will be running with the REAL kernel page
    937       1.1      matt 	 * tables.
    938       1.1      matt 	 */
    939       1.1      matt 
    940      1.25      matt #if defined(VERBOSE_INIT_ARM)
    941       1.2      matt 	printf("TTBR0=%#x", armreg_ttbr_read());
    942       1.2      matt #ifdef _ARM_ARCH_6
    943      1.25      matt 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    944      1.25      matt 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    945      1.25      matt 	    armreg_contextidr_read());
    946       1.2      matt #endif
    947       1.2      matt 	printf("\n");
    948       1.2      matt #endif
    949       1.2      matt 
    950       1.1      matt 	/* Switch tables */
    951       1.1      matt #ifdef VERBOSE_INIT_ARM
    952       1.3      matt 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    953       1.1      matt #endif
    954       1.1      matt 
    955      1.23      matt #ifdef ARM_MMU_EXTENDED
    956      1.23      matt 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    957      1.23      matt 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    958      1.23      matt #else
    959       1.1      matt 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    960      1.23      matt #endif
    961       1.3      matt 	cpu_idcache_wbinv_all();
    962      1.23      matt #ifdef VERBOSE_INIT_ARM
    963      1.23      matt 	printf(" ttb");
    964      1.23      matt #endif
    965      1.17      matt #ifdef ARM_MMU_EXTENDED
    966      1.23      matt 	/*
    967      1.23      matt 	 * TTBCR should have been initialized by the MD start code.
    968      1.23      matt 	 */
    969      1.25      matt 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    970      1.23      matt 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    971      1.24      matt 	/*
    972      1.24      matt 	 * Disable lookups via TTBR0 until there is an activated pmap.
    973      1.24      matt 	 */
    974      1.24      matt 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    975      1.17      matt 	cpu_setttb(l1pt_pa, KERNEL_PID);
    976      1.24      matt 	arm_isb();
    977      1.17      matt #else
    978       1.4      matt 	cpu_setttb(l1pt_pa, true);
    979      1.23      matt 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    980      1.17      matt #endif
    981       1.1      matt 	cpu_tlb_flushID();
    982       1.1      matt 
    983       1.1      matt #ifdef VERBOSE_INIT_ARM
    984      1.23      matt #ifdef ARM_MMU_EXTENDED
    985      1.24      matt 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    986      1.24      matt 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    987      1.23      matt #else
    988      1.24      matt 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
    989       1.1      matt #endif
    990      1.25      matt #endif
    991      1.25      matt 
    992      1.25      matt #ifdef MULTIPROCESSOR
    993      1.25      matt 	/*
    994      1.25      matt 	 * Kick the secondaries to load the TTB.  After which they'll go
    995      1.25      matt 	 * back to sleep to wait for the final kick so they will hatch.
    996      1.25      matt 	 */
    997      1.25      matt #ifdef VERBOSE_INIT_ARM
    998      1.25      matt 	printf(" hatchlings");
    999      1.25      matt #endif
   1000      1.25      matt 	cpu_boot_secondary_processors();
   1001      1.25      matt #endif
   1002      1.25      matt 
   1003      1.25      matt #ifdef VERBOSE_INIT_ARM
   1004      1.24      matt 	printf(" OK\n");
   1005      1.23      matt #endif
   1006       1.1      matt }
   1007