arm32_kvminit.c revision 1.33 1 1.33 matt /* $NetBSD: arm32_kvminit.c,v 1.33 2015/05/04 00:44:12 matt Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 1.1 matt * Written by Hiroyuki Bessho for Genetec Corporation.
6 1.1 matt *
7 1.1 matt * Redistribution and use in source and binary forms, with or without
8 1.1 matt * modification, are permitted provided that the following conditions
9 1.1 matt * are met:
10 1.1 matt * 1. Redistributions of source code must retain the above copyright
11 1.1 matt * notice, this list of conditions and the following disclaimer.
12 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer in the
14 1.1 matt * documentation and/or other materials provided with the distribution.
15 1.1 matt * 3. The name of Genetec Corporation may not be used to endorse or
16 1.1 matt * promote products derived from this software without specific prior
17 1.1 matt * written permission.
18 1.1 matt *
19 1.1 matt * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
30 1.1 matt *
31 1.1 matt * Copyright (c) 2001 Wasabi Systems, Inc.
32 1.1 matt * All rights reserved.
33 1.1 matt *
34 1.1 matt * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 1.1 matt *
36 1.1 matt * Redistribution and use in source and binary forms, with or without
37 1.1 matt * modification, are permitted provided that the following conditions
38 1.1 matt * are met:
39 1.1 matt * 1. Redistributions of source code must retain the above copyright
40 1.1 matt * notice, this list of conditions and the following disclaimer.
41 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 matt * notice, this list of conditions and the following disclaimer in the
43 1.1 matt * documentation and/or other materials provided with the distribution.
44 1.1 matt * 3. All advertising materials mentioning features or use of this software
45 1.1 matt * must display the following acknowledgement:
46 1.1 matt * This product includes software developed for the NetBSD Project by
47 1.1 matt * Wasabi Systems, Inc.
48 1.1 matt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 1.1 matt * or promote products derived from this software without specific prior
50 1.1 matt * written permission.
51 1.1 matt *
52 1.1 matt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
63 1.1 matt *
64 1.1 matt * Copyright (c) 1997,1998 Mark Brinicombe.
65 1.1 matt * Copyright (c) 1997,1998 Causality Limited.
66 1.1 matt * All rights reserved.
67 1.1 matt *
68 1.1 matt * Redistribution and use in source and binary forms, with or without
69 1.1 matt * modification, are permitted provided that the following conditions
70 1.1 matt * are met:
71 1.1 matt * 1. Redistributions of source code must retain the above copyright
72 1.1 matt * notice, this list of conditions and the following disclaimer.
73 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
74 1.1 matt * notice, this list of conditions and the following disclaimer in the
75 1.1 matt * documentation and/or other materials provided with the distribution.
76 1.1 matt * 3. All advertising materials mentioning features or use of this software
77 1.1 matt * must display the following acknowledgement:
78 1.1 matt * This product includes software developed by Mark Brinicombe
79 1.1 matt * for the NetBSD Project.
80 1.1 matt * 4. The name of the company nor the name of the author may be used to
81 1.1 matt * endorse or promote products derived from this software without specific
82 1.1 matt * prior written permission.
83 1.1 matt *
84 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 1.1 matt * SUCH DAMAGE.
95 1.1 matt *
96 1.1 matt * Copyright (c) 2007 Microsoft
97 1.1 matt * All rights reserved.
98 1.1 matt *
99 1.1 matt * Redistribution and use in source and binary forms, with or without
100 1.1 matt * modification, are permitted provided that the following conditions
101 1.1 matt * are met:
102 1.1 matt * 1. Redistributions of source code must retain the above copyright
103 1.1 matt * notice, this list of conditions and the following disclaimer.
104 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
105 1.1 matt * notice, this list of conditions and the following disclaimer in the
106 1.1 matt * documentation and/or other materials provided with the distribution.
107 1.1 matt * 3. All advertising materials mentioning features or use of this software
108 1.1 matt * must display the following acknowledgement:
109 1.1 matt * This product includes software developed by Microsoft
110 1.1 matt *
111 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 1.1 matt * SUCH DAMAGE.
122 1.1 matt */
123 1.1 matt
124 1.32 skrll #include "opt_multiprocessor.h"
125 1.32 skrll
126 1.1 matt #include <sys/cdefs.h>
127 1.33 matt __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.33 2015/05/04 00:44:12 matt Exp $");
128 1.1 matt
129 1.1 matt #include <sys/param.h>
130 1.1 matt #include <sys/device.h>
131 1.1 matt #include <sys/kernel.h>
132 1.1 matt #include <sys/reboot.h>
133 1.1 matt #include <sys/bus.h>
134 1.1 matt
135 1.1 matt #include <dev/cons.h>
136 1.1 matt
137 1.1 matt #include <uvm/uvm_extern.h>
138 1.1 matt
139 1.24 matt #include <arm/locore.h>
140 1.1 matt #include <arm/db_machdep.h>
141 1.1 matt #include <arm/undefined.h>
142 1.1 matt #include <arm/bootconfig.h>
143 1.1 matt #include <arm/arm32/machdep.h>
144 1.1 matt
145 1.1 matt struct bootmem_info bootmem_info;
146 1.1 matt
147 1.27 matt extern void *msgbufaddr;
148 1.1 matt paddr_t msgbufphys;
149 1.1 matt paddr_t physical_start;
150 1.1 matt paddr_t physical_end;
151 1.1 matt
152 1.1 matt extern char etext[];
153 1.1 matt extern char __data_start[], _edata[];
154 1.1 matt extern char __bss_start[], __bss_end__[];
155 1.1 matt extern char _end[];
156 1.1 matt
157 1.1 matt /* Page tables for mapping kernel VM */
158 1.1 matt #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
159 1.1 matt
160 1.1 matt /*
161 1.1 matt * Macros to translate between physical and virtual for a subset of the
162 1.1 matt * kernel address space. *Not* for general use.
163 1.1 matt */
164 1.28 matt #if defined(KERNEL_BASE_VOFFSET)
165 1.28 matt #define KERN_VTOPHYS(bmi, va) \
166 1.28 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
167 1.28 matt #define KERN_PHYSTOV(bmi, pa) \
168 1.28 matt ((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
169 1.28 matt #elif defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
170 1.28 matt #define KERN_VTOPHYS(bmi, va) \
171 1.28 matt ((paddr_t)((vaddr_t)(va) - pmap_directbase + (bmi)->bmi_start))
172 1.28 matt #define KERN_PHYSTOV(bmi, pa) \
173 1.28 matt ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + pmap_directbase))
174 1.28 matt #else
175 1.1 matt #define KERN_VTOPHYS(bmi, va) \
176 1.1 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
177 1.1 matt #define KERN_PHYSTOV(bmi, pa) \
178 1.1 matt ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
179 1.28 matt #endif
180 1.1 matt
181 1.1 matt void
182 1.1 matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
183 1.1 matt {
184 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
185 1.1 matt pv_addr_t *pv = bmi->bmi_freeblocks;
186 1.1 matt
187 1.1 matt #ifdef VERBOSE_INIT_ARM
188 1.1 matt printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
189 1.1 matt __func__, memstart, memsize, kernelstart);
190 1.1 matt #endif
191 1.1 matt
192 1.1 matt physical_start = bmi->bmi_start = memstart;
193 1.1 matt physical_end = bmi->bmi_end = memstart + memsize;
194 1.33 matt #ifndef ARM_HAS_LPAE
195 1.33 matt if (physical_end == 0) {
196 1.33 matt physical_end = -PAGE_SIZE;
197 1.33 matt memsize -= PAGE_SIZE;
198 1.33 matt #ifdef VERBOSE_INIT_ARM
199 1.33 matt printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
200 1.33 matt __func__);
201 1.33 matt #endif
202 1.33 matt }
203 1.33 matt #endif
204 1.1 matt physmem = memsize / PAGE_SIZE;
205 1.1 matt
206 1.1 matt /*
207 1.1 matt * Let's record where the kernel lives.
208 1.1 matt */
209 1.1 matt bmi->bmi_kernelstart = kernelstart;
210 1.1 matt bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
211 1.1 matt
212 1.1 matt #ifdef VERBOSE_INIT_ARM
213 1.1 matt printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
214 1.1 matt #endif
215 1.1 matt
216 1.1 matt /*
217 1.1 matt * Now the rest of the free memory must be after the kernel.
218 1.1 matt */
219 1.1 matt pv->pv_pa = bmi->bmi_kernelend;
220 1.1 matt pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
221 1.1 matt pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
222 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
223 1.1 matt #ifdef VERBOSE_INIT_ARM
224 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
225 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
226 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
227 1.1 matt #endif
228 1.1 matt pv++;
229 1.1 matt
230 1.1 matt /*
231 1.1 matt * Add a free block for any memory before the kernel.
232 1.1 matt */
233 1.1 matt if (bmi->bmi_start < bmi->bmi_kernelstart) {
234 1.1 matt pv->pv_pa = bmi->bmi_start;
235 1.28 matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
236 1.28 matt pv->pv_va = pmap_directbase;
237 1.28 matt #else
238 1.33 matt /*
239 1.33 matt * If there's lots of memory the kernel could be placed far
240 1.33 matt * from the start of RAM. If that's the case, don't map the
241 1.33 matt * RAM that would have virtual addresses below KERNEL_BASE.
242 1.33 matt */
243 1.33 matt if (pv->pv_pa < KERN_VTOPHYS(bmi, KERNEL_BASE)) {
244 1.33 matt psize_t size = KERN_VTOPHYS(bmi, KERNEL_BASE) - pv->pv_pa;
245 1.33 matt bmi->bmi_freepages += size / PAGE_SIZE;
246 1.33 matt #ifdef VERBOSE_INIT_ARM
247 1.33 matt printf("%s: adding %lu free pages: [%#lx..%#lx]\n",
248 1.33 matt __func__, size / PAGE_SIZE, pv->pv_va,
249 1.33 matt pv->pv_pa + size - 1);
250 1.33 matt #endif
251 1.33 matt pv->pv_pa = KERN_VTOPHYS(bmi, KERNEL_BASE);
252 1.33 matt }
253 1.1 matt pv->pv_va = KERNEL_BASE;
254 1.28 matt #endif
255 1.33 matt pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
256 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
257 1.1 matt #ifdef VERBOSE_INIT_ARM
258 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
259 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
260 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
261 1.1 matt #endif
262 1.1 matt pv++;
263 1.1 matt }
264 1.1 matt
265 1.1 matt bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
266 1.1 matt
267 1.1 matt SLIST_INIT(&bmi->bmi_freechunks);
268 1.1 matt SLIST_INIT(&bmi->bmi_chunks);
269 1.1 matt }
270 1.1 matt
271 1.1 matt static bool
272 1.1 matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
273 1.1 matt {
274 1.1 matt if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
275 1.1 matt && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
276 1.1 matt && acc_pv->pv_prot == pv->pv_prot
277 1.1 matt && acc_pv->pv_cache == pv->pv_cache) {
278 1.1 matt #ifdef VERBOSE_INIT_ARMX
279 1.1 matt printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
280 1.1 matt __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
281 1.1 matt acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
282 1.1 matt #endif
283 1.1 matt acc_pv->pv_size += pv->pv_size;
284 1.1 matt return true;
285 1.1 matt }
286 1.1 matt
287 1.1 matt return false;
288 1.1 matt }
289 1.1 matt
290 1.1 matt static void
291 1.1 matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
292 1.1 matt {
293 1.1 matt pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
294 1.14 skrll while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
295 1.1 matt pv_addr_t * const pv0 = (*pvp);
296 1.1 matt KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
297 1.1 matt if (concat_pvaddr(pv0, pv)) {
298 1.1 matt #ifdef VERBOSE_INIT_ARM
299 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
300 1.1 matt __func__, "appending", pv,
301 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
302 1.1 matt pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
303 1.1 matt #endif
304 1.1 matt pv = SLIST_NEXT(pv0, pv_list);
305 1.1 matt if (pv != NULL && concat_pvaddr(pv0, pv)) {
306 1.1 matt #ifdef VERBOSE_INIT_ARM
307 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
308 1.1 matt __func__, "merging", pv,
309 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
310 1.1 matt pv0->pv_pa,
311 1.1 matt pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
312 1.1 matt #endif
313 1.1 matt SLIST_REMOVE_AFTER(pv0, pv_list);
314 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
315 1.1 matt }
316 1.1 matt return;
317 1.1 matt }
318 1.1 matt KASSERT(pv->pv_va != (*pvp)->pv_va);
319 1.1 matt pvp = &SLIST_NEXT(*pvp, pv_list);
320 1.1 matt }
321 1.1 matt KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
322 1.1 matt pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
323 1.1 matt KASSERT(new_pv != NULL);
324 1.1 matt SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
325 1.1 matt *new_pv = *pv;
326 1.1 matt SLIST_NEXT(new_pv, pv_list) = *pvp;
327 1.1 matt (*pvp) = new_pv;
328 1.1 matt #ifdef VERBOSE_INIT_ARM
329 1.1 matt printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
330 1.1 matt __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
331 1.1 matt new_pv->pv_size / PAGE_SIZE);
332 1.1 matt if (SLIST_NEXT(new_pv, pv_list))
333 1.1 matt printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
334 1.1 matt else
335 1.1 matt printf("at tail\n");
336 1.1 matt #endif
337 1.1 matt }
338 1.1 matt
339 1.1 matt static void
340 1.1 matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
341 1.17 matt int prot, int cache, bool zero_p)
342 1.1 matt {
343 1.1 matt size_t nbytes = npages * PAGE_SIZE;
344 1.1 matt pv_addr_t *free_pv = bmi->bmi_freeblocks;
345 1.1 matt size_t free_idx = 0;
346 1.1 matt static bool l1pt_found;
347 1.1 matt
348 1.23 matt KASSERT(npages > 0);
349 1.23 matt
350 1.1 matt /*
351 1.6 skrll * If we haven't allocated the kernel L1 page table and we are aligned
352 1.1 matt * at a L1 table boundary, alloc the memory for it.
353 1.1 matt */
354 1.1 matt if (!l1pt_found
355 1.1 matt && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
356 1.1 matt && free_pv->pv_size >= L1_TABLE_SIZE) {
357 1.1 matt l1pt_found = true;
358 1.1 matt valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
359 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
360 1.1 matt add_pages(bmi, &kernel_l1pt);
361 1.1 matt }
362 1.1 matt
363 1.1 matt while (nbytes > free_pv->pv_size) {
364 1.1 matt free_pv++;
365 1.1 matt free_idx++;
366 1.1 matt if (free_idx == bmi->bmi_nfreeblocks) {
367 1.1 matt panic("%s: could not allocate %zu bytes",
368 1.1 matt __func__, nbytes);
369 1.1 matt }
370 1.1 matt }
371 1.1 matt
372 1.12 skrll /*
373 1.12 skrll * As we allocate the memory, make sure that we don't walk over
374 1.12 skrll * our current first level translation table.
375 1.12 skrll */
376 1.12 skrll KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
377 1.12 skrll
378 1.1 matt pv->pv_pa = free_pv->pv_pa;
379 1.1 matt pv->pv_va = free_pv->pv_va;
380 1.1 matt pv->pv_size = nbytes;
381 1.1 matt pv->pv_prot = prot;
382 1.1 matt pv->pv_cache = cache;
383 1.1 matt
384 1.1 matt /*
385 1.1 matt * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
386 1.1 matt * just use PTE_CACHE.
387 1.1 matt */
388 1.1 matt if (cache == PTE_PAGETABLE
389 1.1 matt && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
390 1.1 matt && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
391 1.1 matt && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
392 1.1 matt pv->pv_cache = PTE_CACHE;
393 1.1 matt
394 1.1 matt free_pv->pv_pa += nbytes;
395 1.1 matt free_pv->pv_va += nbytes;
396 1.1 matt free_pv->pv_size -= nbytes;
397 1.1 matt if (free_pv->pv_size == 0) {
398 1.1 matt --bmi->bmi_nfreeblocks;
399 1.1 matt for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
400 1.1 matt free_pv[0] = free_pv[1];
401 1.1 matt }
402 1.1 matt }
403 1.1 matt
404 1.1 matt bmi->bmi_freepages -= npages;
405 1.1 matt
406 1.18 matt if (zero_p)
407 1.18 matt memset((void *)pv->pv_va, 0, nbytes);
408 1.1 matt }
409 1.1 matt
410 1.1 matt void
411 1.1 matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
412 1.1 matt const struct pmap_devmap *devmap, bool mapallmem_p)
413 1.1 matt {
414 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
415 1.1 matt #ifdef MULTIPROCESSOR
416 1.25 matt const size_t cpu_num = arm_cpu_max;
417 1.1 matt #else
418 1.1 matt const size_t cpu_num = 1;
419 1.1 matt #endif
420 1.20 matt #ifdef ARM_HAS_VBAR
421 1.20 matt const bool map_vectors_p = false;
422 1.20 matt #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
423 1.21 matt const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
424 1.21 matt || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
425 1.19 matt #else
426 1.19 matt const bool map_vectors_p = true;
427 1.19 matt #endif
428 1.1 matt
429 1.15 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
430 1.15 matt KASSERT(mapallmem_p);
431 1.28 matt #ifdef ARM_MMU_EXTENDED
432 1.28 matt /*
433 1.28 matt * We can only use address beneath kernel_vm_base to map physical
434 1.28 matt * memory.
435 1.28 matt */
436 1.29 matt const psize_t physical_size =
437 1.29 matt roundup(physical_end - physical_start, L1_SS_SIZE);
438 1.29 matt KASSERT(kernel_vm_base >= physical_size);
439 1.28 matt /*
440 1.28 matt * If we don't have enough memory via TTBR1, we have use addresses
441 1.28 matt * from TTBR0 to map some of the physical memory. But try to use as
442 1.28 matt * much high memory space as possible.
443 1.28 matt */
444 1.29 matt if (kernel_vm_base - KERNEL_BASE < physical_size) {
445 1.29 matt pmap_directbase = kernel_vm_base - physical_size;
446 1.28 matt printf("%s: changing pmap_directbase to %#lx\n", __func__,
447 1.28 matt pmap_directbase);
448 1.28 matt }
449 1.28 matt #else
450 1.28 matt KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
451 1.28 matt #endif /* ARM_MMU_EXTENDED */
452 1.28 matt #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
453 1.15 matt
454 1.1 matt /*
455 1.1 matt * Calculate the number of L2 pages needed for mapping the
456 1.11 skrll * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
457 1.11 skrll * and 1 for IO
458 1.1 matt */
459 1.1 matt size_t kernel_size = bmi->bmi_kernelend;
460 1.1 matt kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
461 1.23 matt kernel_size += L1_TABLE_SIZE_REAL;
462 1.23 matt kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
463 1.23 matt if (map_vectors_p) {
464 1.23 matt kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
465 1.23 matt }
466 1.23 matt if (iovbase) {
467 1.23 matt kernel_size += PAGE_SIZE; /* L2PT for IO */
468 1.23 matt }
469 1.1 matt kernel_size +=
470 1.1 matt cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
471 1.1 matt + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
472 1.11 skrll kernel_size += round_page(MSGBUFSIZE);
473 1.1 matt kernel_size += 0x10000; /* slop */
474 1.23 matt if (!mapallmem_p) {
475 1.23 matt kernel_size += PAGE_SIZE
476 1.23 matt * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
477 1.23 matt }
478 1.1 matt kernel_size = round_page(kernel_size);
479 1.1 matt
480 1.1 matt /*
481 1.23 matt * Now we know how many L2 pages it will take. If we've mapped
482 1.23 matt * all of memory, then it won't take any.
483 1.1 matt */
484 1.23 matt const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
485 1.23 matt ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
486 1.1 matt
487 1.1 matt #ifdef VERBOSE_INIT_ARM
488 1.1 matt printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
489 1.1 matt __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
490 1.1 matt #endif
491 1.1 matt
492 1.1 matt KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
493 1.1 matt pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
494 1.1 matt pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
495 1.1 matt pv_addr_t msgbuf;
496 1.1 matt pv_addr_t text;
497 1.1 matt pv_addr_t data;
498 1.1 matt pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
499 1.1 matt #if ARM_MMU_XSCALE == 1
500 1.1 matt pv_addr_t minidataclean;
501 1.1 matt #endif
502 1.1 matt
503 1.1 matt /*
504 1.1 matt * We need to allocate some fixed page tables to get the kernel going.
505 1.1 matt *
506 1.1 matt * We are going to allocate our bootstrap pages from the beginning of
507 1.1 matt * the free space that we just calculated. We allocate one page
508 1.1 matt * directory and a number of page tables and store the physical
509 1.10 skrll * addresses in the bmi_l2pts array in bootmem_info.
510 1.1 matt *
511 1.1 matt * The kernel page directory must be on a 16K boundary. The page
512 1.1 matt * tables must be on 4K boundaries. What we do is allocate the
513 1.1 matt * page directory on the first 16K boundary that we encounter, and
514 1.1 matt * the page tables on 4K boundaries otherwise. Since we allocate
515 1.1 matt * at least 3 L2 page tables, we are guaranteed to encounter at
516 1.1 matt * least one 16K aligned region.
517 1.1 matt */
518 1.1 matt
519 1.1 matt #ifdef VERBOSE_INIT_ARM
520 1.1 matt printf("%s: allocating page tables for", __func__);
521 1.1 matt #endif
522 1.1 matt for (size_t i = 0; i < __arraycount(chunks); i++) {
523 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
524 1.1 matt }
525 1.1 matt
526 1.1 matt kernel_l1pt.pv_pa = 0;
527 1.1 matt kernel_l1pt.pv_va = 0;
528 1.1 matt
529 1.1 matt /*
530 1.10 skrll * Allocate the L2 pages, but if we get to a page that is aligned for
531 1.10 skrll * an L1 page table, we will allocate the pages for it first and then
532 1.10 skrll * allocate the L2 page.
533 1.10 skrll */
534 1.10 skrll
535 1.19 matt if (map_vectors_p) {
536 1.19 matt /*
537 1.19 matt * First allocate L2 page for the vectors.
538 1.19 matt */
539 1.1 matt #ifdef VERBOSE_INIT_ARM
540 1.19 matt printf(" vector");
541 1.1 matt #endif
542 1.23 matt valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
543 1.23 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
544 1.19 matt add_pages(bmi, &bmi->bmi_vector_l2pt);
545 1.19 matt }
546 1.1 matt
547 1.1 matt /*
548 1.10 skrll * Now allocate L2 pages for the kernel
549 1.1 matt */
550 1.1 matt #ifdef VERBOSE_INIT_ARM
551 1.1 matt printf(" kernel");
552 1.1 matt #endif
553 1.23 matt KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
554 1.23 matt KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
555 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
556 1.23 matt valloc_pages(bmi, &kernel_l2pt[idx], 1,
557 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
558 1.1 matt add_pages(bmi, &kernel_l2pt[idx]);
559 1.1 matt }
560 1.10 skrll
561 1.10 skrll /*
562 1.10 skrll * Now allocate L2 pages for the initial kernel VA space.
563 1.10 skrll */
564 1.1 matt #ifdef VERBOSE_INIT_ARM
565 1.1 matt printf(" vm");
566 1.1 matt #endif
567 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
568 1.23 matt valloc_pages(bmi, &vmdata_l2pt[idx], 1,
569 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
570 1.1 matt add_pages(bmi, &vmdata_l2pt[idx]);
571 1.1 matt }
572 1.1 matt
573 1.1 matt /*
574 1.1 matt * If someone wanted a L2 page for I/O, allocate it now.
575 1.1 matt */
576 1.23 matt if (iovbase) {
577 1.1 matt #ifdef VERBOSE_INIT_ARM
578 1.1 matt printf(" io");
579 1.1 matt #endif
580 1.23 matt valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
581 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
582 1.1 matt add_pages(bmi, &bmi->bmi_io_l2pt);
583 1.1 matt }
584 1.1 matt
585 1.22 riz #ifdef VERBOSE_INIT_ARM
586 1.1 matt printf("%s: allocating stacks\n", __func__);
587 1.1 matt #endif
588 1.1 matt
589 1.10 skrll /* Allocate stacks for all modes and CPUs */
590 1.1 matt valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
591 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
592 1.1 matt add_pages(bmi, &abtstack);
593 1.1 matt valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
594 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
595 1.1 matt add_pages(bmi, &fiqstack);
596 1.1 matt valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
597 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
598 1.1 matt add_pages(bmi, &irqstack);
599 1.1 matt valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
600 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
601 1.1 matt add_pages(bmi, &undstack);
602 1.1 matt valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
603 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
604 1.1 matt add_pages(bmi, &idlestack);
605 1.1 matt valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
606 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
607 1.1 matt add_pages(bmi, &kernelstack);
608 1.1 matt
609 1.1 matt /* Allocate the message buffer from the end of memory. */
610 1.1 matt const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
611 1.1 matt valloc_pages(bmi, &msgbuf, msgbuf_pgs,
612 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
613 1.1 matt add_pages(bmi, &msgbuf);
614 1.1 matt msgbufphys = msgbuf.pv_pa;
615 1.27 matt msgbufaddr = (void *)msgbuf.pv_va;
616 1.1 matt
617 1.19 matt if (map_vectors_p) {
618 1.19 matt /*
619 1.19 matt * Allocate a page for the system vector page.
620 1.19 matt * This page will just contain the system vectors and can be
621 1.19 matt * shared by all processes.
622 1.19 matt */
623 1.19 matt valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
624 1.19 matt PTE_CACHE, true);
625 1.19 matt }
626 1.1 matt systempage.pv_va = vectors;
627 1.1 matt
628 1.1 matt /*
629 1.1 matt * If the caller needed a few extra pages for some reason, allocate
630 1.1 matt * them now.
631 1.1 matt */
632 1.1 matt #if ARM_MMU_XSCALE == 1
633 1.1 matt #if (ARM_NMMUS > 1)
634 1.1 matt if (xscale_use_minidata)
635 1.1 matt #endif
636 1.30 kiyohara valloc_pages(bmi, &minidataclean, 1,
637 1.18 matt VM_PROT_READ|VM_PROT_WRITE, 0, true);
638 1.1 matt #endif
639 1.1 matt
640 1.1 matt /*
641 1.1 matt * Ok we have allocated physical pages for the primary kernel
642 1.1 matt * page tables and stacks. Let's just confirm that.
643 1.1 matt */
644 1.1 matt if (kernel_l1pt.pv_va == 0
645 1.1 matt && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
646 1.1 matt panic("%s: Failed to allocate or align the kernel "
647 1.1 matt "page directory", __func__);
648 1.1 matt
649 1.1 matt
650 1.1 matt #ifdef VERBOSE_INIT_ARM
651 1.1 matt printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
652 1.1 matt #endif
653 1.1 matt
654 1.1 matt /*
655 1.1 matt * Now we start construction of the L1 page table
656 1.1 matt * We start by mapping the L2 page tables into the L1.
657 1.1 matt * This means that we can replace L1 mappings later on if necessary
658 1.1 matt */
659 1.1 matt vaddr_t l1pt_va = kernel_l1pt.pv_va;
660 1.1 matt paddr_t l1pt_pa = kernel_l1pt.pv_pa;
661 1.1 matt
662 1.19 matt if (map_vectors_p) {
663 1.19 matt /* Map the L2 pages tables in the L1 page table */
664 1.19 matt pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
665 1.19 matt &bmi->bmi_vector_l2pt);
666 1.19 matt #ifdef VERBOSE_INIT_ARM
667 1.19 matt printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
668 1.19 matt "for VA %#lx\n (vectors)",
669 1.19 matt __func__, bmi->bmi_vector_l2pt.pv_va,
670 1.19 matt bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
671 1.1 matt #endif
672 1.19 matt }
673 1.1 matt
674 1.1 matt const vaddr_t kernel_base =
675 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
676 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
677 1.1 matt pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
678 1.1 matt &kernel_l2pt[idx]);
679 1.1 matt #ifdef VERBOSE_INIT_ARM
680 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
681 1.23 matt __func__, kernel_l2pt[idx].pv_va,
682 1.23 matt kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
683 1.1 matt #endif
684 1.1 matt }
685 1.1 matt
686 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
687 1.1 matt pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
688 1.1 matt &vmdata_l2pt[idx]);
689 1.1 matt #ifdef VERBOSE_INIT_ARM
690 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
691 1.1 matt __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
692 1.1 matt kernel_vm_base + idx * L2_S_SEGSIZE);
693 1.1 matt #endif
694 1.1 matt }
695 1.1 matt if (iovbase) {
696 1.1 matt pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
697 1.1 matt #ifdef VERBOSE_INIT_ARM
698 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
699 1.1 matt __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
700 1.1 matt iovbase & -L2_S_SEGSIZE);
701 1.1 matt #endif
702 1.1 matt }
703 1.1 matt
704 1.1 matt /* update the top of the kernel VM */
705 1.1 matt pmap_curmaxkvaddr =
706 1.1 matt kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
707 1.1 matt
708 1.1 matt #ifdef VERBOSE_INIT_ARM
709 1.1 matt printf("Mapping kernel\n");
710 1.1 matt #endif
711 1.1 matt
712 1.1 matt extern char etext[], _end[];
713 1.1 matt size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
714 1.1 matt size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
715 1.1 matt
716 1.1 matt textsize = (textsize + PGOFSET) & ~PGOFSET;
717 1.1 matt
718 1.1 matt /* start at offset of kernel in RAM */
719 1.1 matt
720 1.1 matt text.pv_pa = bmi->bmi_kernelstart;
721 1.1 matt text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
722 1.1 matt text.pv_size = textsize;
723 1.1 matt text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
724 1.1 matt text.pv_cache = PTE_CACHE;
725 1.1 matt
726 1.1 matt #ifdef VERBOSE_INIT_ARM
727 1.1 matt printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
728 1.1 matt __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
729 1.1 matt #endif
730 1.1 matt
731 1.1 matt add_pages(bmi, &text);
732 1.1 matt
733 1.1 matt data.pv_pa = text.pv_pa + textsize;
734 1.1 matt data.pv_va = text.pv_va + textsize;
735 1.1 matt data.pv_size = totalsize - textsize;
736 1.1 matt data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
737 1.1 matt data.pv_cache = PTE_CACHE;
738 1.1 matt
739 1.1 matt #ifdef VERBOSE_INIT_ARM
740 1.1 matt printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
741 1.1 matt __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
742 1.1 matt #endif
743 1.1 matt
744 1.1 matt add_pages(bmi, &data);
745 1.1 matt
746 1.1 matt #ifdef VERBOSE_INIT_ARM
747 1.1 matt printf("Listing Chunks\n");
748 1.26 skrll
749 1.26 skrll pv_addr_t *lpv;
750 1.26 skrll SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
751 1.26 skrll printf("%s: pv %p: chunk VA %#lx..%#lx "
752 1.26 skrll "(PA %#lx, prot %d, cache %d)\n",
753 1.26 skrll __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
754 1.26 skrll lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
755 1.1 matt }
756 1.1 matt printf("\nMapping Chunks\n");
757 1.1 matt #endif
758 1.1 matt
759 1.1 matt pv_addr_t cur_pv;
760 1.1 matt pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
761 1.1 matt if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
762 1.1 matt cur_pv = *pv;
763 1.1 matt pv = SLIST_NEXT(pv, pv_list);
764 1.1 matt } else {
765 1.28 matt #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
766 1.28 matt cur_pv.pv_va = pmap_directbase;
767 1.28 matt #else
768 1.13 matt cur_pv.pv_va = KERNEL_BASE;
769 1.28 matt #endif
770 1.1 matt cur_pv.pv_pa = bmi->bmi_start;
771 1.1 matt cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
772 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
773 1.1 matt cur_pv.pv_cache = PTE_CACHE;
774 1.1 matt }
775 1.1 matt while (pv != NULL) {
776 1.1 matt if (mapallmem_p) {
777 1.1 matt if (concat_pvaddr(&cur_pv, pv)) {
778 1.1 matt pv = SLIST_NEXT(pv, pv_list);
779 1.1 matt continue;
780 1.1 matt }
781 1.1 matt if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
782 1.1 matt /*
783 1.1 matt * See if we can extend the current pv to emcompass the
784 1.1 matt * hole, and if so do it and retry the concatenation.
785 1.1 matt */
786 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
787 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
788 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
789 1.1 matt continue;
790 1.1 matt }
791 1.1 matt
792 1.1 matt /*
793 1.1 matt * We couldn't so emit the current chunk and then
794 1.1 matt */
795 1.1 matt #ifdef VERBOSE_INIT_ARM
796 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
797 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
798 1.1 matt __func__,
799 1.1 matt cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
800 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
801 1.1 matt #endif
802 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
803 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
804 1.1 matt
805 1.1 matt /*
806 1.1 matt * set the current chunk to the hole and try again.
807 1.1 matt */
808 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
809 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
810 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
811 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
812 1.1 matt cur_pv.pv_cache = PTE_CACHE;
813 1.1 matt continue;
814 1.1 matt }
815 1.1 matt }
816 1.1 matt
817 1.1 matt /*
818 1.1 matt * The new pv didn't concatenate so emit the current one
819 1.1 matt * and use the new pv as the current pv.
820 1.1 matt */
821 1.1 matt #ifdef VERBOSE_INIT_ARM
822 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
823 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
824 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
825 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
826 1.1 matt #endif
827 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
828 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
829 1.1 matt cur_pv = *pv;
830 1.1 matt pv = SLIST_NEXT(pv, pv_list);
831 1.1 matt }
832 1.1 matt
833 1.1 matt /*
834 1.1 matt * If we are mapping all of memory, let's map the rest of memory.
835 1.1 matt */
836 1.1 matt if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
837 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
838 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
839 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
840 1.1 matt } else {
841 1.1 matt #ifdef VERBOSE_INIT_ARM
842 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
843 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
844 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
845 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
846 1.1 matt #endif
847 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
848 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
849 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
850 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
851 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
852 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
853 1.1 matt cur_pv.pv_cache = PTE_CACHE;
854 1.1 matt }
855 1.1 matt }
856 1.1 matt
857 1.1 matt /*
858 1.1 matt * Now we map the final chunk.
859 1.1 matt */
860 1.1 matt #ifdef VERBOSE_INIT_ARM
861 1.1 matt printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
862 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
863 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
864 1.1 matt #endif
865 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
866 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
867 1.1 matt
868 1.1 matt /*
869 1.1 matt * Now we map the stuff that isn't directly after the kernel
870 1.1 matt */
871 1.1 matt
872 1.19 matt if (map_vectors_p) {
873 1.19 matt /* Map the vector page. */
874 1.19 matt pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
875 1.19 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
876 1.19 matt }
877 1.1 matt
878 1.1 matt /* Map the Mini-Data cache clean area. */
879 1.1 matt #if ARM_MMU_XSCALE == 1
880 1.1 matt #if (ARM_NMMUS > 1)
881 1.1 matt if (xscale_use_minidata)
882 1.1 matt #endif
883 1.30 kiyohara xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
884 1.1 matt minidataclean.pv_pa);
885 1.1 matt #endif
886 1.1 matt
887 1.1 matt /*
888 1.1 matt * Map integrated peripherals at same address in first level page
889 1.1 matt * table so that we can continue to use console.
890 1.1 matt */
891 1.1 matt if (devmap)
892 1.1 matt pmap_devmap_bootstrap(l1pt_va, devmap);
893 1.1 matt
894 1.1 matt #ifdef VERBOSE_INIT_ARM
895 1.1 matt /* Tell the user about where all the bits and pieces live. */
896 1.1 matt printf("%22s Physical Virtual Num\n", " ");
897 1.1 matt printf("%22s Starting Ending Starting Ending Pages\n", " ");
898 1.1 matt
899 1.1 matt static const char mem_fmt[] =
900 1.1 matt "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
901 1.1 matt static const char mem_fmt_nov[] =
902 1.1 matt "%20s: 0x%08lx 0x%08lx %zu\n";
903 1.1 matt
904 1.1 matt printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
905 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
906 1.1 matt physmem);
907 1.1 matt printf(mem_fmt, "text section",
908 1.1 matt text.pv_pa, text.pv_pa + text.pv_size - 1,
909 1.1 matt text.pv_va, text.pv_va + text.pv_size - 1,
910 1.1 matt (int)(text.pv_size / PAGE_SIZE));
911 1.1 matt printf(mem_fmt, "data section",
912 1.1 matt KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
913 1.1 matt (vaddr_t)__data_start, (vaddr_t)_edata,
914 1.1 matt (int)((round_page((vaddr_t)_edata)
915 1.1 matt - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
916 1.1 matt printf(mem_fmt, "bss section",
917 1.1 matt KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
918 1.1 matt (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
919 1.1 matt (int)((round_page((vaddr_t)__bss_end__)
920 1.1 matt - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
921 1.1 matt printf(mem_fmt, "L1 page directory",
922 1.1 matt kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
923 1.1 matt kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
924 1.1 matt L1_TABLE_SIZE / PAGE_SIZE);
925 1.7 skrll printf(mem_fmt, "ABT stack (CPU 0)",
926 1.7 skrll abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
927 1.7 skrll abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
928 1.7 skrll ABT_STACK_SIZE);
929 1.1 matt printf(mem_fmt, "FIQ stack (CPU 0)",
930 1.1 matt fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
931 1.1 matt fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
932 1.1 matt FIQ_STACK_SIZE);
933 1.1 matt printf(mem_fmt, "IRQ stack (CPU 0)",
934 1.1 matt irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
935 1.1 matt irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
936 1.1 matt IRQ_STACK_SIZE);
937 1.1 matt printf(mem_fmt, "UND stack (CPU 0)",
938 1.1 matt undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
939 1.1 matt undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
940 1.1 matt UND_STACK_SIZE);
941 1.1 matt printf(mem_fmt, "IDLE stack (CPU 0)",
942 1.1 matt idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
943 1.1 matt idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
944 1.1 matt UPAGES);
945 1.1 matt printf(mem_fmt, "SVC stack",
946 1.1 matt kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
947 1.1 matt kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
948 1.1 matt UPAGES);
949 1.9 skrll printf(mem_fmt, "Message Buffer",
950 1.9 skrll msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
951 1.9 skrll msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
952 1.9 skrll (int)msgbuf_pgs);
953 1.19 matt if (map_vectors_p) {
954 1.19 matt printf(mem_fmt, "Exception Vectors",
955 1.19 matt systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
956 1.19 matt systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
957 1.19 matt 1);
958 1.19 matt }
959 1.1 matt for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
960 1.1 matt pv = &bmi->bmi_freeblocks[i];
961 1.1 matt
962 1.1 matt printf(mem_fmt_nov, "Free Memory",
963 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
964 1.1 matt pv->pv_size / PAGE_SIZE);
965 1.1 matt }
966 1.1 matt #endif
967 1.1 matt /*
968 1.1 matt * Now we have the real page tables in place so we can switch to them.
969 1.1 matt * Once this is done we will be running with the REAL kernel page
970 1.1 matt * tables.
971 1.1 matt */
972 1.1 matt
973 1.25 matt #if defined(VERBOSE_INIT_ARM)
974 1.2 matt printf("TTBR0=%#x", armreg_ttbr_read());
975 1.2 matt #ifdef _ARM_ARCH_6
976 1.25 matt printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
977 1.25 matt armreg_ttbr1_read(), armreg_ttbcr_read(),
978 1.25 matt armreg_contextidr_read());
979 1.2 matt #endif
980 1.2 matt printf("\n");
981 1.2 matt #endif
982 1.2 matt
983 1.1 matt /* Switch tables */
984 1.1 matt #ifdef VERBOSE_INIT_ARM
985 1.3 matt printf("switching to new L1 page table @%#lx...", l1pt_pa);
986 1.1 matt #endif
987 1.1 matt
988 1.23 matt #ifdef ARM_MMU_EXTENDED
989 1.23 matt cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
990 1.23 matt | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
991 1.23 matt #else
992 1.1 matt cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
993 1.23 matt #endif
994 1.3 matt cpu_idcache_wbinv_all();
995 1.23 matt #ifdef VERBOSE_INIT_ARM
996 1.23 matt printf(" ttb");
997 1.23 matt #endif
998 1.17 matt #ifdef ARM_MMU_EXTENDED
999 1.23 matt /*
1000 1.23 matt * TTBCR should have been initialized by the MD start code.
1001 1.23 matt */
1002 1.25 matt KASSERT((armreg_contextidr_read() & 0xff) == 0);
1003 1.23 matt KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
1004 1.24 matt /*
1005 1.24 matt * Disable lookups via TTBR0 until there is an activated pmap.
1006 1.24 matt */
1007 1.24 matt armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
1008 1.17 matt cpu_setttb(l1pt_pa, KERNEL_PID);
1009 1.24 matt arm_isb();
1010 1.17 matt #else
1011 1.4 matt cpu_setttb(l1pt_pa, true);
1012 1.23 matt cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1013 1.17 matt #endif
1014 1.1 matt cpu_tlb_flushID();
1015 1.1 matt
1016 1.1 matt #ifdef VERBOSE_INIT_ARM
1017 1.23 matt #ifdef ARM_MMU_EXTENDED
1018 1.24 matt printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
1019 1.24 matt armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
1020 1.23 matt #else
1021 1.24 matt printf(" (TTBR0=%#x)", armreg_ttbr_read());
1022 1.1 matt #endif
1023 1.25 matt #endif
1024 1.25 matt
1025 1.25 matt #ifdef MULTIPROCESSOR
1026 1.25 matt /*
1027 1.25 matt * Kick the secondaries to load the TTB. After which they'll go
1028 1.25 matt * back to sleep to wait for the final kick so they will hatch.
1029 1.25 matt */
1030 1.25 matt #ifdef VERBOSE_INIT_ARM
1031 1.25 matt printf(" hatchlings");
1032 1.25 matt #endif
1033 1.25 matt cpu_boot_secondary_processors();
1034 1.25 matt #endif
1035 1.25 matt
1036 1.25 matt #ifdef VERBOSE_INIT_ARM
1037 1.24 matt printf(" OK\n");
1038 1.23 matt #endif
1039 1.1 matt }
1040