arm32_kvminit.c revision 1.37 1 1.37 skrll /* $NetBSD: arm32_kvminit.c,v 1.37 2015/11/25 08:36:50 skrll Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 1.1 matt * Written by Hiroyuki Bessho for Genetec Corporation.
6 1.1 matt *
7 1.1 matt * Redistribution and use in source and binary forms, with or without
8 1.1 matt * modification, are permitted provided that the following conditions
9 1.1 matt * are met:
10 1.1 matt * 1. Redistributions of source code must retain the above copyright
11 1.1 matt * notice, this list of conditions and the following disclaimer.
12 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer in the
14 1.1 matt * documentation and/or other materials provided with the distribution.
15 1.1 matt * 3. The name of Genetec Corporation may not be used to endorse or
16 1.1 matt * promote products derived from this software without specific prior
17 1.1 matt * written permission.
18 1.1 matt *
19 1.1 matt * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
30 1.1 matt *
31 1.1 matt * Copyright (c) 2001 Wasabi Systems, Inc.
32 1.1 matt * All rights reserved.
33 1.1 matt *
34 1.1 matt * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 1.1 matt *
36 1.1 matt * Redistribution and use in source and binary forms, with or without
37 1.1 matt * modification, are permitted provided that the following conditions
38 1.1 matt * are met:
39 1.1 matt * 1. Redistributions of source code must retain the above copyright
40 1.1 matt * notice, this list of conditions and the following disclaimer.
41 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 matt * notice, this list of conditions and the following disclaimer in the
43 1.1 matt * documentation and/or other materials provided with the distribution.
44 1.1 matt * 3. All advertising materials mentioning features or use of this software
45 1.1 matt * must display the following acknowledgement:
46 1.1 matt * This product includes software developed for the NetBSD Project by
47 1.1 matt * Wasabi Systems, Inc.
48 1.1 matt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 1.1 matt * or promote products derived from this software without specific prior
50 1.1 matt * written permission.
51 1.1 matt *
52 1.1 matt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
63 1.1 matt *
64 1.1 matt * Copyright (c) 1997,1998 Mark Brinicombe.
65 1.1 matt * Copyright (c) 1997,1998 Causality Limited.
66 1.1 matt * All rights reserved.
67 1.1 matt *
68 1.1 matt * Redistribution and use in source and binary forms, with or without
69 1.1 matt * modification, are permitted provided that the following conditions
70 1.1 matt * are met:
71 1.1 matt * 1. Redistributions of source code must retain the above copyright
72 1.1 matt * notice, this list of conditions and the following disclaimer.
73 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
74 1.1 matt * notice, this list of conditions and the following disclaimer in the
75 1.1 matt * documentation and/or other materials provided with the distribution.
76 1.1 matt * 3. All advertising materials mentioning features or use of this software
77 1.1 matt * must display the following acknowledgement:
78 1.1 matt * This product includes software developed by Mark Brinicombe
79 1.1 matt * for the NetBSD Project.
80 1.1 matt * 4. The name of the company nor the name of the author may be used to
81 1.1 matt * endorse or promote products derived from this software without specific
82 1.1 matt * prior written permission.
83 1.1 matt *
84 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 1.1 matt * SUCH DAMAGE.
95 1.1 matt *
96 1.1 matt * Copyright (c) 2007 Microsoft
97 1.1 matt * All rights reserved.
98 1.1 matt *
99 1.1 matt * Redistribution and use in source and binary forms, with or without
100 1.1 matt * modification, are permitted provided that the following conditions
101 1.1 matt * are met:
102 1.1 matt * 1. Redistributions of source code must retain the above copyright
103 1.1 matt * notice, this list of conditions and the following disclaimer.
104 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
105 1.1 matt * notice, this list of conditions and the following disclaimer in the
106 1.1 matt * documentation and/or other materials provided with the distribution.
107 1.1 matt * 3. All advertising materials mentioning features or use of this software
108 1.1 matt * must display the following acknowledgement:
109 1.1 matt * This product includes software developed by Microsoft
110 1.1 matt *
111 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 1.1 matt * SUCH DAMAGE.
122 1.1 matt */
123 1.1 matt
124 1.32 skrll #include "opt_multiprocessor.h"
125 1.32 skrll
126 1.1 matt #include <sys/cdefs.h>
127 1.37 skrll __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.37 2015/11/25 08:36:50 skrll Exp $");
128 1.1 matt
129 1.1 matt #include <sys/param.h>
130 1.1 matt #include <sys/device.h>
131 1.1 matt #include <sys/kernel.h>
132 1.1 matt #include <sys/reboot.h>
133 1.1 matt #include <sys/bus.h>
134 1.1 matt
135 1.1 matt #include <dev/cons.h>
136 1.1 matt
137 1.1 matt #include <uvm/uvm_extern.h>
138 1.1 matt
139 1.24 matt #include <arm/locore.h>
140 1.1 matt #include <arm/db_machdep.h>
141 1.1 matt #include <arm/undefined.h>
142 1.1 matt #include <arm/bootconfig.h>
143 1.1 matt #include <arm/arm32/machdep.h>
144 1.1 matt
145 1.1 matt struct bootmem_info bootmem_info;
146 1.1 matt
147 1.27 matt extern void *msgbufaddr;
148 1.1 matt paddr_t msgbufphys;
149 1.1 matt paddr_t physical_start;
150 1.1 matt paddr_t physical_end;
151 1.1 matt
152 1.1 matt extern char etext[];
153 1.1 matt extern char __data_start[], _edata[];
154 1.1 matt extern char __bss_start[], __bss_end__[];
155 1.1 matt extern char _end[];
156 1.1 matt
157 1.1 matt /* Page tables for mapping kernel VM */
158 1.1 matt #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
159 1.1 matt
160 1.1 matt /*
161 1.1 matt * Macros to translate between physical and virtual for a subset of the
162 1.1 matt * kernel address space. *Not* for general use.
163 1.1 matt */
164 1.28 matt #if defined(KERNEL_BASE_VOFFSET)
165 1.28 matt #define KERN_VTOPHYS(bmi, va) \
166 1.28 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
167 1.28 matt #define KERN_PHYSTOV(bmi, pa) \
168 1.28 matt ((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
169 1.28 matt #else
170 1.1 matt #define KERN_VTOPHYS(bmi, va) \
171 1.1 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
172 1.1 matt #define KERN_PHYSTOV(bmi, pa) \
173 1.1 matt ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
174 1.28 matt #endif
175 1.1 matt
176 1.1 matt void
177 1.1 matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
178 1.1 matt {
179 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
180 1.1 matt pv_addr_t *pv = bmi->bmi_freeblocks;
181 1.1 matt
182 1.1 matt #ifdef VERBOSE_INIT_ARM
183 1.1 matt printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
184 1.1 matt __func__, memstart, memsize, kernelstart);
185 1.1 matt #endif
186 1.1 matt
187 1.1 matt physical_start = bmi->bmi_start = memstart;
188 1.1 matt physical_end = bmi->bmi_end = memstart + memsize;
189 1.33 matt #ifndef ARM_HAS_LPAE
190 1.33 matt if (physical_end == 0) {
191 1.33 matt physical_end = -PAGE_SIZE;
192 1.33 matt memsize -= PAGE_SIZE;
193 1.34 matt bmi->bmi_end -= PAGE_SIZE;
194 1.33 matt #ifdef VERBOSE_INIT_ARM
195 1.33 matt printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
196 1.33 matt __func__);
197 1.33 matt #endif
198 1.33 matt }
199 1.33 matt #endif
200 1.1 matt physmem = memsize / PAGE_SIZE;
201 1.1 matt
202 1.1 matt /*
203 1.1 matt * Let's record where the kernel lives.
204 1.1 matt */
205 1.1 matt bmi->bmi_kernelstart = kernelstart;
206 1.1 matt bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
207 1.1 matt
208 1.1 matt #ifdef VERBOSE_INIT_ARM
209 1.1 matt printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
210 1.1 matt #endif
211 1.1 matt
212 1.1 matt /*
213 1.1 matt * Now the rest of the free memory must be after the kernel.
214 1.1 matt */
215 1.1 matt pv->pv_pa = bmi->bmi_kernelend;
216 1.1 matt pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
217 1.1 matt pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
218 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
219 1.1 matt #ifdef VERBOSE_INIT_ARM
220 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
221 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
222 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
223 1.1 matt #endif
224 1.1 matt pv++;
225 1.1 matt
226 1.1 matt /*
227 1.1 matt * Add a free block for any memory before the kernel.
228 1.1 matt */
229 1.1 matt if (bmi->bmi_start < bmi->bmi_kernelstart) {
230 1.1 matt pv->pv_pa = bmi->bmi_start;
231 1.35 matt pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
232 1.33 matt pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
233 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
234 1.1 matt #ifdef VERBOSE_INIT_ARM
235 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
236 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
237 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
238 1.1 matt #endif
239 1.1 matt pv++;
240 1.1 matt }
241 1.1 matt
242 1.1 matt bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
243 1.36 skrll
244 1.1 matt SLIST_INIT(&bmi->bmi_freechunks);
245 1.1 matt SLIST_INIT(&bmi->bmi_chunks);
246 1.1 matt }
247 1.1 matt
248 1.1 matt static bool
249 1.1 matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
250 1.1 matt {
251 1.1 matt if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
252 1.1 matt && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
253 1.1 matt && acc_pv->pv_prot == pv->pv_prot
254 1.1 matt && acc_pv->pv_cache == pv->pv_cache) {
255 1.1 matt #ifdef VERBOSE_INIT_ARMX
256 1.1 matt printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 1.1 matt __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
258 1.1 matt acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
259 1.1 matt #endif
260 1.1 matt acc_pv->pv_size += pv->pv_size;
261 1.1 matt return true;
262 1.1 matt }
263 1.1 matt
264 1.1 matt return false;
265 1.1 matt }
266 1.1 matt
267 1.1 matt static void
268 1.1 matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
269 1.1 matt {
270 1.1 matt pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
271 1.14 skrll while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
272 1.1 matt pv_addr_t * const pv0 = (*pvp);
273 1.1 matt KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
274 1.1 matt if (concat_pvaddr(pv0, pv)) {
275 1.1 matt #ifdef VERBOSE_INIT_ARM
276 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
277 1.1 matt __func__, "appending", pv,
278 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
279 1.1 matt pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
280 1.1 matt #endif
281 1.1 matt pv = SLIST_NEXT(pv0, pv_list);
282 1.1 matt if (pv != NULL && concat_pvaddr(pv0, pv)) {
283 1.1 matt #ifdef VERBOSE_INIT_ARM
284 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
285 1.1 matt __func__, "merging", pv,
286 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
287 1.1 matt pv0->pv_pa,
288 1.1 matt pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
289 1.1 matt #endif
290 1.1 matt SLIST_REMOVE_AFTER(pv0, pv_list);
291 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
292 1.1 matt }
293 1.1 matt return;
294 1.1 matt }
295 1.1 matt KASSERT(pv->pv_va != (*pvp)->pv_va);
296 1.1 matt pvp = &SLIST_NEXT(*pvp, pv_list);
297 1.1 matt }
298 1.1 matt KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
299 1.1 matt pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
300 1.1 matt KASSERT(new_pv != NULL);
301 1.1 matt SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
302 1.1 matt *new_pv = *pv;
303 1.1 matt SLIST_NEXT(new_pv, pv_list) = *pvp;
304 1.1 matt (*pvp) = new_pv;
305 1.1 matt #ifdef VERBOSE_INIT_ARM
306 1.1 matt printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
307 1.1 matt __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
308 1.1 matt new_pv->pv_size / PAGE_SIZE);
309 1.1 matt if (SLIST_NEXT(new_pv, pv_list))
310 1.1 matt printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
311 1.1 matt else
312 1.1 matt printf("at tail\n");
313 1.1 matt #endif
314 1.1 matt }
315 1.1 matt
316 1.1 matt static void
317 1.1 matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
318 1.17 matt int prot, int cache, bool zero_p)
319 1.1 matt {
320 1.1 matt size_t nbytes = npages * PAGE_SIZE;
321 1.1 matt pv_addr_t *free_pv = bmi->bmi_freeblocks;
322 1.1 matt size_t free_idx = 0;
323 1.1 matt static bool l1pt_found;
324 1.1 matt
325 1.23 matt KASSERT(npages > 0);
326 1.23 matt
327 1.1 matt /*
328 1.6 skrll * If we haven't allocated the kernel L1 page table and we are aligned
329 1.1 matt * at a L1 table boundary, alloc the memory for it.
330 1.1 matt */
331 1.1 matt if (!l1pt_found
332 1.1 matt && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
333 1.1 matt && free_pv->pv_size >= L1_TABLE_SIZE) {
334 1.1 matt l1pt_found = true;
335 1.1 matt valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
336 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
337 1.1 matt add_pages(bmi, &kernel_l1pt);
338 1.1 matt }
339 1.1 matt
340 1.1 matt while (nbytes > free_pv->pv_size) {
341 1.1 matt free_pv++;
342 1.1 matt free_idx++;
343 1.1 matt if (free_idx == bmi->bmi_nfreeblocks) {
344 1.1 matt panic("%s: could not allocate %zu bytes",
345 1.1 matt __func__, nbytes);
346 1.1 matt }
347 1.1 matt }
348 1.1 matt
349 1.12 skrll /*
350 1.12 skrll * As we allocate the memory, make sure that we don't walk over
351 1.12 skrll * our current first level translation table.
352 1.12 skrll */
353 1.12 skrll KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
354 1.12 skrll
355 1.1 matt pv->pv_pa = free_pv->pv_pa;
356 1.1 matt pv->pv_va = free_pv->pv_va;
357 1.1 matt pv->pv_size = nbytes;
358 1.1 matt pv->pv_prot = prot;
359 1.1 matt pv->pv_cache = cache;
360 1.1 matt
361 1.1 matt /*
362 1.1 matt * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
363 1.1 matt * just use PTE_CACHE.
364 1.1 matt */
365 1.1 matt if (cache == PTE_PAGETABLE
366 1.1 matt && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
367 1.1 matt && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
368 1.1 matt && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
369 1.1 matt pv->pv_cache = PTE_CACHE;
370 1.1 matt
371 1.1 matt free_pv->pv_pa += nbytes;
372 1.1 matt free_pv->pv_va += nbytes;
373 1.1 matt free_pv->pv_size -= nbytes;
374 1.1 matt if (free_pv->pv_size == 0) {
375 1.1 matt --bmi->bmi_nfreeblocks;
376 1.1 matt for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
377 1.1 matt free_pv[0] = free_pv[1];
378 1.1 matt }
379 1.1 matt }
380 1.1 matt
381 1.1 matt bmi->bmi_freepages -= npages;
382 1.1 matt
383 1.18 matt if (zero_p)
384 1.18 matt memset((void *)pv->pv_va, 0, nbytes);
385 1.1 matt }
386 1.1 matt
387 1.1 matt void
388 1.1 matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
389 1.1 matt const struct pmap_devmap *devmap, bool mapallmem_p)
390 1.1 matt {
391 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
392 1.1 matt #ifdef MULTIPROCESSOR
393 1.25 matt const size_t cpu_num = arm_cpu_max;
394 1.1 matt #else
395 1.1 matt const size_t cpu_num = 1;
396 1.1 matt #endif
397 1.20 matt #ifdef ARM_HAS_VBAR
398 1.20 matt const bool map_vectors_p = false;
399 1.20 matt #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
400 1.21 matt const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
401 1.21 matt || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
402 1.19 matt #else
403 1.19 matt const bool map_vectors_p = true;
404 1.19 matt #endif
405 1.1 matt
406 1.15 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
407 1.15 matt KASSERT(mapallmem_p);
408 1.28 matt #ifdef ARM_MMU_EXTENDED
409 1.28 matt /*
410 1.35 matt * The direct map VA space ends at the start of the kernel VM space.
411 1.28 matt */
412 1.34 matt pmap_directlimit = kernel_vm_base;
413 1.28 matt #else
414 1.28 matt KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
415 1.28 matt #endif /* ARM_MMU_EXTENDED */
416 1.28 matt #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
417 1.15 matt
418 1.1 matt /*
419 1.1 matt * Calculate the number of L2 pages needed for mapping the
420 1.11 skrll * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
421 1.11 skrll * and 1 for IO
422 1.1 matt */
423 1.1 matt size_t kernel_size = bmi->bmi_kernelend;
424 1.1 matt kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
425 1.23 matt kernel_size += L1_TABLE_SIZE_REAL;
426 1.23 matt kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
427 1.23 matt if (map_vectors_p) {
428 1.23 matt kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
429 1.23 matt }
430 1.23 matt if (iovbase) {
431 1.23 matt kernel_size += PAGE_SIZE; /* L2PT for IO */
432 1.23 matt }
433 1.1 matt kernel_size +=
434 1.1 matt cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
435 1.1 matt + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
436 1.11 skrll kernel_size += round_page(MSGBUFSIZE);
437 1.1 matt kernel_size += 0x10000; /* slop */
438 1.23 matt if (!mapallmem_p) {
439 1.23 matt kernel_size += PAGE_SIZE
440 1.23 matt * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
441 1.23 matt }
442 1.1 matt kernel_size = round_page(kernel_size);
443 1.1 matt
444 1.1 matt /*
445 1.37 skrll * Now we know how many L2 pages it will take.
446 1.1 matt */
447 1.37 skrll const size_t KERNEL_L2PT_KERNEL_NUM =
448 1.37 skrll round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
449 1.1 matt
450 1.1 matt #ifdef VERBOSE_INIT_ARM
451 1.1 matt printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
452 1.1 matt __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
453 1.1 matt #endif
454 1.1 matt
455 1.1 matt KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
456 1.1 matt pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
457 1.1 matt pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
458 1.1 matt pv_addr_t msgbuf;
459 1.1 matt pv_addr_t text;
460 1.1 matt pv_addr_t data;
461 1.1 matt pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
462 1.1 matt #if ARM_MMU_XSCALE == 1
463 1.1 matt pv_addr_t minidataclean;
464 1.1 matt #endif
465 1.1 matt
466 1.1 matt /*
467 1.1 matt * We need to allocate some fixed page tables to get the kernel going.
468 1.1 matt *
469 1.1 matt * We are going to allocate our bootstrap pages from the beginning of
470 1.1 matt * the free space that we just calculated. We allocate one page
471 1.1 matt * directory and a number of page tables and store the physical
472 1.10 skrll * addresses in the bmi_l2pts array in bootmem_info.
473 1.1 matt *
474 1.1 matt * The kernel page directory must be on a 16K boundary. The page
475 1.1 matt * tables must be on 4K boundaries. What we do is allocate the
476 1.1 matt * page directory on the first 16K boundary that we encounter, and
477 1.1 matt * the page tables on 4K boundaries otherwise. Since we allocate
478 1.1 matt * at least 3 L2 page tables, we are guaranteed to encounter at
479 1.1 matt * least one 16K aligned region.
480 1.1 matt */
481 1.1 matt
482 1.1 matt #ifdef VERBOSE_INIT_ARM
483 1.1 matt printf("%s: allocating page tables for", __func__);
484 1.1 matt #endif
485 1.1 matt for (size_t i = 0; i < __arraycount(chunks); i++) {
486 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
487 1.1 matt }
488 1.1 matt
489 1.1 matt kernel_l1pt.pv_pa = 0;
490 1.1 matt kernel_l1pt.pv_va = 0;
491 1.1 matt
492 1.1 matt /*
493 1.10 skrll * Allocate the L2 pages, but if we get to a page that is aligned for
494 1.10 skrll * an L1 page table, we will allocate the pages for it first and then
495 1.10 skrll * allocate the L2 page.
496 1.10 skrll */
497 1.10 skrll
498 1.19 matt if (map_vectors_p) {
499 1.19 matt /*
500 1.19 matt * First allocate L2 page for the vectors.
501 1.19 matt */
502 1.1 matt #ifdef VERBOSE_INIT_ARM
503 1.19 matt printf(" vector");
504 1.1 matt #endif
505 1.23 matt valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
506 1.23 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
507 1.19 matt add_pages(bmi, &bmi->bmi_vector_l2pt);
508 1.19 matt }
509 1.1 matt
510 1.1 matt /*
511 1.10 skrll * Now allocate L2 pages for the kernel
512 1.1 matt */
513 1.1 matt #ifdef VERBOSE_INIT_ARM
514 1.1 matt printf(" kernel");
515 1.1 matt #endif
516 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
517 1.23 matt valloc_pages(bmi, &kernel_l2pt[idx], 1,
518 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
519 1.1 matt add_pages(bmi, &kernel_l2pt[idx]);
520 1.1 matt }
521 1.10 skrll
522 1.10 skrll /*
523 1.10 skrll * Now allocate L2 pages for the initial kernel VA space.
524 1.10 skrll */
525 1.1 matt #ifdef VERBOSE_INIT_ARM
526 1.1 matt printf(" vm");
527 1.1 matt #endif
528 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
529 1.23 matt valloc_pages(bmi, &vmdata_l2pt[idx], 1,
530 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
531 1.1 matt add_pages(bmi, &vmdata_l2pt[idx]);
532 1.1 matt }
533 1.1 matt
534 1.1 matt /*
535 1.1 matt * If someone wanted a L2 page for I/O, allocate it now.
536 1.1 matt */
537 1.23 matt if (iovbase) {
538 1.1 matt #ifdef VERBOSE_INIT_ARM
539 1.1 matt printf(" io");
540 1.1 matt #endif
541 1.23 matt valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
542 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
543 1.1 matt add_pages(bmi, &bmi->bmi_io_l2pt);
544 1.1 matt }
545 1.1 matt
546 1.22 riz #ifdef VERBOSE_INIT_ARM
547 1.1 matt printf("%s: allocating stacks\n", __func__);
548 1.1 matt #endif
549 1.1 matt
550 1.10 skrll /* Allocate stacks for all modes and CPUs */
551 1.1 matt valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
552 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
553 1.1 matt add_pages(bmi, &abtstack);
554 1.1 matt valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
555 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
556 1.1 matt add_pages(bmi, &fiqstack);
557 1.1 matt valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
558 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
559 1.1 matt add_pages(bmi, &irqstack);
560 1.1 matt valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
561 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
562 1.1 matt add_pages(bmi, &undstack);
563 1.1 matt valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
564 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
565 1.1 matt add_pages(bmi, &idlestack);
566 1.1 matt valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
567 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
568 1.1 matt add_pages(bmi, &kernelstack);
569 1.1 matt
570 1.1 matt /* Allocate the message buffer from the end of memory. */
571 1.1 matt const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
572 1.1 matt valloc_pages(bmi, &msgbuf, msgbuf_pgs,
573 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
574 1.1 matt add_pages(bmi, &msgbuf);
575 1.1 matt msgbufphys = msgbuf.pv_pa;
576 1.27 matt msgbufaddr = (void *)msgbuf.pv_va;
577 1.1 matt
578 1.19 matt if (map_vectors_p) {
579 1.19 matt /*
580 1.19 matt * Allocate a page for the system vector page.
581 1.19 matt * This page will just contain the system vectors and can be
582 1.19 matt * shared by all processes.
583 1.19 matt */
584 1.37 skrll valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
585 1.19 matt PTE_CACHE, true);
586 1.19 matt }
587 1.1 matt systempage.pv_va = vectors;
588 1.1 matt
589 1.1 matt /*
590 1.1 matt * If the caller needed a few extra pages for some reason, allocate
591 1.1 matt * them now.
592 1.1 matt */
593 1.1 matt #if ARM_MMU_XSCALE == 1
594 1.1 matt #if (ARM_NMMUS > 1)
595 1.1 matt if (xscale_use_minidata)
596 1.36 skrll #endif
597 1.30 kiyohara valloc_pages(bmi, &minidataclean, 1,
598 1.18 matt VM_PROT_READ|VM_PROT_WRITE, 0, true);
599 1.1 matt #endif
600 1.1 matt
601 1.1 matt /*
602 1.1 matt * Ok we have allocated physical pages for the primary kernel
603 1.1 matt * page tables and stacks. Let's just confirm that.
604 1.1 matt */
605 1.1 matt if (kernel_l1pt.pv_va == 0
606 1.1 matt && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
607 1.1 matt panic("%s: Failed to allocate or align the kernel "
608 1.1 matt "page directory", __func__);
609 1.1 matt
610 1.1 matt
611 1.1 matt #ifdef VERBOSE_INIT_ARM
612 1.1 matt printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
613 1.1 matt #endif
614 1.1 matt
615 1.1 matt /*
616 1.1 matt * Now we start construction of the L1 page table
617 1.1 matt * We start by mapping the L2 page tables into the L1.
618 1.1 matt * This means that we can replace L1 mappings later on if necessary
619 1.1 matt */
620 1.1 matt vaddr_t l1pt_va = kernel_l1pt.pv_va;
621 1.1 matt paddr_t l1pt_pa = kernel_l1pt.pv_pa;
622 1.1 matt
623 1.19 matt if (map_vectors_p) {
624 1.19 matt /* Map the L2 pages tables in the L1 page table */
625 1.19 matt pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
626 1.19 matt &bmi->bmi_vector_l2pt);
627 1.19 matt #ifdef VERBOSE_INIT_ARM
628 1.19 matt printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
629 1.19 matt "for VA %#lx\n (vectors)",
630 1.19 matt __func__, bmi->bmi_vector_l2pt.pv_va,
631 1.19 matt bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
632 1.1 matt #endif
633 1.19 matt }
634 1.1 matt
635 1.1 matt const vaddr_t kernel_base =
636 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
637 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
638 1.1 matt pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
639 1.1 matt &kernel_l2pt[idx]);
640 1.1 matt #ifdef VERBOSE_INIT_ARM
641 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
642 1.23 matt __func__, kernel_l2pt[idx].pv_va,
643 1.23 matt kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
644 1.1 matt #endif
645 1.1 matt }
646 1.1 matt
647 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
648 1.1 matt pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
649 1.1 matt &vmdata_l2pt[idx]);
650 1.1 matt #ifdef VERBOSE_INIT_ARM
651 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
652 1.1 matt __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
653 1.1 matt kernel_vm_base + idx * L2_S_SEGSIZE);
654 1.1 matt #endif
655 1.1 matt }
656 1.1 matt if (iovbase) {
657 1.1 matt pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
658 1.1 matt #ifdef VERBOSE_INIT_ARM
659 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
660 1.1 matt __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
661 1.1 matt iovbase & -L2_S_SEGSIZE);
662 1.1 matt #endif
663 1.1 matt }
664 1.1 matt
665 1.1 matt /* update the top of the kernel VM */
666 1.1 matt pmap_curmaxkvaddr =
667 1.1 matt kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
668 1.1 matt
669 1.1 matt #ifdef VERBOSE_INIT_ARM
670 1.1 matt printf("Mapping kernel\n");
671 1.1 matt #endif
672 1.1 matt
673 1.1 matt extern char etext[], _end[];
674 1.1 matt size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
675 1.1 matt size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
676 1.1 matt
677 1.1 matt textsize = (textsize + PGOFSET) & ~PGOFSET;
678 1.1 matt
679 1.1 matt /* start at offset of kernel in RAM */
680 1.1 matt
681 1.1 matt text.pv_pa = bmi->bmi_kernelstart;
682 1.1 matt text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
683 1.1 matt text.pv_size = textsize;
684 1.37 skrll text.pv_prot = VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE;
685 1.1 matt text.pv_cache = PTE_CACHE;
686 1.1 matt
687 1.1 matt #ifdef VERBOSE_INIT_ARM
688 1.1 matt printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
689 1.1 matt __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
690 1.1 matt #endif
691 1.1 matt
692 1.1 matt add_pages(bmi, &text);
693 1.1 matt
694 1.1 matt data.pv_pa = text.pv_pa + textsize;
695 1.1 matt data.pv_va = text.pv_va + textsize;
696 1.1 matt data.pv_size = totalsize - textsize;
697 1.1 matt data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
698 1.1 matt data.pv_cache = PTE_CACHE;
699 1.1 matt
700 1.1 matt #ifdef VERBOSE_INIT_ARM
701 1.1 matt printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
702 1.1 matt __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
703 1.1 matt #endif
704 1.1 matt
705 1.1 matt add_pages(bmi, &data);
706 1.1 matt
707 1.1 matt #ifdef VERBOSE_INIT_ARM
708 1.1 matt printf("Listing Chunks\n");
709 1.26 skrll
710 1.26 skrll pv_addr_t *lpv;
711 1.26 skrll SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
712 1.26 skrll printf("%s: pv %p: chunk VA %#lx..%#lx "
713 1.26 skrll "(PA %#lx, prot %d, cache %d)\n",
714 1.26 skrll __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
715 1.26 skrll lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
716 1.1 matt }
717 1.1 matt printf("\nMapping Chunks\n");
718 1.1 matt #endif
719 1.1 matt
720 1.1 matt pv_addr_t cur_pv;
721 1.1 matt pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
722 1.1 matt if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
723 1.1 matt cur_pv = *pv;
724 1.35 matt KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
725 1.1 matt pv = SLIST_NEXT(pv, pv_list);
726 1.1 matt } else {
727 1.13 matt cur_pv.pv_va = KERNEL_BASE;
728 1.35 matt cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
729 1.35 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
730 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
731 1.1 matt cur_pv.pv_cache = PTE_CACHE;
732 1.1 matt }
733 1.1 matt while (pv != NULL) {
734 1.1 matt if (mapallmem_p) {
735 1.1 matt if (concat_pvaddr(&cur_pv, pv)) {
736 1.1 matt pv = SLIST_NEXT(pv, pv_list);
737 1.1 matt continue;
738 1.1 matt }
739 1.1 matt if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
740 1.1 matt /*
741 1.1 matt * See if we can extend the current pv to emcompass the
742 1.1 matt * hole, and if so do it and retry the concatenation.
743 1.1 matt */
744 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
745 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
746 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
747 1.1 matt continue;
748 1.1 matt }
749 1.1 matt
750 1.1 matt /*
751 1.1 matt * We couldn't so emit the current chunk and then
752 1.1 matt */
753 1.1 matt #ifdef VERBOSE_INIT_ARM
754 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
755 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
756 1.1 matt __func__,
757 1.1 matt cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
758 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
759 1.1 matt #endif
760 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
761 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
762 1.1 matt
763 1.1 matt /*
764 1.1 matt * set the current chunk to the hole and try again.
765 1.1 matt */
766 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
767 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
768 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
769 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
770 1.1 matt cur_pv.pv_cache = PTE_CACHE;
771 1.1 matt continue;
772 1.1 matt }
773 1.1 matt }
774 1.1 matt
775 1.1 matt /*
776 1.1 matt * The new pv didn't concatenate so emit the current one
777 1.1 matt * and use the new pv as the current pv.
778 1.1 matt */
779 1.1 matt #ifdef VERBOSE_INIT_ARM
780 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
781 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
782 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
783 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
784 1.1 matt #endif
785 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
786 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
787 1.1 matt cur_pv = *pv;
788 1.1 matt pv = SLIST_NEXT(pv, pv_list);
789 1.1 matt }
790 1.1 matt
791 1.1 matt /*
792 1.1 matt * If we are mapping all of memory, let's map the rest of memory.
793 1.1 matt */
794 1.1 matt if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
795 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
796 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
797 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
798 1.1 matt } else {
799 1.34 matt KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
800 1.34 matt "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
801 1.34 matt kernel_vm_base);
802 1.1 matt #ifdef VERBOSE_INIT_ARM
803 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
804 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
805 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
806 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
807 1.1 matt #endif
808 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
809 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
810 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
811 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
812 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
813 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
814 1.1 matt cur_pv.pv_cache = PTE_CACHE;
815 1.1 matt }
816 1.1 matt }
817 1.1 matt
818 1.34 matt // The amount we can direct is limited by the start of the
819 1.34 matt // virtual part of the kernel address space. Don't overrun
820 1.34 matt // into it.
821 1.34 matt if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
822 1.34 matt cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
823 1.34 matt }
824 1.34 matt
825 1.1 matt /*
826 1.1 matt * Now we map the final chunk.
827 1.1 matt */
828 1.1 matt #ifdef VERBOSE_INIT_ARM
829 1.1 matt printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
830 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
831 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
832 1.1 matt #endif
833 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
834 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
835 1.1 matt
836 1.1 matt /*
837 1.1 matt * Now we map the stuff that isn't directly after the kernel
838 1.1 matt */
839 1.19 matt if (map_vectors_p) {
840 1.19 matt /* Map the vector page. */
841 1.19 matt pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
842 1.37 skrll VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
843 1.19 matt }
844 1.1 matt
845 1.36 skrll /* Map the Mini-Data cache clean area. */
846 1.1 matt #if ARM_MMU_XSCALE == 1
847 1.1 matt #if (ARM_NMMUS > 1)
848 1.1 matt if (xscale_use_minidata)
849 1.36 skrll #endif
850 1.30 kiyohara xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
851 1.36 skrll minidataclean.pv_pa);
852 1.1 matt #endif
853 1.1 matt
854 1.1 matt /*
855 1.1 matt * Map integrated peripherals at same address in first level page
856 1.1 matt * table so that we can continue to use console.
857 1.1 matt */
858 1.1 matt if (devmap)
859 1.1 matt pmap_devmap_bootstrap(l1pt_va, devmap);
860 1.1 matt
861 1.1 matt #ifdef VERBOSE_INIT_ARM
862 1.1 matt /* Tell the user about where all the bits and pieces live. */
863 1.1 matt printf("%22s Physical Virtual Num\n", " ");
864 1.1 matt printf("%22s Starting Ending Starting Ending Pages\n", " ");
865 1.1 matt
866 1.1 matt static const char mem_fmt[] =
867 1.1 matt "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
868 1.1 matt static const char mem_fmt_nov[] =
869 1.1 matt "%20s: 0x%08lx 0x%08lx %zu\n";
870 1.1 matt
871 1.1 matt printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
872 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
873 1.1 matt physmem);
874 1.1 matt printf(mem_fmt, "text section",
875 1.1 matt text.pv_pa, text.pv_pa + text.pv_size - 1,
876 1.1 matt text.pv_va, text.pv_va + text.pv_size - 1,
877 1.1 matt (int)(text.pv_size / PAGE_SIZE));
878 1.1 matt printf(mem_fmt, "data section",
879 1.1 matt KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
880 1.1 matt (vaddr_t)__data_start, (vaddr_t)_edata,
881 1.1 matt (int)((round_page((vaddr_t)_edata)
882 1.1 matt - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
883 1.1 matt printf(mem_fmt, "bss section",
884 1.1 matt KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
885 1.1 matt (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
886 1.1 matt (int)((round_page((vaddr_t)__bss_end__)
887 1.1 matt - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
888 1.1 matt printf(mem_fmt, "L1 page directory",
889 1.1 matt kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
890 1.1 matt kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
891 1.1 matt L1_TABLE_SIZE / PAGE_SIZE);
892 1.7 skrll printf(mem_fmt, "ABT stack (CPU 0)",
893 1.7 skrll abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
894 1.7 skrll abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
895 1.7 skrll ABT_STACK_SIZE);
896 1.1 matt printf(mem_fmt, "FIQ stack (CPU 0)",
897 1.1 matt fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
898 1.1 matt fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
899 1.1 matt FIQ_STACK_SIZE);
900 1.1 matt printf(mem_fmt, "IRQ stack (CPU 0)",
901 1.1 matt irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
902 1.1 matt irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
903 1.1 matt IRQ_STACK_SIZE);
904 1.1 matt printf(mem_fmt, "UND stack (CPU 0)",
905 1.1 matt undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
906 1.1 matt undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
907 1.1 matt UND_STACK_SIZE);
908 1.1 matt printf(mem_fmt, "IDLE stack (CPU 0)",
909 1.1 matt idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
910 1.1 matt idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
911 1.1 matt UPAGES);
912 1.1 matt printf(mem_fmt, "SVC stack",
913 1.1 matt kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
914 1.1 matt kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
915 1.1 matt UPAGES);
916 1.9 skrll printf(mem_fmt, "Message Buffer",
917 1.9 skrll msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
918 1.9 skrll msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
919 1.9 skrll (int)msgbuf_pgs);
920 1.19 matt if (map_vectors_p) {
921 1.19 matt printf(mem_fmt, "Exception Vectors",
922 1.19 matt systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
923 1.19 matt systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
924 1.19 matt 1);
925 1.19 matt }
926 1.1 matt for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
927 1.1 matt pv = &bmi->bmi_freeblocks[i];
928 1.1 matt
929 1.1 matt printf(mem_fmt_nov, "Free Memory",
930 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
931 1.1 matt pv->pv_size / PAGE_SIZE);
932 1.1 matt }
933 1.1 matt #endif
934 1.1 matt /*
935 1.1 matt * Now we have the real page tables in place so we can switch to them.
936 1.1 matt * Once this is done we will be running with the REAL kernel page
937 1.1 matt * tables.
938 1.1 matt */
939 1.1 matt
940 1.25 matt #if defined(VERBOSE_INIT_ARM)
941 1.2 matt printf("TTBR0=%#x", armreg_ttbr_read());
942 1.2 matt #ifdef _ARM_ARCH_6
943 1.25 matt printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
944 1.25 matt armreg_ttbr1_read(), armreg_ttbcr_read(),
945 1.25 matt armreg_contextidr_read());
946 1.2 matt #endif
947 1.2 matt printf("\n");
948 1.2 matt #endif
949 1.2 matt
950 1.1 matt /* Switch tables */
951 1.1 matt #ifdef VERBOSE_INIT_ARM
952 1.3 matt printf("switching to new L1 page table @%#lx...", l1pt_pa);
953 1.1 matt #endif
954 1.1 matt
955 1.23 matt #ifdef ARM_MMU_EXTENDED
956 1.23 matt cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
957 1.23 matt | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
958 1.23 matt #else
959 1.1 matt cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
960 1.23 matt #endif
961 1.3 matt cpu_idcache_wbinv_all();
962 1.23 matt #ifdef VERBOSE_INIT_ARM
963 1.23 matt printf(" ttb");
964 1.23 matt #endif
965 1.17 matt #ifdef ARM_MMU_EXTENDED
966 1.23 matt /*
967 1.23 matt * TTBCR should have been initialized by the MD start code.
968 1.23 matt */
969 1.25 matt KASSERT((armreg_contextidr_read() & 0xff) == 0);
970 1.23 matt KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
971 1.24 matt /*
972 1.24 matt * Disable lookups via TTBR0 until there is an activated pmap.
973 1.24 matt */
974 1.24 matt armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
975 1.17 matt cpu_setttb(l1pt_pa, KERNEL_PID);
976 1.24 matt arm_isb();
977 1.17 matt #else
978 1.4 matt cpu_setttb(l1pt_pa, true);
979 1.23 matt cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
980 1.17 matt #endif
981 1.1 matt cpu_tlb_flushID();
982 1.1 matt
983 1.1 matt #ifdef VERBOSE_INIT_ARM
984 1.23 matt #ifdef ARM_MMU_EXTENDED
985 1.24 matt printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
986 1.24 matt armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
987 1.23 matt #else
988 1.24 matt printf(" (TTBR0=%#x)", armreg_ttbr_read());
989 1.1 matt #endif
990 1.25 matt #endif
991 1.25 matt
992 1.25 matt #ifdef MULTIPROCESSOR
993 1.25 matt /*
994 1.25 matt * Kick the secondaries to load the TTB. After which they'll go
995 1.25 matt * back to sleep to wait for the final kick so they will hatch.
996 1.25 matt */
997 1.25 matt #ifdef VERBOSE_INIT_ARM
998 1.25 matt printf(" hatchlings");
999 1.25 matt #endif
1000 1.25 matt cpu_boot_secondary_processors();
1001 1.25 matt #endif
1002 1.25 matt
1003 1.25 matt #ifdef VERBOSE_INIT_ARM
1004 1.24 matt printf(" OK\n");
1005 1.23 matt #endif
1006 1.1 matt }
1007