arm32_kvminit.c revision 1.40 1 1.40 skrll /* $NetBSD: arm32_kvminit.c,v 1.40 2017/07/06 15:09:17 skrll Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 1.1 matt * Written by Hiroyuki Bessho for Genetec Corporation.
6 1.1 matt *
7 1.1 matt * Redistribution and use in source and binary forms, with or without
8 1.1 matt * modification, are permitted provided that the following conditions
9 1.1 matt * are met:
10 1.1 matt * 1. Redistributions of source code must retain the above copyright
11 1.1 matt * notice, this list of conditions and the following disclaimer.
12 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer in the
14 1.1 matt * documentation and/or other materials provided with the distribution.
15 1.1 matt * 3. The name of Genetec Corporation may not be used to endorse or
16 1.1 matt * promote products derived from this software without specific prior
17 1.1 matt * written permission.
18 1.1 matt *
19 1.1 matt * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
30 1.1 matt *
31 1.1 matt * Copyright (c) 2001 Wasabi Systems, Inc.
32 1.1 matt * All rights reserved.
33 1.1 matt *
34 1.1 matt * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 1.1 matt *
36 1.1 matt * Redistribution and use in source and binary forms, with or without
37 1.1 matt * modification, are permitted provided that the following conditions
38 1.1 matt * are met:
39 1.1 matt * 1. Redistributions of source code must retain the above copyright
40 1.1 matt * notice, this list of conditions and the following disclaimer.
41 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 matt * notice, this list of conditions and the following disclaimer in the
43 1.1 matt * documentation and/or other materials provided with the distribution.
44 1.1 matt * 3. All advertising materials mentioning features or use of this software
45 1.1 matt * must display the following acknowledgement:
46 1.1 matt * This product includes software developed for the NetBSD Project by
47 1.1 matt * Wasabi Systems, Inc.
48 1.1 matt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 1.1 matt * or promote products derived from this software without specific prior
50 1.1 matt * written permission.
51 1.1 matt *
52 1.1 matt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
63 1.1 matt *
64 1.1 matt * Copyright (c) 1997,1998 Mark Brinicombe.
65 1.1 matt * Copyright (c) 1997,1998 Causality Limited.
66 1.1 matt * All rights reserved.
67 1.1 matt *
68 1.1 matt * Redistribution and use in source and binary forms, with or without
69 1.1 matt * modification, are permitted provided that the following conditions
70 1.1 matt * are met:
71 1.1 matt * 1. Redistributions of source code must retain the above copyright
72 1.1 matt * notice, this list of conditions and the following disclaimer.
73 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
74 1.1 matt * notice, this list of conditions and the following disclaimer in the
75 1.1 matt * documentation and/or other materials provided with the distribution.
76 1.1 matt * 3. All advertising materials mentioning features or use of this software
77 1.1 matt * must display the following acknowledgement:
78 1.1 matt * This product includes software developed by Mark Brinicombe
79 1.1 matt * for the NetBSD Project.
80 1.1 matt * 4. The name of the company nor the name of the author may be used to
81 1.1 matt * endorse or promote products derived from this software without specific
82 1.1 matt * prior written permission.
83 1.1 matt *
84 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 1.1 matt * SUCH DAMAGE.
95 1.1 matt *
96 1.1 matt * Copyright (c) 2007 Microsoft
97 1.1 matt * All rights reserved.
98 1.1 matt *
99 1.1 matt * Redistribution and use in source and binary forms, with or without
100 1.1 matt * modification, are permitted provided that the following conditions
101 1.1 matt * are met:
102 1.1 matt * 1. Redistributions of source code must retain the above copyright
103 1.1 matt * notice, this list of conditions and the following disclaimer.
104 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
105 1.1 matt * notice, this list of conditions and the following disclaimer in the
106 1.1 matt * documentation and/or other materials provided with the distribution.
107 1.1 matt * 3. All advertising materials mentioning features or use of this software
108 1.1 matt * must display the following acknowledgement:
109 1.1 matt * This product includes software developed by Microsoft
110 1.1 matt *
111 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 1.1 matt * SUCH DAMAGE.
122 1.1 matt */
123 1.1 matt
124 1.32 skrll #include "opt_multiprocessor.h"
125 1.32 skrll
126 1.1 matt #include <sys/cdefs.h>
127 1.40 skrll __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.40 2017/07/06 15:09:17 skrll Exp $");
128 1.1 matt
129 1.1 matt #include <sys/param.h>
130 1.1 matt #include <sys/device.h>
131 1.1 matt #include <sys/kernel.h>
132 1.1 matt #include <sys/reboot.h>
133 1.1 matt #include <sys/bus.h>
134 1.1 matt
135 1.1 matt #include <dev/cons.h>
136 1.1 matt
137 1.1 matt #include <uvm/uvm_extern.h>
138 1.1 matt
139 1.24 matt #include <arm/locore.h>
140 1.1 matt #include <arm/db_machdep.h>
141 1.1 matt #include <arm/undefined.h>
142 1.1 matt #include <arm/bootconfig.h>
143 1.1 matt #include <arm/arm32/machdep.h>
144 1.1 matt
145 1.39 skrll #ifdef MULTIPROCESSOR
146 1.39 skrll #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
147 1.39 skrll #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
148 1.39 skrll #endif
149 1.39 skrll #endif
150 1.39 skrll
151 1.1 matt struct bootmem_info bootmem_info;
152 1.1 matt
153 1.27 matt extern void *msgbufaddr;
154 1.1 matt paddr_t msgbufphys;
155 1.1 matt paddr_t physical_start;
156 1.1 matt paddr_t physical_end;
157 1.1 matt
158 1.1 matt extern char etext[];
159 1.1 matt extern char __data_start[], _edata[];
160 1.1 matt extern char __bss_start[], __bss_end__[];
161 1.1 matt extern char _end[];
162 1.1 matt
163 1.1 matt /* Page tables for mapping kernel VM */
164 1.1 matt #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
165 1.1 matt
166 1.1 matt /*
167 1.1 matt * Macros to translate between physical and virtual for a subset of the
168 1.1 matt * kernel address space. *Not* for general use.
169 1.1 matt */
170 1.28 matt #if defined(KERNEL_BASE_VOFFSET)
171 1.28 matt #define KERN_VTOPHYS(bmi, va) \
172 1.28 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
173 1.28 matt #define KERN_PHYSTOV(bmi, pa) \
174 1.28 matt ((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
175 1.28 matt #else
176 1.1 matt #define KERN_VTOPHYS(bmi, va) \
177 1.1 matt ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
178 1.1 matt #define KERN_PHYSTOV(bmi, pa) \
179 1.1 matt ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
180 1.28 matt #endif
181 1.1 matt
182 1.1 matt void
183 1.1 matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
184 1.1 matt {
185 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
186 1.1 matt pv_addr_t *pv = bmi->bmi_freeblocks;
187 1.1 matt
188 1.1 matt #ifdef VERBOSE_INIT_ARM
189 1.1 matt printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
190 1.1 matt __func__, memstart, memsize, kernelstart);
191 1.1 matt #endif
192 1.1 matt
193 1.1 matt physical_start = bmi->bmi_start = memstart;
194 1.1 matt physical_end = bmi->bmi_end = memstart + memsize;
195 1.33 matt #ifndef ARM_HAS_LPAE
196 1.33 matt if (physical_end == 0) {
197 1.33 matt physical_end = -PAGE_SIZE;
198 1.33 matt memsize -= PAGE_SIZE;
199 1.34 matt bmi->bmi_end -= PAGE_SIZE;
200 1.33 matt #ifdef VERBOSE_INIT_ARM
201 1.33 matt printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
202 1.33 matt __func__);
203 1.33 matt #endif
204 1.33 matt }
205 1.33 matt #endif
206 1.1 matt physmem = memsize / PAGE_SIZE;
207 1.1 matt
208 1.1 matt /*
209 1.1 matt * Let's record where the kernel lives.
210 1.1 matt */
211 1.1 matt bmi->bmi_kernelstart = kernelstart;
212 1.1 matt bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
213 1.1 matt
214 1.1 matt #ifdef VERBOSE_INIT_ARM
215 1.1 matt printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
216 1.1 matt #endif
217 1.1 matt
218 1.1 matt /*
219 1.1 matt * Now the rest of the free memory must be after the kernel.
220 1.1 matt */
221 1.1 matt pv->pv_pa = bmi->bmi_kernelend;
222 1.1 matt pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
223 1.1 matt pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
224 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
225 1.1 matt #ifdef VERBOSE_INIT_ARM
226 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
227 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
228 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
229 1.1 matt #endif
230 1.1 matt pv++;
231 1.1 matt
232 1.1 matt /*
233 1.1 matt * Add a free block for any memory before the kernel.
234 1.1 matt */
235 1.1 matt if (bmi->bmi_start < bmi->bmi_kernelstart) {
236 1.1 matt pv->pv_pa = bmi->bmi_start;
237 1.35 matt pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
238 1.33 matt pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
239 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
240 1.1 matt #ifdef VERBOSE_INIT_ARM
241 1.1 matt printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
242 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
243 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
244 1.1 matt #endif
245 1.1 matt pv++;
246 1.1 matt }
247 1.1 matt
248 1.1 matt bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
249 1.36 skrll
250 1.1 matt SLIST_INIT(&bmi->bmi_freechunks);
251 1.1 matt SLIST_INIT(&bmi->bmi_chunks);
252 1.1 matt }
253 1.1 matt
254 1.1 matt static bool
255 1.1 matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
256 1.1 matt {
257 1.1 matt if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
258 1.1 matt && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
259 1.1 matt && acc_pv->pv_prot == pv->pv_prot
260 1.1 matt && acc_pv->pv_cache == pv->pv_cache) {
261 1.1 matt #ifdef VERBOSE_INIT_ARMX
262 1.1 matt printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
263 1.1 matt __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
264 1.1 matt acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
265 1.1 matt #endif
266 1.1 matt acc_pv->pv_size += pv->pv_size;
267 1.1 matt return true;
268 1.1 matt }
269 1.1 matt
270 1.1 matt return false;
271 1.1 matt }
272 1.1 matt
273 1.1 matt static void
274 1.1 matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
275 1.1 matt {
276 1.1 matt pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
277 1.14 skrll while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
278 1.1 matt pv_addr_t * const pv0 = (*pvp);
279 1.1 matt KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
280 1.1 matt if (concat_pvaddr(pv0, pv)) {
281 1.1 matt #ifdef VERBOSE_INIT_ARM
282 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
283 1.1 matt __func__, "appending", pv,
284 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
285 1.1 matt pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
286 1.1 matt #endif
287 1.1 matt pv = SLIST_NEXT(pv0, pv_list);
288 1.1 matt if (pv != NULL && concat_pvaddr(pv0, pv)) {
289 1.1 matt #ifdef VERBOSE_INIT_ARM
290 1.1 matt printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
291 1.1 matt __func__, "merging", pv,
292 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
293 1.1 matt pv0->pv_pa,
294 1.1 matt pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
295 1.1 matt #endif
296 1.1 matt SLIST_REMOVE_AFTER(pv0, pv_list);
297 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
298 1.1 matt }
299 1.1 matt return;
300 1.1 matt }
301 1.1 matt KASSERT(pv->pv_va != (*pvp)->pv_va);
302 1.1 matt pvp = &SLIST_NEXT(*pvp, pv_list);
303 1.1 matt }
304 1.1 matt KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
305 1.1 matt pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
306 1.1 matt KASSERT(new_pv != NULL);
307 1.1 matt SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
308 1.1 matt *new_pv = *pv;
309 1.1 matt SLIST_NEXT(new_pv, pv_list) = *pvp;
310 1.1 matt (*pvp) = new_pv;
311 1.1 matt #ifdef VERBOSE_INIT_ARM
312 1.1 matt printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
313 1.1 matt __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
314 1.1 matt new_pv->pv_size / PAGE_SIZE);
315 1.1 matt if (SLIST_NEXT(new_pv, pv_list))
316 1.1 matt printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
317 1.1 matt else
318 1.1 matt printf("at tail\n");
319 1.1 matt #endif
320 1.1 matt }
321 1.1 matt
322 1.1 matt static void
323 1.1 matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
324 1.17 matt int prot, int cache, bool zero_p)
325 1.1 matt {
326 1.1 matt size_t nbytes = npages * PAGE_SIZE;
327 1.1 matt pv_addr_t *free_pv = bmi->bmi_freeblocks;
328 1.1 matt size_t free_idx = 0;
329 1.1 matt static bool l1pt_found;
330 1.1 matt
331 1.23 matt KASSERT(npages > 0);
332 1.23 matt
333 1.1 matt /*
334 1.6 skrll * If we haven't allocated the kernel L1 page table and we are aligned
335 1.1 matt * at a L1 table boundary, alloc the memory for it.
336 1.1 matt */
337 1.1 matt if (!l1pt_found
338 1.1 matt && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
339 1.1 matt && free_pv->pv_size >= L1_TABLE_SIZE) {
340 1.1 matt l1pt_found = true;
341 1.1 matt valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
342 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
343 1.1 matt add_pages(bmi, &kernel_l1pt);
344 1.1 matt }
345 1.1 matt
346 1.1 matt while (nbytes > free_pv->pv_size) {
347 1.1 matt free_pv++;
348 1.1 matt free_idx++;
349 1.1 matt if (free_idx == bmi->bmi_nfreeblocks) {
350 1.1 matt panic("%s: could not allocate %zu bytes",
351 1.1 matt __func__, nbytes);
352 1.1 matt }
353 1.1 matt }
354 1.1 matt
355 1.12 skrll /*
356 1.12 skrll * As we allocate the memory, make sure that we don't walk over
357 1.12 skrll * our current first level translation table.
358 1.12 skrll */
359 1.12 skrll KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
360 1.12 skrll
361 1.1 matt pv->pv_pa = free_pv->pv_pa;
362 1.1 matt pv->pv_va = free_pv->pv_va;
363 1.1 matt pv->pv_size = nbytes;
364 1.1 matt pv->pv_prot = prot;
365 1.1 matt pv->pv_cache = cache;
366 1.1 matt
367 1.1 matt /*
368 1.1 matt * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
369 1.1 matt * just use PTE_CACHE.
370 1.1 matt */
371 1.1 matt if (cache == PTE_PAGETABLE
372 1.1 matt && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
373 1.1 matt && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
374 1.1 matt && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
375 1.1 matt pv->pv_cache = PTE_CACHE;
376 1.1 matt
377 1.1 matt free_pv->pv_pa += nbytes;
378 1.1 matt free_pv->pv_va += nbytes;
379 1.1 matt free_pv->pv_size -= nbytes;
380 1.1 matt if (free_pv->pv_size == 0) {
381 1.1 matt --bmi->bmi_nfreeblocks;
382 1.1 matt for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
383 1.1 matt free_pv[0] = free_pv[1];
384 1.1 matt }
385 1.1 matt }
386 1.1 matt
387 1.1 matt bmi->bmi_freepages -= npages;
388 1.1 matt
389 1.18 matt if (zero_p)
390 1.18 matt memset((void *)pv->pv_va, 0, nbytes);
391 1.1 matt }
392 1.1 matt
393 1.1 matt void
394 1.1 matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
395 1.1 matt const struct pmap_devmap *devmap, bool mapallmem_p)
396 1.1 matt {
397 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
398 1.1 matt #ifdef MULTIPROCESSOR
399 1.25 matt const size_t cpu_num = arm_cpu_max;
400 1.1 matt #else
401 1.1 matt const size_t cpu_num = 1;
402 1.1 matt #endif
403 1.20 matt #ifdef ARM_HAS_VBAR
404 1.20 matt const bool map_vectors_p = false;
405 1.20 matt #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
406 1.21 matt const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
407 1.21 matt || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
408 1.19 matt #else
409 1.19 matt const bool map_vectors_p = true;
410 1.19 matt #endif
411 1.1 matt
412 1.15 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
413 1.15 matt KASSERT(mapallmem_p);
414 1.28 matt #ifdef ARM_MMU_EXTENDED
415 1.28 matt /*
416 1.35 matt * The direct map VA space ends at the start of the kernel VM space.
417 1.28 matt */
418 1.34 matt pmap_directlimit = kernel_vm_base;
419 1.28 matt #else
420 1.28 matt KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
421 1.28 matt #endif /* ARM_MMU_EXTENDED */
422 1.28 matt #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
423 1.15 matt
424 1.1 matt /*
425 1.1 matt * Calculate the number of L2 pages needed for mapping the
426 1.11 skrll * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
427 1.11 skrll * and 1 for IO
428 1.1 matt */
429 1.1 matt size_t kernel_size = bmi->bmi_kernelend;
430 1.1 matt kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
431 1.23 matt kernel_size += L1_TABLE_SIZE_REAL;
432 1.23 matt kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
433 1.23 matt if (map_vectors_p) {
434 1.23 matt kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
435 1.23 matt }
436 1.23 matt if (iovbase) {
437 1.23 matt kernel_size += PAGE_SIZE; /* L2PT for IO */
438 1.23 matt }
439 1.1 matt kernel_size +=
440 1.1 matt cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
441 1.1 matt + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
442 1.11 skrll kernel_size += round_page(MSGBUFSIZE);
443 1.1 matt kernel_size += 0x10000; /* slop */
444 1.23 matt if (!mapallmem_p) {
445 1.23 matt kernel_size += PAGE_SIZE
446 1.23 matt * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
447 1.23 matt }
448 1.1 matt kernel_size = round_page(kernel_size);
449 1.1 matt
450 1.1 matt /*
451 1.37 skrll * Now we know how many L2 pages it will take.
452 1.1 matt */
453 1.37 skrll const size_t KERNEL_L2PT_KERNEL_NUM =
454 1.37 skrll round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
455 1.1 matt
456 1.1 matt #ifdef VERBOSE_INIT_ARM
457 1.1 matt printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
458 1.1 matt __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
459 1.1 matt #endif
460 1.1 matt
461 1.1 matt KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
462 1.1 matt pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
463 1.1 matt pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
464 1.1 matt pv_addr_t msgbuf;
465 1.1 matt pv_addr_t text;
466 1.1 matt pv_addr_t data;
467 1.1 matt pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
468 1.1 matt #if ARM_MMU_XSCALE == 1
469 1.1 matt pv_addr_t minidataclean;
470 1.1 matt #endif
471 1.1 matt
472 1.1 matt /*
473 1.1 matt * We need to allocate some fixed page tables to get the kernel going.
474 1.1 matt *
475 1.1 matt * We are going to allocate our bootstrap pages from the beginning of
476 1.1 matt * the free space that we just calculated. We allocate one page
477 1.1 matt * directory and a number of page tables and store the physical
478 1.10 skrll * addresses in the bmi_l2pts array in bootmem_info.
479 1.1 matt *
480 1.1 matt * The kernel page directory must be on a 16K boundary. The page
481 1.1 matt * tables must be on 4K boundaries. What we do is allocate the
482 1.1 matt * page directory on the first 16K boundary that we encounter, and
483 1.1 matt * the page tables on 4K boundaries otherwise. Since we allocate
484 1.1 matt * at least 3 L2 page tables, we are guaranteed to encounter at
485 1.1 matt * least one 16K aligned region.
486 1.1 matt */
487 1.1 matt
488 1.1 matt #ifdef VERBOSE_INIT_ARM
489 1.1 matt printf("%s: allocating page tables for", __func__);
490 1.1 matt #endif
491 1.1 matt for (size_t i = 0; i < __arraycount(chunks); i++) {
492 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
493 1.1 matt }
494 1.1 matt
495 1.1 matt kernel_l1pt.pv_pa = 0;
496 1.1 matt kernel_l1pt.pv_va = 0;
497 1.1 matt
498 1.1 matt /*
499 1.10 skrll * Allocate the L2 pages, but if we get to a page that is aligned for
500 1.10 skrll * an L1 page table, we will allocate the pages for it first and then
501 1.10 skrll * allocate the L2 page.
502 1.10 skrll */
503 1.10 skrll
504 1.19 matt if (map_vectors_p) {
505 1.19 matt /*
506 1.19 matt * First allocate L2 page for the vectors.
507 1.19 matt */
508 1.1 matt #ifdef VERBOSE_INIT_ARM
509 1.19 matt printf(" vector");
510 1.1 matt #endif
511 1.23 matt valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
512 1.23 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
513 1.19 matt add_pages(bmi, &bmi->bmi_vector_l2pt);
514 1.19 matt }
515 1.1 matt
516 1.1 matt /*
517 1.10 skrll * Now allocate L2 pages for the kernel
518 1.1 matt */
519 1.1 matt #ifdef VERBOSE_INIT_ARM
520 1.1 matt printf(" kernel");
521 1.1 matt #endif
522 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
523 1.23 matt valloc_pages(bmi, &kernel_l2pt[idx], 1,
524 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
525 1.1 matt add_pages(bmi, &kernel_l2pt[idx]);
526 1.1 matt }
527 1.10 skrll
528 1.10 skrll /*
529 1.10 skrll * Now allocate L2 pages for the initial kernel VA space.
530 1.10 skrll */
531 1.1 matt #ifdef VERBOSE_INIT_ARM
532 1.1 matt printf(" vm");
533 1.1 matt #endif
534 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
535 1.23 matt valloc_pages(bmi, &vmdata_l2pt[idx], 1,
536 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
537 1.1 matt add_pages(bmi, &vmdata_l2pt[idx]);
538 1.1 matt }
539 1.1 matt
540 1.1 matt /*
541 1.1 matt * If someone wanted a L2 page for I/O, allocate it now.
542 1.1 matt */
543 1.23 matt if (iovbase) {
544 1.1 matt #ifdef VERBOSE_INIT_ARM
545 1.1 matt printf(" io");
546 1.1 matt #endif
547 1.23 matt valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
548 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
549 1.1 matt add_pages(bmi, &bmi->bmi_io_l2pt);
550 1.1 matt }
551 1.1 matt
552 1.22 riz #ifdef VERBOSE_INIT_ARM
553 1.1 matt printf("%s: allocating stacks\n", __func__);
554 1.1 matt #endif
555 1.1 matt
556 1.10 skrll /* Allocate stacks for all modes and CPUs */
557 1.1 matt valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
558 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
559 1.1 matt add_pages(bmi, &abtstack);
560 1.1 matt valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
561 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
562 1.1 matt add_pages(bmi, &fiqstack);
563 1.1 matt valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
564 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
565 1.1 matt add_pages(bmi, &irqstack);
566 1.1 matt valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
567 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
568 1.1 matt add_pages(bmi, &undstack);
569 1.1 matt valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
570 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
571 1.1 matt add_pages(bmi, &idlestack);
572 1.1 matt valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
573 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
574 1.1 matt add_pages(bmi, &kernelstack);
575 1.1 matt
576 1.1 matt /* Allocate the message buffer from the end of memory. */
577 1.1 matt const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
578 1.1 matt valloc_pages(bmi, &msgbuf, msgbuf_pgs,
579 1.17 matt VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
580 1.1 matt add_pages(bmi, &msgbuf);
581 1.1 matt msgbufphys = msgbuf.pv_pa;
582 1.27 matt msgbufaddr = (void *)msgbuf.pv_va;
583 1.1 matt
584 1.19 matt if (map_vectors_p) {
585 1.19 matt /*
586 1.19 matt * Allocate a page for the system vector page.
587 1.19 matt * This page will just contain the system vectors and can be
588 1.19 matt * shared by all processes.
589 1.19 matt */
590 1.37 skrll valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
591 1.19 matt PTE_CACHE, true);
592 1.19 matt }
593 1.1 matt systempage.pv_va = vectors;
594 1.1 matt
595 1.1 matt /*
596 1.1 matt * If the caller needed a few extra pages for some reason, allocate
597 1.1 matt * them now.
598 1.1 matt */
599 1.1 matt #if ARM_MMU_XSCALE == 1
600 1.1 matt #if (ARM_NMMUS > 1)
601 1.1 matt if (xscale_use_minidata)
602 1.36 skrll #endif
603 1.30 kiyohara valloc_pages(bmi, &minidataclean, 1,
604 1.18 matt VM_PROT_READ|VM_PROT_WRITE, 0, true);
605 1.1 matt #endif
606 1.1 matt
607 1.1 matt /*
608 1.1 matt * Ok we have allocated physical pages for the primary kernel
609 1.1 matt * page tables and stacks. Let's just confirm that.
610 1.1 matt */
611 1.1 matt if (kernel_l1pt.pv_va == 0
612 1.1 matt && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
613 1.1 matt panic("%s: Failed to allocate or align the kernel "
614 1.1 matt "page directory", __func__);
615 1.1 matt
616 1.1 matt
617 1.1 matt #ifdef VERBOSE_INIT_ARM
618 1.1 matt printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
619 1.1 matt #endif
620 1.1 matt
621 1.1 matt /*
622 1.1 matt * Now we start construction of the L1 page table
623 1.1 matt * We start by mapping the L2 page tables into the L1.
624 1.1 matt * This means that we can replace L1 mappings later on if necessary
625 1.1 matt */
626 1.1 matt vaddr_t l1pt_va = kernel_l1pt.pv_va;
627 1.1 matt paddr_t l1pt_pa = kernel_l1pt.pv_pa;
628 1.1 matt
629 1.19 matt if (map_vectors_p) {
630 1.19 matt /* Map the L2 pages tables in the L1 page table */
631 1.19 matt pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
632 1.19 matt &bmi->bmi_vector_l2pt);
633 1.19 matt #ifdef VERBOSE_INIT_ARM
634 1.19 matt printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
635 1.19 matt "for VA %#lx\n (vectors)",
636 1.19 matt __func__, bmi->bmi_vector_l2pt.pv_va,
637 1.19 matt bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
638 1.1 matt #endif
639 1.19 matt }
640 1.1 matt
641 1.1 matt const vaddr_t kernel_base =
642 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
643 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
644 1.1 matt pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
645 1.1 matt &kernel_l2pt[idx]);
646 1.1 matt #ifdef VERBOSE_INIT_ARM
647 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
648 1.23 matt __func__, kernel_l2pt[idx].pv_va,
649 1.23 matt kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
650 1.1 matt #endif
651 1.1 matt }
652 1.1 matt
653 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
654 1.1 matt pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
655 1.1 matt &vmdata_l2pt[idx]);
656 1.1 matt #ifdef VERBOSE_INIT_ARM
657 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
658 1.1 matt __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
659 1.1 matt kernel_vm_base + idx * L2_S_SEGSIZE);
660 1.1 matt #endif
661 1.1 matt }
662 1.1 matt if (iovbase) {
663 1.1 matt pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
664 1.1 matt #ifdef VERBOSE_INIT_ARM
665 1.7 skrll printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
666 1.1 matt __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
667 1.1 matt iovbase & -L2_S_SEGSIZE);
668 1.1 matt #endif
669 1.1 matt }
670 1.1 matt
671 1.1 matt /* update the top of the kernel VM */
672 1.1 matt pmap_curmaxkvaddr =
673 1.1 matt kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
674 1.1 matt
675 1.1 matt #ifdef VERBOSE_INIT_ARM
676 1.1 matt printf("Mapping kernel\n");
677 1.1 matt #endif
678 1.1 matt
679 1.1 matt extern char etext[], _end[];
680 1.1 matt size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
681 1.1 matt size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
682 1.1 matt
683 1.1 matt textsize = (textsize + PGOFSET) & ~PGOFSET;
684 1.1 matt
685 1.1 matt /* start at offset of kernel in RAM */
686 1.1 matt
687 1.1 matt text.pv_pa = bmi->bmi_kernelstart;
688 1.1 matt text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
689 1.1 matt text.pv_size = textsize;
690 1.40 skrll text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
691 1.1 matt text.pv_cache = PTE_CACHE;
692 1.1 matt
693 1.1 matt #ifdef VERBOSE_INIT_ARM
694 1.1 matt printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
695 1.1 matt __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
696 1.1 matt #endif
697 1.1 matt
698 1.1 matt add_pages(bmi, &text);
699 1.1 matt
700 1.1 matt data.pv_pa = text.pv_pa + textsize;
701 1.1 matt data.pv_va = text.pv_va + textsize;
702 1.1 matt data.pv_size = totalsize - textsize;
703 1.1 matt data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
704 1.1 matt data.pv_cache = PTE_CACHE;
705 1.1 matt
706 1.1 matt #ifdef VERBOSE_INIT_ARM
707 1.1 matt printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
708 1.1 matt __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
709 1.1 matt #endif
710 1.1 matt
711 1.1 matt add_pages(bmi, &data);
712 1.1 matt
713 1.1 matt #ifdef VERBOSE_INIT_ARM
714 1.1 matt printf("Listing Chunks\n");
715 1.26 skrll
716 1.26 skrll pv_addr_t *lpv;
717 1.26 skrll SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
718 1.26 skrll printf("%s: pv %p: chunk VA %#lx..%#lx "
719 1.26 skrll "(PA %#lx, prot %d, cache %d)\n",
720 1.26 skrll __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
721 1.26 skrll lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
722 1.1 matt }
723 1.1 matt printf("\nMapping Chunks\n");
724 1.1 matt #endif
725 1.1 matt
726 1.1 matt pv_addr_t cur_pv;
727 1.1 matt pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
728 1.1 matt if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
729 1.1 matt cur_pv = *pv;
730 1.35 matt KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
731 1.1 matt pv = SLIST_NEXT(pv, pv_list);
732 1.1 matt } else {
733 1.13 matt cur_pv.pv_va = KERNEL_BASE;
734 1.35 matt cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
735 1.35 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
736 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
737 1.1 matt cur_pv.pv_cache = PTE_CACHE;
738 1.1 matt }
739 1.1 matt while (pv != NULL) {
740 1.1 matt if (mapallmem_p) {
741 1.1 matt if (concat_pvaddr(&cur_pv, pv)) {
742 1.1 matt pv = SLIST_NEXT(pv, pv_list);
743 1.1 matt continue;
744 1.1 matt }
745 1.1 matt if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
746 1.1 matt /*
747 1.1 matt * See if we can extend the current pv to emcompass the
748 1.1 matt * hole, and if so do it and retry the concatenation.
749 1.1 matt */
750 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
751 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
752 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
753 1.1 matt continue;
754 1.1 matt }
755 1.1 matt
756 1.1 matt /*
757 1.1 matt * We couldn't so emit the current chunk and then
758 1.1 matt */
759 1.1 matt #ifdef VERBOSE_INIT_ARM
760 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
761 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
762 1.1 matt __func__,
763 1.1 matt cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
764 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
765 1.1 matt #endif
766 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
767 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
768 1.1 matt
769 1.1 matt /*
770 1.1 matt * set the current chunk to the hole and try again.
771 1.1 matt */
772 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
773 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
774 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
775 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
776 1.1 matt cur_pv.pv_cache = PTE_CACHE;
777 1.1 matt continue;
778 1.1 matt }
779 1.1 matt }
780 1.1 matt
781 1.1 matt /*
782 1.1 matt * The new pv didn't concatenate so emit the current one
783 1.1 matt * and use the new pv as the current pv.
784 1.1 matt */
785 1.1 matt #ifdef VERBOSE_INIT_ARM
786 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
787 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
788 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
789 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
790 1.1 matt #endif
791 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
792 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
793 1.1 matt cur_pv = *pv;
794 1.1 matt pv = SLIST_NEXT(pv, pv_list);
795 1.1 matt }
796 1.1 matt
797 1.1 matt /*
798 1.1 matt * If we are mapping all of memory, let's map the rest of memory.
799 1.1 matt */
800 1.1 matt if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
801 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
802 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
803 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
804 1.1 matt } else {
805 1.34 matt KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
806 1.34 matt "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
807 1.34 matt kernel_vm_base);
808 1.1 matt #ifdef VERBOSE_INIT_ARM
809 1.1 matt printf("%s: mapping chunk VA %#lx..%#lx "
810 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
811 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
812 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
813 1.1 matt #endif
814 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
815 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
816 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
817 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
818 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
819 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
820 1.1 matt cur_pv.pv_cache = PTE_CACHE;
821 1.1 matt }
822 1.1 matt }
823 1.1 matt
824 1.34 matt // The amount we can direct is limited by the start of the
825 1.34 matt // virtual part of the kernel address space. Don't overrun
826 1.34 matt // into it.
827 1.34 matt if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
828 1.34 matt cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
829 1.34 matt }
830 1.34 matt
831 1.1 matt /*
832 1.1 matt * Now we map the final chunk.
833 1.1 matt */
834 1.1 matt #ifdef VERBOSE_INIT_ARM
835 1.1 matt printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
836 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
837 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
838 1.1 matt #endif
839 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
840 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
841 1.1 matt
842 1.1 matt /*
843 1.1 matt * Now we map the stuff that isn't directly after the kernel
844 1.1 matt */
845 1.19 matt if (map_vectors_p) {
846 1.19 matt /* Map the vector page. */
847 1.19 matt pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
848 1.37 skrll VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
849 1.19 matt }
850 1.1 matt
851 1.36 skrll /* Map the Mini-Data cache clean area. */
852 1.1 matt #if ARM_MMU_XSCALE == 1
853 1.1 matt #if (ARM_NMMUS > 1)
854 1.1 matt if (xscale_use_minidata)
855 1.36 skrll #endif
856 1.30 kiyohara xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
857 1.36 skrll minidataclean.pv_pa);
858 1.1 matt #endif
859 1.1 matt
860 1.1 matt /*
861 1.1 matt * Map integrated peripherals at same address in first level page
862 1.1 matt * table so that we can continue to use console.
863 1.1 matt */
864 1.1 matt if (devmap)
865 1.1 matt pmap_devmap_bootstrap(l1pt_va, devmap);
866 1.1 matt
867 1.1 matt #ifdef VERBOSE_INIT_ARM
868 1.1 matt /* Tell the user about where all the bits and pieces live. */
869 1.1 matt printf("%22s Physical Virtual Num\n", " ");
870 1.1 matt printf("%22s Starting Ending Starting Ending Pages\n", " ");
871 1.1 matt
872 1.1 matt static const char mem_fmt[] =
873 1.1 matt "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
874 1.1 matt static const char mem_fmt_nov[] =
875 1.1 matt "%20s: 0x%08lx 0x%08lx %zu\n";
876 1.1 matt
877 1.1 matt printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
878 1.1 matt KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
879 1.38 skrll (int)physmem);
880 1.1 matt printf(mem_fmt, "text section",
881 1.1 matt text.pv_pa, text.pv_pa + text.pv_size - 1,
882 1.1 matt text.pv_va, text.pv_va + text.pv_size - 1,
883 1.1 matt (int)(text.pv_size / PAGE_SIZE));
884 1.1 matt printf(mem_fmt, "data section",
885 1.1 matt KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
886 1.1 matt (vaddr_t)__data_start, (vaddr_t)_edata,
887 1.1 matt (int)((round_page((vaddr_t)_edata)
888 1.1 matt - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
889 1.1 matt printf(mem_fmt, "bss section",
890 1.1 matt KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
891 1.1 matt (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
892 1.1 matt (int)((round_page((vaddr_t)__bss_end__)
893 1.1 matt - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
894 1.1 matt printf(mem_fmt, "L1 page directory",
895 1.1 matt kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
896 1.1 matt kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
897 1.1 matt L1_TABLE_SIZE / PAGE_SIZE);
898 1.7 skrll printf(mem_fmt, "ABT stack (CPU 0)",
899 1.7 skrll abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
900 1.7 skrll abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
901 1.7 skrll ABT_STACK_SIZE);
902 1.1 matt printf(mem_fmt, "FIQ stack (CPU 0)",
903 1.1 matt fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
904 1.1 matt fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
905 1.1 matt FIQ_STACK_SIZE);
906 1.1 matt printf(mem_fmt, "IRQ stack (CPU 0)",
907 1.1 matt irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
908 1.1 matt irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
909 1.1 matt IRQ_STACK_SIZE);
910 1.1 matt printf(mem_fmt, "UND stack (CPU 0)",
911 1.1 matt undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
912 1.1 matt undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
913 1.1 matt UND_STACK_SIZE);
914 1.1 matt printf(mem_fmt, "IDLE stack (CPU 0)",
915 1.1 matt idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
916 1.1 matt idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
917 1.1 matt UPAGES);
918 1.1 matt printf(mem_fmt, "SVC stack",
919 1.1 matt kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
920 1.1 matt kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
921 1.1 matt UPAGES);
922 1.9 skrll printf(mem_fmt, "Message Buffer",
923 1.9 skrll msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
924 1.9 skrll msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
925 1.9 skrll (int)msgbuf_pgs);
926 1.19 matt if (map_vectors_p) {
927 1.19 matt printf(mem_fmt, "Exception Vectors",
928 1.19 matt systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
929 1.19 matt systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
930 1.19 matt 1);
931 1.19 matt }
932 1.1 matt for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
933 1.1 matt pv = &bmi->bmi_freeblocks[i];
934 1.1 matt
935 1.1 matt printf(mem_fmt_nov, "Free Memory",
936 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
937 1.1 matt pv->pv_size / PAGE_SIZE);
938 1.1 matt }
939 1.1 matt #endif
940 1.1 matt /*
941 1.1 matt * Now we have the real page tables in place so we can switch to them.
942 1.1 matt * Once this is done we will be running with the REAL kernel page
943 1.1 matt * tables.
944 1.1 matt */
945 1.1 matt
946 1.25 matt #if defined(VERBOSE_INIT_ARM)
947 1.2 matt printf("TTBR0=%#x", armreg_ttbr_read());
948 1.2 matt #ifdef _ARM_ARCH_6
949 1.25 matt printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
950 1.25 matt armreg_ttbr1_read(), armreg_ttbcr_read(),
951 1.25 matt armreg_contextidr_read());
952 1.2 matt #endif
953 1.2 matt printf("\n");
954 1.2 matt #endif
955 1.2 matt
956 1.1 matt /* Switch tables */
957 1.1 matt #ifdef VERBOSE_INIT_ARM
958 1.3 matt printf("switching to new L1 page table @%#lx...", l1pt_pa);
959 1.1 matt #endif
960 1.1 matt
961 1.23 matt #ifdef ARM_MMU_EXTENDED
962 1.23 matt cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
963 1.23 matt | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
964 1.23 matt #else
965 1.1 matt cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
966 1.23 matt #endif
967 1.3 matt cpu_idcache_wbinv_all();
968 1.23 matt #ifdef VERBOSE_INIT_ARM
969 1.23 matt printf(" ttb");
970 1.23 matt #endif
971 1.17 matt #ifdef ARM_MMU_EXTENDED
972 1.23 matt /*
973 1.23 matt * TTBCR should have been initialized by the MD start code.
974 1.23 matt */
975 1.25 matt KASSERT((armreg_contextidr_read() & 0xff) == 0);
976 1.23 matt KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
977 1.24 matt /*
978 1.24 matt * Disable lookups via TTBR0 until there is an activated pmap.
979 1.24 matt */
980 1.24 matt armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
981 1.17 matt cpu_setttb(l1pt_pa, KERNEL_PID);
982 1.24 matt arm_isb();
983 1.17 matt #else
984 1.4 matt cpu_setttb(l1pt_pa, true);
985 1.23 matt cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
986 1.17 matt #endif
987 1.1 matt cpu_tlb_flushID();
988 1.1 matt
989 1.1 matt #ifdef VERBOSE_INIT_ARM
990 1.23 matt #ifdef ARM_MMU_EXTENDED
991 1.24 matt printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
992 1.24 matt armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
993 1.23 matt #else
994 1.24 matt printf(" (TTBR0=%#x)", armreg_ttbr_read());
995 1.1 matt #endif
996 1.25 matt #endif
997 1.25 matt
998 1.25 matt #ifdef MULTIPROCESSOR
999 1.25 matt /*
1000 1.25 matt * Kick the secondaries to load the TTB. After which they'll go
1001 1.25 matt * back to sleep to wait for the final kick so they will hatch.
1002 1.25 matt */
1003 1.25 matt #ifdef VERBOSE_INIT_ARM
1004 1.25 matt printf(" hatchlings");
1005 1.25 matt #endif
1006 1.25 matt cpu_boot_secondary_processors();
1007 1.25 matt #endif
1008 1.25 matt
1009 1.25 matt #ifdef VERBOSE_INIT_ARM
1010 1.24 matt printf(" OK\n");
1011 1.23 matt #endif
1012 1.1 matt }
1013