Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.66.2.1
      1  1.66.2.1   thorpej /*	$NetBSD: arm32_kvminit.c,v 1.66.2.1 2020/12/14 14:37:47 thorpej Exp $	*/
      2       1.1      matt 
      3       1.1      matt /*
      4       1.1      matt  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5       1.1      matt  * Written by Hiroyuki Bessho for Genetec Corporation.
      6       1.1      matt  *
      7       1.1      matt  * Redistribution and use in source and binary forms, with or without
      8       1.1      matt  * modification, are permitted provided that the following conditions
      9       1.1      matt  * are met:
     10       1.1      matt  * 1. Redistributions of source code must retain the above copyright
     11       1.1      matt  *    notice, this list of conditions and the following disclaimer.
     12       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     14       1.1      matt  *    documentation and/or other materials provided with the distribution.
     15       1.1      matt  * 3. The name of Genetec Corporation may not be used to endorse or
     16       1.1      matt  *    promote products derived from this software without specific prior
     17       1.1      matt  *    written permission.
     18       1.1      matt  *
     19       1.1      matt  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20       1.1      matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23       1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1      matt  *
     31       1.1      matt  * Copyright (c) 2001 Wasabi Systems, Inc.
     32       1.1      matt  * All rights reserved.
     33       1.1      matt  *
     34       1.1      matt  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35       1.1      matt  *
     36       1.1      matt  * Redistribution and use in source and binary forms, with or without
     37       1.1      matt  * modification, are permitted provided that the following conditions
     38       1.1      matt  * are met:
     39       1.1      matt  * 1. Redistributions of source code must retain the above copyright
     40       1.1      matt  *    notice, this list of conditions and the following disclaimer.
     41       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     42       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     43       1.1      matt  *    documentation and/or other materials provided with the distribution.
     44       1.1      matt  * 3. All advertising materials mentioning features or use of this software
     45       1.1      matt  *    must display the following acknowledgement:
     46       1.1      matt  *	This product includes software developed for the NetBSD Project by
     47       1.1      matt  *	Wasabi Systems, Inc.
     48       1.1      matt  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49       1.1      matt  *    or promote products derived from this software without specific prior
     50       1.1      matt  *    written permission.
     51       1.1      matt  *
     52       1.1      matt  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53       1.1      matt  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54       1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55       1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56       1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57       1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58       1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59       1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60       1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61       1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62       1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     63       1.1      matt  *
     64       1.1      matt  * Copyright (c) 1997,1998 Mark Brinicombe.
     65       1.1      matt  * Copyright (c) 1997,1998 Causality Limited.
     66       1.1      matt  * All rights reserved.
     67       1.1      matt  *
     68       1.1      matt  * Redistribution and use in source and binary forms, with or without
     69       1.1      matt  * modification, are permitted provided that the following conditions
     70       1.1      matt  * are met:
     71       1.1      matt  * 1. Redistributions of source code must retain the above copyright
     72       1.1      matt  *    notice, this list of conditions and the following disclaimer.
     73       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     74       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     75       1.1      matt  *    documentation and/or other materials provided with the distribution.
     76       1.1      matt  * 3. All advertising materials mentioning features or use of this software
     77       1.1      matt  *    must display the following acknowledgement:
     78       1.1      matt  *	This product includes software developed by Mark Brinicombe
     79       1.1      matt  *	for the NetBSD Project.
     80       1.1      matt  * 4. The name of the company nor the name of the author may be used to
     81       1.1      matt  *    endorse or promote products derived from this software without specific
     82       1.1      matt  *    prior written permission.
     83       1.1      matt  *
     84       1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85       1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86       1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87       1.1      matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88       1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89       1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90       1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91       1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92       1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93       1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94       1.1      matt  * SUCH DAMAGE.
     95       1.1      matt  *
     96       1.1      matt  * Copyright (c) 2007 Microsoft
     97       1.1      matt  * All rights reserved.
     98       1.1      matt  *
     99       1.1      matt  * Redistribution and use in source and binary forms, with or without
    100       1.1      matt  * modification, are permitted provided that the following conditions
    101       1.1      matt  * are met:
    102       1.1      matt  * 1. Redistributions of source code must retain the above copyright
    103       1.1      matt  *    notice, this list of conditions and the following disclaimer.
    104       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
    105       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
    106       1.1      matt  *    documentation and/or other materials provided with the distribution.
    107       1.1      matt  * 3. All advertising materials mentioning features or use of this software
    108       1.1      matt  *    must display the following acknowledgement:
    109       1.1      matt  *	This product includes software developed by Microsoft
    110       1.1      matt  *
    111       1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112       1.1      matt  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113       1.1      matt  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114       1.1      matt  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115       1.1      matt  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116       1.1      matt  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117       1.1      matt  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118       1.1      matt  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119       1.1      matt  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120       1.1      matt  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121       1.1      matt  * SUCH DAMAGE.
    122       1.1      matt  */
    123       1.1      matt 
    124      1.42     skrll #include "opt_arm_debug.h"
    125      1.46     skrll #include "opt_arm_start.h"
    126      1.41     skrll #include "opt_fdt.h"
    127      1.32     skrll #include "opt_multiprocessor.h"
    128      1.32     skrll 
    129       1.1      matt #include <sys/cdefs.h>
    130  1.66.2.1   thorpej __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.66.2.1 2020/12/14 14:37:47 thorpej Exp $");
    131       1.1      matt 
    132       1.1      matt #include <sys/param.h>
    133      1.59     skrll 
    134      1.64     skrll #include <sys/asan.h>
    135      1.58     skrll #include <sys/bus.h>
    136       1.1      matt #include <sys/device.h>
    137       1.1      matt #include <sys/kernel.h>
    138       1.1      matt #include <sys/reboot.h>
    139       1.1      matt 
    140       1.1      matt #include <dev/cons.h>
    141       1.1      matt 
    142       1.1      matt #include <uvm/uvm_extern.h>
    143       1.1      matt 
    144      1.58     skrll #include <arm/arm32/machdep.h>
    145      1.58     skrll #include <arm/bootconfig.h>
    146      1.58     skrll #include <arm/db_machdep.h>
    147      1.24      matt #include <arm/locore.h>
    148       1.1      matt #include <arm/undefined.h>
    149       1.1      matt 
    150      1.41     skrll #if defined(FDT)
    151      1.41     skrll #include <arch/evbarm/fdt/platform.h>
    152      1.46     skrll #include <arm/fdt/arm_fdtvar.h>
    153  1.66.2.1   thorpej #include <dev/fdt/fdt_memory.h>
    154      1.41     skrll #endif
    155      1.41     skrll 
    156      1.39     skrll #ifdef MULTIPROCESSOR
    157      1.39     skrll #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    158      1.39     skrll #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
    159      1.39     skrll #endif
    160      1.39     skrll #endif
    161      1.39     skrll 
    162      1.42     skrll #ifdef VERBOSE_INIT_ARM
    163      1.42     skrll #define VPRINTF(...)	printf(__VA_ARGS__)
    164      1.42     skrll #else
    165      1.45     skrll #define VPRINTF(...)	__nothing
    166      1.42     skrll #endif
    167      1.42     skrll 
    168       1.1      matt struct bootmem_info bootmem_info;
    169       1.1      matt 
    170      1.27      matt extern void *msgbufaddr;
    171       1.1      matt paddr_t msgbufphys;
    172       1.1      matt paddr_t physical_start;
    173       1.1      matt paddr_t physical_end;
    174       1.1      matt 
    175       1.1      matt extern char etext[];
    176       1.1      matt extern char __data_start[], _edata[];
    177       1.1      matt extern char __bss_start[], __bss_end__[];
    178       1.1      matt extern char _end[];
    179       1.1      matt 
    180       1.1      matt /* Page tables for mapping kernel VM */
    181       1.1      matt #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    182       1.1      matt 
    183      1.64     skrll #ifdef KASAN
    184      1.64     skrll vaddr_t kasan_kernelstart;
    185      1.64     skrll vaddr_t kasan_kernelsize;
    186      1.64     skrll 
    187      1.64     skrll #define	KERNEL_L2PT_KASAN_NUM	howmany(VM_KERNEL_KASAN_SIZE, L2_S_SEGSIZE)
    188      1.65     skrll bool kasan_l2pts_created  __attribute__((__section__(".data"))) = false;
    189      1.64     skrll pv_addr_t kasan_l2pt[KERNEL_L2PT_KASAN_NUM];
    190      1.64     skrll #else
    191      1.64     skrll #define KERNEL_L2PT_KASAN_NUM	0
    192      1.64     skrll #endif
    193      1.64     skrll 
    194      1.44     skrll u_long kern_vtopdiff __attribute__((__section__(".data")));
    195       1.1      matt 
    196       1.1      matt void
    197       1.1      matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    198       1.1      matt {
    199       1.1      matt 	struct bootmem_info * const bmi = &bootmem_info;
    200       1.1      matt 	pv_addr_t *pv = bmi->bmi_freeblocks;
    201       1.1      matt 
    202      1.44     skrll 	/*
    203      1.46     skrll 	 * FDT/generic start fills in kern_vtopdiff early
    204      1.44     skrll 	 */
    205      1.46     skrll #if defined(__HAVE_GENERIC_START)
    206      1.46     skrll 	extern char KERNEL_BASE_virt[];
    207      1.52     skrll 	extern char const __stop__init_memory[];
    208      1.46     skrll 
    209      1.46     skrll 	VPRINTF("%s: kern_vtopdiff=%#lx\n", __func__, kern_vtopdiff);
    210      1.46     skrll 
    211      1.46     skrll 	vaddr_t kstartva = trunc_page((vaddr_t)KERNEL_BASE_virt);
    212      1.52     skrll 	vaddr_t kendva = round_page((vaddr_t)__stop__init_memory);
    213      1.46     skrll 
    214      1.46     skrll 	kernelstart = KERN_VTOPHYS(kstartva);
    215      1.46     skrll 
    216      1.46     skrll 	VPRINTF("%s: kstartva=%#lx, kernelstart=%#lx\n", __func__, kstartva, kernelstart);
    217      1.46     skrll #else
    218      1.46     skrll 	vaddr_t kendva = round_page((vaddr_t)_end);
    219      1.46     skrll 
    220      1.44     skrll #if defined(KERNEL_BASE_VOFFSET)
    221      1.44     skrll 	kern_vtopdiff = KERNEL_BASE_VOFFSET;
    222      1.44     skrll #else
    223      1.44     skrll 	KASSERT(memstart == kernelstart);
    224      1.44     skrll 	kern_vtopdiff = KERNEL_BASE + memstart;
    225      1.44     skrll #endif
    226      1.46     skrll #endif
    227      1.46     skrll 	paddr_t kernelend = KERN_VTOPHYS(kendva);
    228      1.44     skrll 
    229      1.51     skrll 	VPRINTF("%s: memstart=%#lx, memsize=%#lx\n", __func__,
    230      1.51     skrll 	    memstart, memsize);
    231      1.46     skrll 	VPRINTF("%s: kernelstart=%#lx, kernelend=%#lx\n", __func__,
    232      1.46     skrll 	    kernelstart, kernelend);
    233       1.1      matt 
    234       1.1      matt 	physical_start = bmi->bmi_start = memstart;
    235       1.1      matt 	physical_end = bmi->bmi_end = memstart + memsize;
    236      1.33      matt #ifndef ARM_HAS_LPAE
    237      1.33      matt 	if (physical_end == 0) {
    238      1.33      matt 		physical_end = -PAGE_SIZE;
    239      1.33      matt 		memsize -= PAGE_SIZE;
    240      1.34      matt 		bmi->bmi_end -= PAGE_SIZE;
    241      1.42     skrll 		VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    242      1.33      matt 		    __func__);
    243      1.33      matt 	}
    244      1.33      matt #endif
    245       1.1      matt 	physmem = memsize / PAGE_SIZE;
    246       1.1      matt 
    247       1.1      matt 	/*
    248       1.1      matt 	 * Let's record where the kernel lives.
    249       1.1      matt 	 */
    250      1.46     skrll 
    251       1.1      matt 	bmi->bmi_kernelstart = kernelstart;
    252      1.46     skrll 	bmi->bmi_kernelend = kernelend;
    253       1.1      matt 
    254      1.41     skrll #if defined(FDT)
    255  1.66.2.1   thorpej 	fdt_memory_remove_range(bmi->bmi_kernelstart,
    256      1.41     skrll 	    bmi->bmi_kernelend - bmi->bmi_kernelstart);
    257      1.41     skrll #endif
    258      1.41     skrll 
    259      1.46     skrll 	VPRINTF("%s: kernel phys start %#lx end %#lx\n", __func__, kernelstart,
    260      1.46     skrll 	    kernelend);
    261       1.1      matt 
    262      1.46     skrll #if 0
    263      1.46     skrll 	// XXX Makes RPI abort
    264      1.46     skrll 	KASSERT((kernelstart & (L2_S_SEGSIZE - 1)) == 0);
    265      1.46     skrll #endif
    266       1.1      matt 	/*
    267       1.1      matt 	 * Now the rest of the free memory must be after the kernel.
    268       1.1      matt 	 */
    269       1.1      matt 	pv->pv_pa = bmi->bmi_kernelend;
    270      1.44     skrll 	pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    271       1.1      matt 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    272       1.1      matt 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    273      1.42     skrll 	VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    274       1.1      matt 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    275       1.1      matt 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    276       1.1      matt 	pv++;
    277       1.1      matt 
    278       1.1      matt 	/*
    279       1.1      matt 	 * Add a free block for any memory before the kernel.
    280       1.1      matt 	 */
    281       1.1      matt 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    282       1.1      matt 		pv->pv_pa = bmi->bmi_start;
    283      1.44     skrll 		pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    284      1.33      matt 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    285       1.1      matt 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    286      1.42     skrll 		VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    287       1.1      matt 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    288       1.1      matt 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    289       1.1      matt 		pv++;
    290       1.1      matt 	}
    291       1.1      matt 
    292       1.1      matt 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    293      1.36     skrll 
    294       1.1      matt 	SLIST_INIT(&bmi->bmi_freechunks);
    295       1.1      matt 	SLIST_INIT(&bmi->bmi_chunks);
    296       1.1      matt }
    297       1.1      matt 
    298       1.1      matt static bool
    299       1.1      matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    300       1.1      matt {
    301       1.1      matt 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    302       1.1      matt 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    303       1.1      matt 	    && acc_pv->pv_prot == pv->pv_prot
    304       1.1      matt 	    && acc_pv->pv_cache == pv->pv_cache) {
    305      1.46     skrll #if 0
    306      1.42     skrll 		VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    307      1.46     skrll 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size,
    308      1.46     skrll 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size);
    309      1.46     skrll #endif
    310       1.1      matt 		acc_pv->pv_size += pv->pv_size;
    311       1.1      matt 		return true;
    312       1.1      matt 	}
    313       1.1      matt 
    314       1.1      matt 	return false;
    315       1.1      matt }
    316       1.1      matt 
    317       1.1      matt static void
    318       1.1      matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    319       1.1      matt {
    320       1.1      matt 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    321      1.14     skrll 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    322       1.1      matt 		pv_addr_t * const pv0 = (*pvp);
    323       1.1      matt 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    324       1.1      matt 		if (concat_pvaddr(pv0, pv)) {
    325      1.42     skrll 			VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    326       1.1      matt 			    __func__, "appending", pv,
    327       1.1      matt 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    328       1.1      matt 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    329       1.1      matt 			pv = SLIST_NEXT(pv0, pv_list);
    330       1.1      matt 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    331      1.42     skrll 				VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    332       1.1      matt 				    __func__, "merging", pv,
    333       1.1      matt 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    334       1.1      matt 				    pv0->pv_pa,
    335       1.1      matt 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    336       1.1      matt 				SLIST_REMOVE_AFTER(pv0, pv_list);
    337       1.1      matt 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    338       1.1      matt 			}
    339       1.1      matt 			return;
    340       1.1      matt 		}
    341       1.1      matt 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    342       1.1      matt 		pvp = &SLIST_NEXT(*pvp, pv_list);
    343       1.1      matt 	}
    344       1.1      matt 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    345       1.1      matt 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    346       1.1      matt 	KASSERT(new_pv != NULL);
    347       1.1      matt 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    348       1.1      matt 	*new_pv = *pv;
    349       1.1      matt 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    350       1.1      matt 	(*pvp) = new_pv;
    351      1.42     skrll 
    352      1.42     skrll 	VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    353       1.1      matt 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    354       1.1      matt 	    new_pv->pv_size / PAGE_SIZE);
    355      1.42     skrll 	if (SLIST_NEXT(new_pv, pv_list)) {
    356      1.42     skrll 		VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    357      1.42     skrll 	} else {
    358      1.42     skrll 		VPRINTF("at tail\n");
    359      1.42     skrll 	}
    360       1.1      matt }
    361       1.1      matt 
    362       1.1      matt static void
    363       1.1      matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    364      1.61     skrll     int prot, int cache, bool zero_p)
    365       1.1      matt {
    366       1.1      matt 	size_t nbytes = npages * PAGE_SIZE;
    367       1.1      matt 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    368       1.1      matt 	size_t free_idx = 0;
    369       1.1      matt 	static bool l1pt_found;
    370       1.1      matt 
    371      1.23      matt 	KASSERT(npages > 0);
    372      1.23      matt 
    373       1.1      matt 	/*
    374       1.6     skrll 	 * If we haven't allocated the kernel L1 page table and we are aligned
    375       1.1      matt 	 * at a L1 table boundary, alloc the memory for it.
    376       1.1      matt 	 */
    377       1.1      matt 	if (!l1pt_found
    378       1.1      matt 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    379       1.1      matt 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    380       1.1      matt 		l1pt_found = true;
    381      1.46     skrll 		VPRINTF(" l1pt");
    382      1.46     skrll 
    383       1.1      matt 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    384      1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    385       1.1      matt 		add_pages(bmi, &kernel_l1pt);
    386       1.1      matt 	}
    387       1.1      matt 
    388       1.1      matt 	while (nbytes > free_pv->pv_size) {
    389       1.1      matt 		free_pv++;
    390       1.1      matt 		free_idx++;
    391       1.1      matt 		if (free_idx == bmi->bmi_nfreeblocks) {
    392       1.1      matt 			panic("%s: could not allocate %zu bytes",
    393       1.1      matt 			    __func__, nbytes);
    394       1.1      matt 		}
    395       1.1      matt 	}
    396       1.1      matt 
    397      1.12     skrll 	/*
    398      1.12     skrll 	 * As we allocate the memory, make sure that we don't walk over
    399      1.12     skrll 	 * our current first level translation table.
    400      1.12     skrll 	 */
    401      1.12     skrll 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    402      1.12     skrll 
    403      1.41     skrll #if defined(FDT)
    404  1.66.2.1   thorpej 	fdt_memory_remove_range(free_pv->pv_pa, nbytes);
    405      1.41     skrll #endif
    406       1.1      matt 	pv->pv_pa = free_pv->pv_pa;
    407       1.1      matt 	pv->pv_va = free_pv->pv_va;
    408       1.1      matt 	pv->pv_size = nbytes;
    409       1.1      matt 	pv->pv_prot = prot;
    410       1.1      matt 	pv->pv_cache = cache;
    411       1.1      matt 
    412       1.1      matt 	/*
    413       1.1      matt 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    414       1.1      matt 	 * just use PTE_CACHE.
    415       1.1      matt 	 */
    416       1.1      matt 	if (cache == PTE_PAGETABLE
    417       1.1      matt 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    418       1.1      matt 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    419       1.1      matt 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    420       1.1      matt 		pv->pv_cache = PTE_CACHE;
    421       1.1      matt 
    422       1.1      matt 	free_pv->pv_pa += nbytes;
    423       1.1      matt 	free_pv->pv_va += nbytes;
    424       1.1      matt 	free_pv->pv_size -= nbytes;
    425       1.1      matt 	if (free_pv->pv_size == 0) {
    426       1.1      matt 		--bmi->bmi_nfreeblocks;
    427       1.1      matt 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    428       1.1      matt 			free_pv[0] = free_pv[1];
    429       1.1      matt 		}
    430       1.1      matt 	}
    431       1.1      matt 
    432       1.1      matt 	bmi->bmi_freepages -= npages;
    433       1.1      matt 
    434      1.18      matt 	if (zero_p)
    435      1.18      matt 		memset((void *)pv->pv_va, 0, nbytes);
    436       1.1      matt }
    437       1.1      matt 
    438       1.1      matt void
    439       1.1      matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    440      1.61     skrll     const struct pmap_devmap *devmap, bool mapallmem_p)
    441       1.1      matt {
    442       1.1      matt 	struct bootmem_info * const bmi = &bootmem_info;
    443       1.1      matt #ifdef MULTIPROCESSOR
    444      1.25      matt 	const size_t cpu_num = arm_cpu_max;
    445       1.1      matt #else
    446       1.1      matt 	const size_t cpu_num = 1;
    447       1.1      matt #endif
    448      1.46     skrll 
    449      1.20      matt #ifdef ARM_HAS_VBAR
    450      1.20      matt 	const bool map_vectors_p = false;
    451      1.20      matt #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    452      1.21      matt 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    453      1.21      matt 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    454      1.19      matt #else
    455      1.19      matt 	const bool map_vectors_p = true;
    456      1.19      matt #endif
    457       1.1      matt 
    458      1.15      matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    459      1.15      matt 	KASSERT(mapallmem_p);
    460      1.28      matt #ifdef ARM_MMU_EXTENDED
    461      1.28      matt 	/*
    462      1.35      matt 	 * The direct map VA space ends at the start of the kernel VM space.
    463      1.28      matt 	 */
    464      1.34      matt 	pmap_directlimit = kernel_vm_base;
    465      1.28      matt #else
    466      1.28      matt 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    467      1.28      matt #endif /* ARM_MMU_EXTENDED */
    468      1.28      matt #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    469      1.15      matt 
    470       1.1      matt 	/*
    471       1.1      matt 	 * Calculate the number of L2 pages needed for mapping the
    472      1.11     skrll 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    473      1.11     skrll 	 * and 1 for IO
    474       1.1      matt 	 */
    475       1.1      matt 	size_t kernel_size = bmi->bmi_kernelend;
    476       1.1      matt 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    477      1.56     skrll 	kernel_size += L1_TABLE_SIZE;
    478      1.23      matt 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    479      1.64     skrll 	kernel_size += PAGE_SIZE * KERNEL_L2PT_KASAN_NUM;
    480      1.23      matt 	if (map_vectors_p) {
    481      1.23      matt 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    482      1.23      matt 	}
    483      1.23      matt 	if (iovbase) {
    484      1.23      matt 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    485      1.23      matt 	}
    486       1.1      matt 	kernel_size +=
    487       1.1      matt 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    488       1.1      matt 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    489      1.11     skrll 	kernel_size += round_page(MSGBUFSIZE);
    490       1.1      matt 	kernel_size += 0x10000;	/* slop */
    491      1.23      matt 	if (!mapallmem_p) {
    492      1.23      matt 		kernel_size += PAGE_SIZE
    493      1.62     skrll 		    * howmany(kernel_size, L2_S_SEGSIZE);
    494      1.23      matt 	}
    495       1.1      matt 	kernel_size = round_page(kernel_size);
    496       1.1      matt 
    497       1.1      matt 	/*
    498      1.37     skrll 	 * Now we know how many L2 pages it will take.
    499       1.1      matt 	 */
    500      1.37     skrll 	const size_t KERNEL_L2PT_KERNEL_NUM =
    501      1.62     skrll 	    howmany(kernel_size, L2_S_SEGSIZE);
    502       1.1      matt 
    503      1.42     skrll 	VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    504       1.1      matt 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    505       1.1      matt 
    506       1.1      matt 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    507       1.1      matt 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    508       1.1      matt 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    509       1.1      matt 	pv_addr_t msgbuf;
    510       1.1      matt 	pv_addr_t text;
    511       1.1      matt 	pv_addr_t data;
    512      1.60     skrll 	pv_addr_t chunks[__arraycount(bmi->bmi_l2pts) + 11];
    513       1.1      matt #if ARM_MMU_XSCALE == 1
    514       1.1      matt 	pv_addr_t minidataclean;
    515       1.1      matt #endif
    516       1.1      matt 
    517       1.1      matt 	/*
    518       1.1      matt 	 * We need to allocate some fixed page tables to get the kernel going.
    519       1.1      matt 	 *
    520       1.1      matt 	 * We are going to allocate our bootstrap pages from the beginning of
    521       1.1      matt 	 * the free space that we just calculated.  We allocate one page
    522       1.1      matt 	 * directory and a number of page tables and store the physical
    523      1.10     skrll 	 * addresses in the bmi_l2pts array in bootmem_info.
    524       1.1      matt 	 *
    525       1.1      matt 	 * The kernel page directory must be on a 16K boundary.  The page
    526       1.1      matt 	 * tables must be on 4K boundaries.  What we do is allocate the
    527       1.1      matt 	 * page directory on the first 16K boundary that we encounter, and
    528       1.1      matt 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    529       1.1      matt 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    530       1.1      matt 	 * least one 16K aligned region.
    531       1.1      matt 	 */
    532       1.1      matt 
    533      1.42     skrll 	VPRINTF("%s: allocating page tables for", __func__);
    534       1.1      matt 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    535       1.1      matt 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    536       1.1      matt 	}
    537       1.1      matt 
    538       1.1      matt 	kernel_l1pt.pv_pa = 0;
    539       1.1      matt 	kernel_l1pt.pv_va = 0;
    540       1.1      matt 
    541       1.1      matt 	/*
    542      1.10     skrll 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    543      1.10     skrll 	 * an L1 page table, we will allocate the pages for it first and then
    544      1.10     skrll 	 * allocate the L2 page.
    545      1.10     skrll 	 */
    546      1.10     skrll 
    547      1.19      matt 	if (map_vectors_p) {
    548      1.19      matt 		/*
    549      1.19      matt 		 * First allocate L2 page for the vectors.
    550      1.19      matt 		 */
    551      1.42     skrll 		VPRINTF(" vector");
    552      1.23      matt 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    553      1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    554      1.19      matt 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    555      1.19      matt 	}
    556       1.1      matt 
    557       1.1      matt 	/*
    558      1.10     skrll 	 * Now allocate L2 pages for the kernel
    559       1.1      matt 	 */
    560      1.42     skrll 	VPRINTF(" kernel");
    561       1.8     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    562      1.23      matt 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    563      1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    564       1.1      matt 		add_pages(bmi, &kernel_l2pt[idx]);
    565       1.1      matt 	}
    566      1.10     skrll 
    567      1.10     skrll 	/*
    568      1.10     skrll 	 * Now allocate L2 pages for the initial kernel VA space.
    569      1.10     skrll 	 */
    570      1.42     skrll 	VPRINTF(" vm");
    571       1.8     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    572      1.23      matt 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    573      1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    574       1.1      matt 		add_pages(bmi, &vmdata_l2pt[idx]);
    575       1.1      matt 	}
    576       1.1      matt 
    577      1.64     skrll #ifdef KASAN
    578      1.64     skrll 	/*
    579      1.64     skrll 	 * Now allocate L2 pages for the KASAN shadow map l2pt VA space.
    580      1.64     skrll 	 */
    581      1.64     skrll 	VPRINTF(" kasan");
    582      1.64     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; ++idx) {
    583      1.64     skrll 		valloc_pages(bmi, &kasan_l2pt[idx], 1,
    584      1.64     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    585      1.64     skrll 		add_pages(bmi, &kasan_l2pt[idx]);
    586      1.64     skrll 	}
    587      1.64     skrll 
    588      1.64     skrll #endif
    589       1.1      matt 	/*
    590       1.1      matt 	 * If someone wanted a L2 page for I/O, allocate it now.
    591       1.1      matt 	 */
    592      1.23      matt 	if (iovbase) {
    593      1.42     skrll 		VPRINTF(" io");
    594      1.23      matt 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    595      1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
    596       1.1      matt 		add_pages(bmi, &bmi->bmi_io_l2pt);
    597       1.1      matt 	}
    598       1.1      matt 
    599      1.42     skrll 	VPRINTF("%s: allocating stacks\n", __func__);
    600       1.1      matt 
    601      1.10     skrll 	/* Allocate stacks for all modes and CPUs */
    602       1.1      matt 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    603      1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    604       1.1      matt 	add_pages(bmi, &abtstack);
    605       1.1      matt 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    606      1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    607       1.1      matt 	add_pages(bmi, &fiqstack);
    608       1.1      matt 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    609      1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    610       1.1      matt 	add_pages(bmi, &irqstack);
    611       1.1      matt 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    612      1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    613       1.1      matt 	add_pages(bmi, &undstack);
    614       1.1      matt 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    615      1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    616       1.1      matt 	add_pages(bmi, &idlestack);
    617       1.1      matt 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    618      1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
    619       1.1      matt 	add_pages(bmi, &kernelstack);
    620       1.1      matt 
    621       1.1      matt 	/* Allocate the message buffer from the end of memory. */
    622       1.1      matt 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    623       1.1      matt 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    624      1.61     skrll 	    VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, false);
    625       1.1      matt 	add_pages(bmi, &msgbuf);
    626       1.1      matt 	msgbufphys = msgbuf.pv_pa;
    627      1.27      matt 	msgbufaddr = (void *)msgbuf.pv_va;
    628       1.1      matt 
    629      1.64     skrll #ifdef KASAN
    630      1.64     skrll 	kasan_kernelstart = KERNEL_BASE;
    631      1.64     skrll 	kasan_kernelsize = (msgbuf.pv_va + round_page(MSGBUFSIZE)) - KERNEL_BASE;
    632      1.64     skrll #endif
    633      1.64     skrll 
    634      1.19      matt 	if (map_vectors_p) {
    635      1.19      matt 		/*
    636      1.19      matt 		 * Allocate a page for the system vector page.
    637      1.19      matt 		 * This page will just contain the system vectors and can be
    638      1.19      matt 		 * shared by all processes.
    639      1.19      matt 		 */
    640      1.46     skrll 		VPRINTF(" vector");
    641      1.46     skrll 
    642      1.61     skrll 		valloc_pages(bmi, &systempage, 1,
    643      1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE,
    644      1.19      matt 		    PTE_CACHE, true);
    645      1.19      matt 	}
    646       1.1      matt 	systempage.pv_va = vectors;
    647       1.1      matt 
    648       1.1      matt 	/*
    649       1.1      matt 	 * If the caller needed a few extra pages for some reason, allocate
    650       1.1      matt 	 * them now.
    651       1.1      matt 	 */
    652       1.1      matt #if ARM_MMU_XSCALE == 1
    653       1.1      matt #if (ARM_NMMUS > 1)
    654       1.1      matt 	if (xscale_use_minidata)
    655      1.36     skrll #endif
    656      1.30  kiyohara 		valloc_pages(bmi, &minidataclean, 1,
    657      1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE, 0, true);
    658       1.1      matt #endif
    659       1.1      matt 
    660       1.1      matt 	/*
    661       1.1      matt 	 * Ok we have allocated physical pages for the primary kernel
    662       1.1      matt 	 * page tables and stacks.  Let's just confirm that.
    663       1.1      matt 	 */
    664       1.1      matt 	if (kernel_l1pt.pv_va == 0
    665       1.1      matt 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    666       1.1      matt 		panic("%s: Failed to allocate or align the kernel "
    667       1.1      matt 		    "page directory", __func__);
    668       1.1      matt 
    669      1.46     skrll 	VPRINTF("Creating L1 page table at 0x%08lx/0x%08lx\n",
    670      1.46     skrll 	    kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
    671       1.1      matt 
    672       1.1      matt 	/*
    673       1.1      matt 	 * Now we start construction of the L1 page table
    674       1.1      matt 	 * We start by mapping the L2 page tables into the L1.
    675       1.1      matt 	 * This means that we can replace L1 mappings later on if necessary
    676       1.1      matt 	 */
    677       1.1      matt 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    678       1.1      matt 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    679       1.1      matt 
    680      1.19      matt 	if (map_vectors_p) {
    681      1.19      matt 		/* Map the L2 pages tables in the L1 page table */
    682      1.63     skrll 		const vaddr_t va = systempage.pv_va & -L2_S_SEGSIZE;
    683      1.63     skrll 
    684      1.63     skrll 		pmap_link_l2pt(l1pt_va, va,  &bmi->bmi_vector_l2pt);
    685      1.63     skrll 
    686      1.63     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    687      1.19      matt 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    688      1.63     skrll 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va, "(vectors)");
    689      1.19      matt 	}
    690       1.1      matt 
    691      1.46     skrll 	/*
    692      1.57     skrll 	 * This enforces an alignment requirement of L2_S_SEGSIZE for kernel
    693      1.46     skrll 	 * start PA
    694      1.46     skrll 	 */
    695       1.1      matt 	const vaddr_t kernel_base =
    696      1.44     skrll 	    KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    697      1.46     skrll 
    698      1.46     skrll 	VPRINTF("%s: kernel_base %lx KERNEL_L2PT_KERNEL_NUM %zu\n", __func__,
    699      1.46     skrll 	    kernel_base, KERNEL_L2PT_KERNEL_NUM);
    700      1.46     skrll 
    701       1.1      matt 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    702      1.63     skrll 		const vaddr_t va = kernel_base + idx * L2_S_SEGSIZE;
    703      1.63     skrll 
    704      1.63     skrll 		pmap_link_l2pt(l1pt_va, va, &kernel_l2pt[idx]);
    705      1.63     skrll 
    706      1.63     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    707      1.63     skrll 		    __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
    708      1.63     skrll 		    va, "(kernel)");
    709       1.1      matt 	}
    710       1.1      matt 
    711      1.49     skrll 	VPRINTF("%s: kernel_vm_base %lx KERNEL_L2PT_VMDATA_NUM %d\n", __func__,
    712      1.49     skrll 	    kernel_vm_base, KERNEL_L2PT_VMDATA_NUM);
    713      1.46     skrll 
    714       1.1      matt 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    715      1.63     skrll 		const vaddr_t va = kernel_vm_base + idx * L2_S_SEGSIZE;
    716      1.63     skrll 
    717      1.63     skrll 		pmap_link_l2pt(l1pt_va, va, &vmdata_l2pt[idx]);
    718      1.63     skrll 
    719      1.63     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    720       1.1      matt 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    721      1.63     skrll 		    va, "(vm)");
    722       1.1      matt 	}
    723       1.1      matt 	if (iovbase) {
    724      1.63     skrll 		const vaddr_t va = iovbase & -L2_S_SEGSIZE;
    725      1.63     skrll 
    726      1.63     skrll 		pmap_link_l2pt(l1pt_va, va, &bmi->bmi_io_l2pt);
    727      1.63     skrll 
    728      1.63     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    729       1.1      matt 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    730      1.63     skrll 		    va, "(io)");
    731       1.1      matt 	}
    732       1.1      matt 
    733      1.64     skrll #ifdef KASAN
    734      1.64     skrll 	VPRINTF("%s: kasan_shadow_base %x KERNEL_L2PT_KASAN_NUM %d\n", __func__,
    735      1.64     skrll 	    VM_KERNEL_KASAN_BASE, KERNEL_L2PT_KASAN_NUM);
    736      1.64     skrll 
    737      1.64     skrll 	for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; idx++) {
    738      1.64     skrll 		const vaddr_t va = VM_KERNEL_KASAN_BASE  + idx * L2_S_SEGSIZE;
    739      1.64     skrll 
    740      1.64     skrll 		pmap_link_l2pt(l1pt_va, va, &kasan_l2pt[idx]);
    741      1.64     skrll 
    742      1.64     skrll 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
    743      1.64     skrll 		    __func__, kasan_l2pt[idx].pv_va, kasan_l2pt[idx].pv_pa,
    744      1.64     skrll 		    va, "(kasan)");
    745      1.64     skrll 	}
    746      1.65     skrll 	kasan_l2pts_created = true;
    747      1.64     skrll #endif
    748      1.64     skrll 
    749       1.1      matt 	/* update the top of the kernel VM */
    750       1.1      matt 	pmap_curmaxkvaddr =
    751       1.1      matt 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    752       1.1      matt 
    753      1.46     skrll 	// This could be done earlier and then the kernel data and pages
    754      1.46     skrll 	// allocated above would get merged (concatentated)
    755      1.46     skrll 
    756      1.42     skrll 	VPRINTF("Mapping kernel\n");
    757       1.1      matt 
    758      1.44     skrll 	extern char etext[];
    759       1.1      matt 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    760      1.44     skrll 	size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
    761       1.1      matt 
    762       1.1      matt 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    763       1.1      matt 
    764       1.1      matt 	/* start at offset of kernel in RAM */
    765       1.1      matt 
    766       1.1      matt 	text.pv_pa = bmi->bmi_kernelstart;
    767      1.44     skrll 	text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
    768       1.1      matt 	text.pv_size = textsize;
    769      1.40     skrll 	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
    770       1.1      matt 	text.pv_cache = PTE_CACHE;
    771       1.1      matt 
    772      1.42     skrll 	VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    773       1.1      matt 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    774       1.1      matt 
    775       1.1      matt 	add_pages(bmi, &text);
    776       1.1      matt 
    777       1.1      matt 	data.pv_pa = text.pv_pa + textsize;
    778       1.1      matt 	data.pv_va = text.pv_va + textsize;
    779       1.1      matt 	data.pv_size = totalsize - textsize;
    780      1.51     skrll 	data.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    781       1.1      matt 	data.pv_cache = PTE_CACHE;
    782       1.1      matt 
    783      1.42     skrll 	VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    784       1.1      matt 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    785       1.1      matt 
    786       1.1      matt 	add_pages(bmi, &data);
    787       1.1      matt 
    788      1.42     skrll 	VPRINTF("Listing Chunks\n");
    789      1.26     skrll 
    790      1.26     skrll 	pv_addr_t *lpv;
    791      1.26     skrll 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    792      1.42     skrll 		VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
    793      1.26     skrll 		    "(PA %#lx, prot %d, cache %d)\n",
    794      1.26     skrll 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    795      1.26     skrll 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    796       1.1      matt 	}
    797      1.42     skrll 	VPRINTF("\nMapping Chunks\n");
    798       1.1      matt 
    799       1.1      matt 	pv_addr_t cur_pv;
    800       1.1      matt 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    801       1.1      matt 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    802       1.1      matt 		cur_pv = *pv;
    803      1.35      matt 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    804       1.1      matt 		pv = SLIST_NEXT(pv, pv_list);
    805       1.1      matt 	} else {
    806      1.13      matt 		cur_pv.pv_va = KERNEL_BASE;
    807      1.44     skrll 		cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
    808      1.35      matt 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    809       1.1      matt 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    810       1.1      matt 		cur_pv.pv_cache = PTE_CACHE;
    811       1.1      matt 	}
    812       1.1      matt 	while (pv != NULL) {
    813      1.54     skrll 		if (mapallmem_p) {
    814      1.54     skrll 			if (concat_pvaddr(&cur_pv, pv)) {
    815      1.54     skrll 				pv = SLIST_NEXT(pv, pv_list);
    816      1.54     skrll 				continue;
    817      1.54     skrll 			}
    818       1.1      matt 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    819       1.1      matt 				/*
    820       1.1      matt 				 * See if we can extend the current pv to emcompass the
    821       1.1      matt 				 * hole, and if so do it and retry the concatenation.
    822       1.1      matt 				 */
    823      1.61     skrll 				if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    824       1.1      matt 				    && cur_pv.pv_cache == PTE_CACHE) {
    825       1.1      matt 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    826       1.1      matt 					continue;
    827       1.1      matt 				}
    828       1.1      matt 
    829       1.1      matt 				/*
    830       1.1      matt 				 * We couldn't so emit the current chunk and then
    831       1.1      matt 				 */
    832      1.42     skrll 				VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    833       1.1      matt 				    "(PA %#lx, prot %d, cache %d)\n",
    834       1.1      matt 				    __func__,
    835       1.1      matt 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    836       1.1      matt 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    837       1.1      matt 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    838       1.1      matt 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    839       1.1      matt 
    840       1.1      matt 				/*
    841       1.1      matt 				 * set the current chunk to the hole and try again.
    842       1.1      matt 				 */
    843       1.1      matt 				cur_pv.pv_pa += cur_pv.pv_size;
    844       1.1      matt 				cur_pv.pv_va += cur_pv.pv_size;
    845       1.1      matt 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    846       1.1      matt 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    847       1.1      matt 				cur_pv.pv_cache = PTE_CACHE;
    848       1.1      matt 				continue;
    849       1.1      matt 			}
    850       1.1      matt 		}
    851       1.1      matt 
    852       1.1      matt 		/*
    853       1.1      matt 		 * The new pv didn't concatenate so emit the current one
    854       1.1      matt 		 * and use the new pv as the current pv.
    855       1.1      matt 		 */
    856      1.42     skrll 		VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    857       1.1      matt 		    "(PA %#lx, prot %d, cache %d)\n",
    858       1.1      matt 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    859       1.1      matt 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    860       1.1      matt 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    861       1.1      matt 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    862       1.1      matt 		cur_pv = *pv;
    863       1.1      matt 		pv = SLIST_NEXT(pv, pv_list);
    864       1.1      matt 	}
    865       1.1      matt 
    866       1.1      matt 	/*
    867       1.1      matt 	 * If we are mapping all of memory, let's map the rest of memory.
    868       1.1      matt 	 */
    869       1.1      matt 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    870       1.1      matt 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    871       1.1      matt 		    && cur_pv.pv_cache == PTE_CACHE) {
    872       1.1      matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    873       1.1      matt 		} else {
    874      1.34      matt 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    875      1.34      matt 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    876      1.34      matt 			    kernel_vm_base);
    877      1.42     skrll 			VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    878       1.1      matt 			    "(PA %#lx, prot %d, cache %d)\n",
    879       1.1      matt 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    880       1.1      matt 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    881       1.1      matt 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    882       1.1      matt 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    883       1.1      matt 			cur_pv.pv_pa += cur_pv.pv_size;
    884       1.1      matt 			cur_pv.pv_va += cur_pv.pv_size;
    885       1.1      matt 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    886       1.1      matt 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    887       1.1      matt 			cur_pv.pv_cache = PTE_CACHE;
    888       1.1      matt 		}
    889       1.1      matt 	}
    890       1.1      matt 
    891      1.50     skrll 	/*
    892      1.50     skrll 	 * The amount we can direct map is limited by the start of the
    893      1.50     skrll 	 * virtual part of the kernel address space.  Don't overrun
    894      1.50     skrll 	 * into it.
    895      1.50     skrll 	 */
    896      1.34      matt 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    897      1.34      matt 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    898      1.34      matt 	}
    899      1.34      matt 
    900       1.1      matt 	/*
    901       1.1      matt 	 * Now we map the final chunk.
    902       1.1      matt 	 */
    903      1.42     skrll 	VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    904       1.1      matt 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    905       1.1      matt 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    906       1.1      matt 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    907       1.1      matt 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    908       1.1      matt 
    909       1.1      matt 	/*
    910       1.1      matt 	 * Now we map the stuff that isn't directly after the kernel
    911       1.1      matt 	 */
    912      1.19      matt 	if (map_vectors_p) {
    913      1.19      matt 		/* Map the vector page. */
    914      1.19      matt 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    915      1.61     skrll 		    VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE, PTE_CACHE);
    916      1.19      matt 	}
    917       1.1      matt 
    918      1.36     skrll 	/* Map the Mini-Data cache clean area. */
    919       1.1      matt #if ARM_MMU_XSCALE == 1
    920       1.1      matt #if (ARM_NMMUS > 1)
    921       1.1      matt 	if (xscale_use_minidata)
    922      1.36     skrll #endif
    923      1.30  kiyohara 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    924      1.36     skrll 		    minidataclean.pv_pa);
    925       1.1      matt #endif
    926       1.1      matt 
    927       1.1      matt 	/*
    928       1.1      matt 	 * Map integrated peripherals at same address in first level page
    929       1.1      matt 	 * table so that we can continue to use console.
    930       1.1      matt 	 */
    931       1.1      matt 	if (devmap)
    932       1.1      matt 		pmap_devmap_bootstrap(l1pt_va, devmap);
    933       1.1      matt 
    934       1.1      matt 	/* Tell the user about where all the bits and pieces live. */
    935      1.42     skrll 	VPRINTF("%22s       Physical              Virtual        Num\n", " ");
    936      1.42     skrll 	VPRINTF("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    937       1.1      matt 
    938      1.43    martin #ifdef VERBOSE_INIT_ARM
    939       1.1      matt 	static const char mem_fmt[] =
    940       1.1      matt 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    941       1.1      matt 	static const char mem_fmt_nov[] =
    942       1.1      matt 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    943      1.43    martin #endif
    944       1.1      matt 
    945      1.46     skrll #if 0
    946      1.46     skrll 	// XXX Doesn't make sense if kernel not at bottom of RAM
    947      1.42     skrll 	VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    948      1.44     skrll 	    KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
    949      1.38     skrll 	    (int)physmem);
    950      1.46     skrll #endif
    951      1.42     skrll 	VPRINTF(mem_fmt, "text section",
    952       1.1      matt 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    953       1.1      matt 	       text.pv_va, text.pv_va + text.pv_size - 1,
    954       1.1      matt 	       (int)(text.pv_size / PAGE_SIZE));
    955      1.42     skrll 	VPRINTF(mem_fmt, "data section",
    956      1.44     skrll 	       KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
    957       1.1      matt 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    958       1.1      matt 	       (int)((round_page((vaddr_t)_edata)
    959       1.1      matt 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    960      1.42     skrll 	VPRINTF(mem_fmt, "bss section",
    961      1.44     skrll 	       KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
    962       1.1      matt 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    963       1.1      matt 	       (int)((round_page((vaddr_t)__bss_end__)
    964       1.1      matt 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    965      1.42     skrll 	VPRINTF(mem_fmt, "L1 page directory",
    966       1.1      matt 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    967       1.1      matt 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    968       1.1      matt 	    L1_TABLE_SIZE / PAGE_SIZE);
    969      1.42     skrll 	VPRINTF(mem_fmt, "ABT stack (CPU 0)",
    970       1.7     skrll 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    971       1.7     skrll 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    972       1.7     skrll 	    ABT_STACK_SIZE);
    973      1.42     skrll 	VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
    974       1.1      matt 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    975       1.1      matt 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    976       1.1      matt 	    FIQ_STACK_SIZE);
    977      1.42     skrll 	VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
    978       1.1      matt 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    979       1.1      matt 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    980       1.1      matt 	    IRQ_STACK_SIZE);
    981      1.42     skrll 	VPRINTF(mem_fmt, "UND stack (CPU 0)",
    982       1.1      matt 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    983       1.1      matt 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    984       1.1      matt 	    UND_STACK_SIZE);
    985      1.42     skrll 	VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
    986       1.1      matt 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    987       1.1      matt 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    988       1.1      matt 	    UPAGES);
    989      1.42     skrll 	VPRINTF(mem_fmt, "SVC stack",
    990       1.1      matt 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    991       1.1      matt 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    992       1.1      matt 	    UPAGES);
    993      1.42     skrll 	VPRINTF(mem_fmt, "Message Buffer",
    994       1.9     skrll 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    995       1.9     skrll 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    996       1.9     skrll 	    (int)msgbuf_pgs);
    997      1.19      matt 	if (map_vectors_p) {
    998      1.42     skrll 		VPRINTF(mem_fmt, "Exception Vectors",
    999      1.19      matt 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
   1000      1.19      matt 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
   1001      1.19      matt 		    1);
   1002      1.19      matt 	}
   1003       1.1      matt 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
   1004       1.1      matt 		pv = &bmi->bmi_freeblocks[i];
   1005       1.1      matt 
   1006      1.42     skrll 		VPRINTF(mem_fmt_nov, "Free Memory",
   1007       1.1      matt 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
   1008       1.1      matt 		    pv->pv_size / PAGE_SIZE);
   1009       1.1      matt 	}
   1010       1.1      matt 	/*
   1011       1.1      matt 	 * Now we have the real page tables in place so we can switch to them.
   1012       1.1      matt 	 * Once this is done we will be running with the REAL kernel page
   1013       1.1      matt 	 * tables.
   1014       1.1      matt 	 */
   1015       1.1      matt 
   1016      1.42     skrll 	VPRINTF("TTBR0=%#x", armreg_ttbr_read());
   1017       1.2      matt #ifdef _ARM_ARCH_6
   1018      1.42     skrll 	VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
   1019      1.25      matt 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
   1020      1.25      matt 	    armreg_contextidr_read());
   1021       1.2      matt #endif
   1022      1.42     skrll 	VPRINTF("\n");
   1023       1.2      matt 
   1024       1.1      matt 	/* Switch tables */
   1025      1.46     skrll 	VPRINTF("switching to new L1 page table @%#lx...\n", l1pt_pa);
   1026      1.46     skrll 
   1027      1.46     skrll 	cpu_ttb = l1pt_pa;
   1028      1.46     skrll 
   1029      1.46     skrll 	cpu_domains(DOMAIN_DEFAULT);
   1030      1.46     skrll 
   1031      1.46     skrll 	cpu_idcache_wbinv_all();
   1032      1.46     skrll 
   1033      1.46     skrll #ifdef __HAVE_GENERIC_START
   1034       1.1      matt 
   1035      1.46     skrll 	/*
   1036      1.46     skrll 	 * Turn on caches and set SCTLR/ACTLR
   1037      1.46     skrll 	 */
   1038      1.46     skrll 	cpu_setup(boot_args);
   1039      1.23      matt #endif
   1040      1.46     skrll 
   1041      1.42     skrll 	VPRINTF(" ttb");
   1042      1.46     skrll 
   1043      1.17      matt #ifdef ARM_MMU_EXTENDED
   1044      1.23      matt 	/*
   1045      1.23      matt 	 * TTBCR should have been initialized by the MD start code.
   1046      1.23      matt 	 */
   1047      1.25      matt 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
   1048      1.23      matt 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
   1049      1.24      matt 	/*
   1050      1.24      matt 	 * Disable lookups via TTBR0 until there is an activated pmap.
   1051      1.24      matt 	 */
   1052      1.24      matt 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
   1053      1.17      matt 	cpu_setttb(l1pt_pa, KERNEL_PID);
   1054      1.66     skrll 	isb();
   1055      1.17      matt #else
   1056       1.4      matt 	cpu_setttb(l1pt_pa, true);
   1057      1.17      matt #endif
   1058      1.46     skrll 
   1059       1.1      matt 	cpu_tlb_flushID();
   1060       1.1      matt 
   1061      1.64     skrll #ifdef KASAN
   1062      1.64     skrll 	extern uint8_t start_stacks_bottom[];
   1063      1.64     skrll 	kasan_early_init((void *)start_stacks_bottom);
   1064      1.64     skrll #endif
   1065      1.64     skrll 
   1066      1.23      matt #ifdef ARM_MMU_EXTENDED
   1067      1.46     skrll 	VPRINTF("\nsctlr=%#x actlr=%#x\n",
   1068      1.46     skrll 	    armreg_sctlr_read(), armreg_auxctl_read());
   1069      1.23      matt #else
   1070      1.42     skrll 	VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
   1071      1.25      matt #endif
   1072      1.25      matt 
   1073      1.25      matt #ifdef MULTIPROCESSOR
   1074      1.46     skrll #ifndef __HAVE_GENERIC_START
   1075      1.25      matt 	/*
   1076      1.25      matt 	 * Kick the secondaries to load the TTB.  After which they'll go
   1077      1.25      matt 	 * back to sleep to wait for the final kick so they will hatch.
   1078      1.25      matt 	 */
   1079      1.42     skrll 	VPRINTF(" hatchlings");
   1080      1.25      matt 	cpu_boot_secondary_processors();
   1081      1.25      matt #endif
   1082      1.46     skrll #endif
   1083      1.25      matt 
   1084      1.42     skrll 	VPRINTF(" OK\n");
   1085       1.1      matt }
   1086