arm32_kvminit.c revision 1.67 1 1.67 skrll /* $NetBSD: arm32_kvminit.c,v 1.67 2020/12/12 09:27:31 skrll Exp $ */
2 1.1 matt
3 1.1 matt /*
4 1.1 matt * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 1.1 matt * Written by Hiroyuki Bessho for Genetec Corporation.
6 1.1 matt *
7 1.1 matt * Redistribution and use in source and binary forms, with or without
8 1.1 matt * modification, are permitted provided that the following conditions
9 1.1 matt * are met:
10 1.1 matt * 1. Redistributions of source code must retain the above copyright
11 1.1 matt * notice, this list of conditions and the following disclaimer.
12 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer in the
14 1.1 matt * documentation and/or other materials provided with the distribution.
15 1.1 matt * 3. The name of Genetec Corporation may not be used to endorse or
16 1.1 matt * promote products derived from this software without specific prior
17 1.1 matt * written permission.
18 1.1 matt *
19 1.1 matt * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
30 1.1 matt *
31 1.1 matt * Copyright (c) 2001 Wasabi Systems, Inc.
32 1.1 matt * All rights reserved.
33 1.1 matt *
34 1.1 matt * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 1.1 matt *
36 1.1 matt * Redistribution and use in source and binary forms, with or without
37 1.1 matt * modification, are permitted provided that the following conditions
38 1.1 matt * are met:
39 1.1 matt * 1. Redistributions of source code must retain the above copyright
40 1.1 matt * notice, this list of conditions and the following disclaimer.
41 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
42 1.1 matt * notice, this list of conditions and the following disclaimer in the
43 1.1 matt * documentation and/or other materials provided with the distribution.
44 1.1 matt * 3. All advertising materials mentioning features or use of this software
45 1.1 matt * must display the following acknowledgement:
46 1.1 matt * This product includes software developed for the NetBSD Project by
47 1.1 matt * Wasabi Systems, Inc.
48 1.1 matt * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 1.1 matt * or promote products derived from this software without specific prior
50 1.1 matt * written permission.
51 1.1 matt *
52 1.1 matt * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 1.1 matt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
63 1.1 matt *
64 1.1 matt * Copyright (c) 1997,1998 Mark Brinicombe.
65 1.1 matt * Copyright (c) 1997,1998 Causality Limited.
66 1.1 matt * All rights reserved.
67 1.1 matt *
68 1.1 matt * Redistribution and use in source and binary forms, with or without
69 1.1 matt * modification, are permitted provided that the following conditions
70 1.1 matt * are met:
71 1.1 matt * 1. Redistributions of source code must retain the above copyright
72 1.1 matt * notice, this list of conditions and the following disclaimer.
73 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
74 1.1 matt * notice, this list of conditions and the following disclaimer in the
75 1.1 matt * documentation and/or other materials provided with the distribution.
76 1.1 matt * 3. All advertising materials mentioning features or use of this software
77 1.1 matt * must display the following acknowledgement:
78 1.1 matt * This product includes software developed by Mark Brinicombe
79 1.1 matt * for the NetBSD Project.
80 1.1 matt * 4. The name of the company nor the name of the author may be used to
81 1.1 matt * endorse or promote products derived from this software without specific
82 1.1 matt * prior written permission.
83 1.1 matt *
84 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 1.1 matt * SUCH DAMAGE.
95 1.1 matt *
96 1.1 matt * Copyright (c) 2007 Microsoft
97 1.1 matt * All rights reserved.
98 1.1 matt *
99 1.1 matt * Redistribution and use in source and binary forms, with or without
100 1.1 matt * modification, are permitted provided that the following conditions
101 1.1 matt * are met:
102 1.1 matt * 1. Redistributions of source code must retain the above copyright
103 1.1 matt * notice, this list of conditions and the following disclaimer.
104 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
105 1.1 matt * notice, this list of conditions and the following disclaimer in the
106 1.1 matt * documentation and/or other materials provided with the distribution.
107 1.1 matt * 3. All advertising materials mentioning features or use of this software
108 1.1 matt * must display the following acknowledgement:
109 1.1 matt * This product includes software developed by Microsoft
110 1.1 matt *
111 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 1.1 matt * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 1.1 matt * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 1.1 matt * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 1.1 matt * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 1.1 matt * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 1.1 matt * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 1.1 matt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 1.1 matt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 1.1 matt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 1.1 matt * SUCH DAMAGE.
122 1.1 matt */
123 1.1 matt
124 1.42 skrll #include "opt_arm_debug.h"
125 1.46 skrll #include "opt_arm_start.h"
126 1.41 skrll #include "opt_fdt.h"
127 1.32 skrll #include "opt_multiprocessor.h"
128 1.32 skrll
129 1.1 matt #include <sys/cdefs.h>
130 1.67 skrll __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.67 2020/12/12 09:27:31 skrll Exp $");
131 1.1 matt
132 1.1 matt #include <sys/param.h>
133 1.59 skrll
134 1.64 skrll #include <sys/asan.h>
135 1.58 skrll #include <sys/bus.h>
136 1.1 matt #include <sys/device.h>
137 1.1 matt #include <sys/kernel.h>
138 1.1 matt #include <sys/reboot.h>
139 1.1 matt
140 1.1 matt #include <dev/cons.h>
141 1.1 matt
142 1.1 matt #include <uvm/uvm_extern.h>
143 1.1 matt
144 1.58 skrll #include <arm/arm32/machdep.h>
145 1.58 skrll #include <arm/bootconfig.h>
146 1.58 skrll #include <arm/db_machdep.h>
147 1.24 matt #include <arm/locore.h>
148 1.1 matt #include <arm/undefined.h>
149 1.1 matt
150 1.41 skrll #if defined(FDT)
151 1.41 skrll #include <arch/evbarm/fdt/platform.h>
152 1.46 skrll #include <arm/fdt/arm_fdtvar.h>
153 1.67 skrll #include <dev/fdt/fdt_memory.h>
154 1.41 skrll #endif
155 1.41 skrll
156 1.39 skrll #ifdef MULTIPROCESSOR
157 1.39 skrll #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
158 1.39 skrll #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
159 1.39 skrll #endif
160 1.39 skrll #endif
161 1.39 skrll
162 1.42 skrll #ifdef VERBOSE_INIT_ARM
163 1.42 skrll #define VPRINTF(...) printf(__VA_ARGS__)
164 1.42 skrll #else
165 1.45 skrll #define VPRINTF(...) __nothing
166 1.42 skrll #endif
167 1.42 skrll
168 1.1 matt struct bootmem_info bootmem_info;
169 1.1 matt
170 1.27 matt extern void *msgbufaddr;
171 1.1 matt paddr_t msgbufphys;
172 1.1 matt paddr_t physical_start;
173 1.1 matt paddr_t physical_end;
174 1.1 matt
175 1.1 matt extern char etext[];
176 1.1 matt extern char __data_start[], _edata[];
177 1.1 matt extern char __bss_start[], __bss_end__[];
178 1.1 matt extern char _end[];
179 1.1 matt
180 1.1 matt /* Page tables for mapping kernel VM */
181 1.1 matt #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
182 1.1 matt
183 1.64 skrll #ifdef KASAN
184 1.64 skrll vaddr_t kasan_kernelstart;
185 1.64 skrll vaddr_t kasan_kernelsize;
186 1.64 skrll
187 1.64 skrll #define KERNEL_L2PT_KASAN_NUM howmany(VM_KERNEL_KASAN_SIZE, L2_S_SEGSIZE)
188 1.65 skrll bool kasan_l2pts_created __attribute__((__section__(".data"))) = false;
189 1.64 skrll pv_addr_t kasan_l2pt[KERNEL_L2PT_KASAN_NUM];
190 1.64 skrll #else
191 1.64 skrll #define KERNEL_L2PT_KASAN_NUM 0
192 1.64 skrll #endif
193 1.64 skrll
194 1.44 skrll u_long kern_vtopdiff __attribute__((__section__(".data")));
195 1.1 matt
196 1.1 matt void
197 1.1 matt arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
198 1.1 matt {
199 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
200 1.1 matt pv_addr_t *pv = bmi->bmi_freeblocks;
201 1.1 matt
202 1.44 skrll /*
203 1.46 skrll * FDT/generic start fills in kern_vtopdiff early
204 1.44 skrll */
205 1.46 skrll #if defined(__HAVE_GENERIC_START)
206 1.46 skrll extern char KERNEL_BASE_virt[];
207 1.52 skrll extern char const __stop__init_memory[];
208 1.46 skrll
209 1.46 skrll VPRINTF("%s: kern_vtopdiff=%#lx\n", __func__, kern_vtopdiff);
210 1.46 skrll
211 1.46 skrll vaddr_t kstartva = trunc_page((vaddr_t)KERNEL_BASE_virt);
212 1.52 skrll vaddr_t kendva = round_page((vaddr_t)__stop__init_memory);
213 1.46 skrll
214 1.46 skrll kernelstart = KERN_VTOPHYS(kstartva);
215 1.46 skrll
216 1.46 skrll VPRINTF("%s: kstartva=%#lx, kernelstart=%#lx\n", __func__, kstartva, kernelstart);
217 1.46 skrll #else
218 1.46 skrll vaddr_t kendva = round_page((vaddr_t)_end);
219 1.46 skrll
220 1.44 skrll #if defined(KERNEL_BASE_VOFFSET)
221 1.44 skrll kern_vtopdiff = KERNEL_BASE_VOFFSET;
222 1.44 skrll #else
223 1.44 skrll KASSERT(memstart == kernelstart);
224 1.44 skrll kern_vtopdiff = KERNEL_BASE + memstart;
225 1.44 skrll #endif
226 1.46 skrll #endif
227 1.46 skrll paddr_t kernelend = KERN_VTOPHYS(kendva);
228 1.44 skrll
229 1.51 skrll VPRINTF("%s: memstart=%#lx, memsize=%#lx\n", __func__,
230 1.51 skrll memstart, memsize);
231 1.46 skrll VPRINTF("%s: kernelstart=%#lx, kernelend=%#lx\n", __func__,
232 1.46 skrll kernelstart, kernelend);
233 1.1 matt
234 1.1 matt physical_start = bmi->bmi_start = memstart;
235 1.1 matt physical_end = bmi->bmi_end = memstart + memsize;
236 1.33 matt #ifndef ARM_HAS_LPAE
237 1.33 matt if (physical_end == 0) {
238 1.33 matt physical_end = -PAGE_SIZE;
239 1.33 matt memsize -= PAGE_SIZE;
240 1.34 matt bmi->bmi_end -= PAGE_SIZE;
241 1.42 skrll VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
242 1.33 matt __func__);
243 1.33 matt }
244 1.33 matt #endif
245 1.1 matt physmem = memsize / PAGE_SIZE;
246 1.1 matt
247 1.1 matt /*
248 1.1 matt * Let's record where the kernel lives.
249 1.1 matt */
250 1.46 skrll
251 1.1 matt bmi->bmi_kernelstart = kernelstart;
252 1.46 skrll bmi->bmi_kernelend = kernelend;
253 1.1 matt
254 1.41 skrll #if defined(FDT)
255 1.67 skrll fdt_memory_remove_range(bmi->bmi_kernelstart,
256 1.41 skrll bmi->bmi_kernelend - bmi->bmi_kernelstart);
257 1.41 skrll #endif
258 1.41 skrll
259 1.46 skrll VPRINTF("%s: kernel phys start %#lx end %#lx\n", __func__, kernelstart,
260 1.46 skrll kernelend);
261 1.1 matt
262 1.46 skrll #if 0
263 1.46 skrll // XXX Makes RPI abort
264 1.46 skrll KASSERT((kernelstart & (L2_S_SEGSIZE - 1)) == 0);
265 1.46 skrll #endif
266 1.1 matt /*
267 1.1 matt * Now the rest of the free memory must be after the kernel.
268 1.1 matt */
269 1.1 matt pv->pv_pa = bmi->bmi_kernelend;
270 1.44 skrll pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
271 1.1 matt pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
272 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
273 1.42 skrll VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
274 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
275 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
276 1.1 matt pv++;
277 1.1 matt
278 1.1 matt /*
279 1.1 matt * Add a free block for any memory before the kernel.
280 1.1 matt */
281 1.1 matt if (bmi->bmi_start < bmi->bmi_kernelstart) {
282 1.1 matt pv->pv_pa = bmi->bmi_start;
283 1.44 skrll pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
284 1.33 matt pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
285 1.1 matt bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
286 1.42 skrll VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
287 1.1 matt __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
288 1.1 matt pv->pv_pa + pv->pv_size - 1, pv->pv_va);
289 1.1 matt pv++;
290 1.1 matt }
291 1.1 matt
292 1.1 matt bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
293 1.36 skrll
294 1.1 matt SLIST_INIT(&bmi->bmi_freechunks);
295 1.1 matt SLIST_INIT(&bmi->bmi_chunks);
296 1.1 matt }
297 1.1 matt
298 1.1 matt static bool
299 1.1 matt concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
300 1.1 matt {
301 1.1 matt if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
302 1.1 matt && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
303 1.1 matt && acc_pv->pv_prot == pv->pv_prot
304 1.1 matt && acc_pv->pv_cache == pv->pv_cache) {
305 1.46 skrll #if 0
306 1.42 skrll VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
307 1.46 skrll __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size,
308 1.46 skrll acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size);
309 1.46 skrll #endif
310 1.1 matt acc_pv->pv_size += pv->pv_size;
311 1.1 matt return true;
312 1.1 matt }
313 1.1 matt
314 1.1 matt return false;
315 1.1 matt }
316 1.1 matt
317 1.1 matt static void
318 1.1 matt add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
319 1.1 matt {
320 1.1 matt pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
321 1.14 skrll while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
322 1.1 matt pv_addr_t * const pv0 = (*pvp);
323 1.1 matt KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
324 1.1 matt if (concat_pvaddr(pv0, pv)) {
325 1.42 skrll VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
326 1.1 matt __func__, "appending", pv,
327 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
328 1.1 matt pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
329 1.1 matt pv = SLIST_NEXT(pv0, pv_list);
330 1.1 matt if (pv != NULL && concat_pvaddr(pv0, pv)) {
331 1.42 skrll VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
332 1.1 matt __func__, "merging", pv,
333 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
334 1.1 matt pv0->pv_pa,
335 1.1 matt pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
336 1.1 matt SLIST_REMOVE_AFTER(pv0, pv_list);
337 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
338 1.1 matt }
339 1.1 matt return;
340 1.1 matt }
341 1.1 matt KASSERT(pv->pv_va != (*pvp)->pv_va);
342 1.1 matt pvp = &SLIST_NEXT(*pvp, pv_list);
343 1.1 matt }
344 1.1 matt KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
345 1.1 matt pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
346 1.1 matt KASSERT(new_pv != NULL);
347 1.1 matt SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
348 1.1 matt *new_pv = *pv;
349 1.1 matt SLIST_NEXT(new_pv, pv_list) = *pvp;
350 1.1 matt (*pvp) = new_pv;
351 1.42 skrll
352 1.42 skrll VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
353 1.1 matt __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
354 1.1 matt new_pv->pv_size / PAGE_SIZE);
355 1.42 skrll if (SLIST_NEXT(new_pv, pv_list)) {
356 1.42 skrll VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
357 1.42 skrll } else {
358 1.42 skrll VPRINTF("at tail\n");
359 1.42 skrll }
360 1.1 matt }
361 1.1 matt
362 1.1 matt static void
363 1.1 matt valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
364 1.61 skrll int prot, int cache, bool zero_p)
365 1.1 matt {
366 1.1 matt size_t nbytes = npages * PAGE_SIZE;
367 1.1 matt pv_addr_t *free_pv = bmi->bmi_freeblocks;
368 1.1 matt size_t free_idx = 0;
369 1.1 matt static bool l1pt_found;
370 1.1 matt
371 1.23 matt KASSERT(npages > 0);
372 1.23 matt
373 1.1 matt /*
374 1.6 skrll * If we haven't allocated the kernel L1 page table and we are aligned
375 1.1 matt * at a L1 table boundary, alloc the memory for it.
376 1.1 matt */
377 1.1 matt if (!l1pt_found
378 1.1 matt && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
379 1.1 matt && free_pv->pv_size >= L1_TABLE_SIZE) {
380 1.1 matt l1pt_found = true;
381 1.46 skrll VPRINTF(" l1pt");
382 1.46 skrll
383 1.1 matt valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
384 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
385 1.1 matt add_pages(bmi, &kernel_l1pt);
386 1.1 matt }
387 1.1 matt
388 1.1 matt while (nbytes > free_pv->pv_size) {
389 1.1 matt free_pv++;
390 1.1 matt free_idx++;
391 1.1 matt if (free_idx == bmi->bmi_nfreeblocks) {
392 1.1 matt panic("%s: could not allocate %zu bytes",
393 1.1 matt __func__, nbytes);
394 1.1 matt }
395 1.1 matt }
396 1.1 matt
397 1.12 skrll /*
398 1.12 skrll * As we allocate the memory, make sure that we don't walk over
399 1.12 skrll * our current first level translation table.
400 1.12 skrll */
401 1.12 skrll KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
402 1.12 skrll
403 1.41 skrll #if defined(FDT)
404 1.67 skrll fdt_memory_remove_range(free_pv->pv_pa, nbytes);
405 1.41 skrll #endif
406 1.1 matt pv->pv_pa = free_pv->pv_pa;
407 1.1 matt pv->pv_va = free_pv->pv_va;
408 1.1 matt pv->pv_size = nbytes;
409 1.1 matt pv->pv_prot = prot;
410 1.1 matt pv->pv_cache = cache;
411 1.1 matt
412 1.1 matt /*
413 1.1 matt * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
414 1.1 matt * just use PTE_CACHE.
415 1.1 matt */
416 1.1 matt if (cache == PTE_PAGETABLE
417 1.1 matt && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
418 1.1 matt && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
419 1.1 matt && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
420 1.1 matt pv->pv_cache = PTE_CACHE;
421 1.1 matt
422 1.1 matt free_pv->pv_pa += nbytes;
423 1.1 matt free_pv->pv_va += nbytes;
424 1.1 matt free_pv->pv_size -= nbytes;
425 1.1 matt if (free_pv->pv_size == 0) {
426 1.1 matt --bmi->bmi_nfreeblocks;
427 1.1 matt for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
428 1.1 matt free_pv[0] = free_pv[1];
429 1.1 matt }
430 1.1 matt }
431 1.1 matt
432 1.1 matt bmi->bmi_freepages -= npages;
433 1.1 matt
434 1.18 matt if (zero_p)
435 1.18 matt memset((void *)pv->pv_va, 0, nbytes);
436 1.1 matt }
437 1.1 matt
438 1.1 matt void
439 1.1 matt arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
440 1.61 skrll const struct pmap_devmap *devmap, bool mapallmem_p)
441 1.1 matt {
442 1.1 matt struct bootmem_info * const bmi = &bootmem_info;
443 1.1 matt #ifdef MULTIPROCESSOR
444 1.25 matt const size_t cpu_num = arm_cpu_max;
445 1.1 matt #else
446 1.1 matt const size_t cpu_num = 1;
447 1.1 matt #endif
448 1.46 skrll
449 1.20 matt #ifdef ARM_HAS_VBAR
450 1.20 matt const bool map_vectors_p = false;
451 1.20 matt #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
452 1.21 matt const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
453 1.21 matt || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
454 1.19 matt #else
455 1.19 matt const bool map_vectors_p = true;
456 1.19 matt #endif
457 1.1 matt
458 1.15 matt #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
459 1.15 matt KASSERT(mapallmem_p);
460 1.28 matt #ifdef ARM_MMU_EXTENDED
461 1.28 matt /*
462 1.35 matt * The direct map VA space ends at the start of the kernel VM space.
463 1.28 matt */
464 1.34 matt pmap_directlimit = kernel_vm_base;
465 1.28 matt #else
466 1.28 matt KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
467 1.28 matt #endif /* ARM_MMU_EXTENDED */
468 1.28 matt #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
469 1.15 matt
470 1.1 matt /*
471 1.1 matt * Calculate the number of L2 pages needed for mapping the
472 1.11 skrll * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
473 1.11 skrll * and 1 for IO
474 1.1 matt */
475 1.1 matt size_t kernel_size = bmi->bmi_kernelend;
476 1.1 matt kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
477 1.56 skrll kernel_size += L1_TABLE_SIZE;
478 1.23 matt kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
479 1.64 skrll kernel_size += PAGE_SIZE * KERNEL_L2PT_KASAN_NUM;
480 1.23 matt if (map_vectors_p) {
481 1.23 matt kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
482 1.23 matt }
483 1.23 matt if (iovbase) {
484 1.23 matt kernel_size += PAGE_SIZE; /* L2PT for IO */
485 1.23 matt }
486 1.1 matt kernel_size +=
487 1.1 matt cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
488 1.1 matt + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
489 1.11 skrll kernel_size += round_page(MSGBUFSIZE);
490 1.1 matt kernel_size += 0x10000; /* slop */
491 1.23 matt if (!mapallmem_p) {
492 1.23 matt kernel_size += PAGE_SIZE
493 1.62 skrll * howmany(kernel_size, L2_S_SEGSIZE);
494 1.23 matt }
495 1.1 matt kernel_size = round_page(kernel_size);
496 1.1 matt
497 1.1 matt /*
498 1.37 skrll * Now we know how many L2 pages it will take.
499 1.1 matt */
500 1.37 skrll const size_t KERNEL_L2PT_KERNEL_NUM =
501 1.62 skrll howmany(kernel_size, L2_S_SEGSIZE);
502 1.1 matt
503 1.42 skrll VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
504 1.1 matt __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
505 1.1 matt
506 1.1 matt KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
507 1.1 matt pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
508 1.1 matt pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
509 1.1 matt pv_addr_t msgbuf;
510 1.1 matt pv_addr_t text;
511 1.1 matt pv_addr_t data;
512 1.60 skrll pv_addr_t chunks[__arraycount(bmi->bmi_l2pts) + 11];
513 1.1 matt #if ARM_MMU_XSCALE == 1
514 1.1 matt pv_addr_t minidataclean;
515 1.1 matt #endif
516 1.1 matt
517 1.1 matt /*
518 1.1 matt * We need to allocate some fixed page tables to get the kernel going.
519 1.1 matt *
520 1.1 matt * We are going to allocate our bootstrap pages from the beginning of
521 1.1 matt * the free space that we just calculated. We allocate one page
522 1.1 matt * directory and a number of page tables and store the physical
523 1.10 skrll * addresses in the bmi_l2pts array in bootmem_info.
524 1.1 matt *
525 1.1 matt * The kernel page directory must be on a 16K boundary. The page
526 1.1 matt * tables must be on 4K boundaries. What we do is allocate the
527 1.1 matt * page directory on the first 16K boundary that we encounter, and
528 1.1 matt * the page tables on 4K boundaries otherwise. Since we allocate
529 1.1 matt * at least 3 L2 page tables, we are guaranteed to encounter at
530 1.1 matt * least one 16K aligned region.
531 1.1 matt */
532 1.1 matt
533 1.42 skrll VPRINTF("%s: allocating page tables for", __func__);
534 1.1 matt for (size_t i = 0; i < __arraycount(chunks); i++) {
535 1.1 matt SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
536 1.1 matt }
537 1.1 matt
538 1.1 matt kernel_l1pt.pv_pa = 0;
539 1.1 matt kernel_l1pt.pv_va = 0;
540 1.1 matt
541 1.1 matt /*
542 1.10 skrll * Allocate the L2 pages, but if we get to a page that is aligned for
543 1.10 skrll * an L1 page table, we will allocate the pages for it first and then
544 1.10 skrll * allocate the L2 page.
545 1.10 skrll */
546 1.10 skrll
547 1.19 matt if (map_vectors_p) {
548 1.19 matt /*
549 1.19 matt * First allocate L2 page for the vectors.
550 1.19 matt */
551 1.42 skrll VPRINTF(" vector");
552 1.23 matt valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
553 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
554 1.19 matt add_pages(bmi, &bmi->bmi_vector_l2pt);
555 1.19 matt }
556 1.1 matt
557 1.1 matt /*
558 1.10 skrll * Now allocate L2 pages for the kernel
559 1.1 matt */
560 1.42 skrll VPRINTF(" kernel");
561 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
562 1.23 matt valloc_pages(bmi, &kernel_l2pt[idx], 1,
563 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
564 1.1 matt add_pages(bmi, &kernel_l2pt[idx]);
565 1.1 matt }
566 1.10 skrll
567 1.10 skrll /*
568 1.10 skrll * Now allocate L2 pages for the initial kernel VA space.
569 1.10 skrll */
570 1.42 skrll VPRINTF(" vm");
571 1.8 skrll for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
572 1.23 matt valloc_pages(bmi, &vmdata_l2pt[idx], 1,
573 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
574 1.1 matt add_pages(bmi, &vmdata_l2pt[idx]);
575 1.1 matt }
576 1.1 matt
577 1.64 skrll #ifdef KASAN
578 1.64 skrll /*
579 1.64 skrll * Now allocate L2 pages for the KASAN shadow map l2pt VA space.
580 1.64 skrll */
581 1.64 skrll VPRINTF(" kasan");
582 1.64 skrll for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; ++idx) {
583 1.64 skrll valloc_pages(bmi, &kasan_l2pt[idx], 1,
584 1.64 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
585 1.64 skrll add_pages(bmi, &kasan_l2pt[idx]);
586 1.64 skrll }
587 1.64 skrll
588 1.64 skrll #endif
589 1.1 matt /*
590 1.1 matt * If someone wanted a L2 page for I/O, allocate it now.
591 1.1 matt */
592 1.23 matt if (iovbase) {
593 1.42 skrll VPRINTF(" io");
594 1.23 matt valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
595 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
596 1.1 matt add_pages(bmi, &bmi->bmi_io_l2pt);
597 1.1 matt }
598 1.1 matt
599 1.42 skrll VPRINTF("%s: allocating stacks\n", __func__);
600 1.1 matt
601 1.10 skrll /* Allocate stacks for all modes and CPUs */
602 1.1 matt valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
603 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
604 1.1 matt add_pages(bmi, &abtstack);
605 1.1 matt valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
606 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
607 1.1 matt add_pages(bmi, &fiqstack);
608 1.1 matt valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
609 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
610 1.1 matt add_pages(bmi, &irqstack);
611 1.1 matt valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
612 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
613 1.1 matt add_pages(bmi, &undstack);
614 1.1 matt valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
615 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
616 1.1 matt add_pages(bmi, &idlestack);
617 1.1 matt valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
618 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
619 1.1 matt add_pages(bmi, &kernelstack);
620 1.1 matt
621 1.1 matt /* Allocate the message buffer from the end of memory. */
622 1.1 matt const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
623 1.1 matt valloc_pages(bmi, &msgbuf, msgbuf_pgs,
624 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, false);
625 1.1 matt add_pages(bmi, &msgbuf);
626 1.1 matt msgbufphys = msgbuf.pv_pa;
627 1.27 matt msgbufaddr = (void *)msgbuf.pv_va;
628 1.1 matt
629 1.64 skrll #ifdef KASAN
630 1.64 skrll kasan_kernelstart = KERNEL_BASE;
631 1.64 skrll kasan_kernelsize = (msgbuf.pv_va + round_page(MSGBUFSIZE)) - KERNEL_BASE;
632 1.64 skrll #endif
633 1.64 skrll
634 1.19 matt if (map_vectors_p) {
635 1.19 matt /*
636 1.19 matt * Allocate a page for the system vector page.
637 1.19 matt * This page will just contain the system vectors and can be
638 1.19 matt * shared by all processes.
639 1.19 matt */
640 1.46 skrll VPRINTF(" vector");
641 1.46 skrll
642 1.61 skrll valloc_pages(bmi, &systempage, 1,
643 1.61 skrll VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE,
644 1.19 matt PTE_CACHE, true);
645 1.19 matt }
646 1.1 matt systempage.pv_va = vectors;
647 1.1 matt
648 1.1 matt /*
649 1.1 matt * If the caller needed a few extra pages for some reason, allocate
650 1.1 matt * them now.
651 1.1 matt */
652 1.1 matt #if ARM_MMU_XSCALE == 1
653 1.1 matt #if (ARM_NMMUS > 1)
654 1.1 matt if (xscale_use_minidata)
655 1.36 skrll #endif
656 1.30 kiyohara valloc_pages(bmi, &minidataclean, 1,
657 1.61 skrll VM_PROT_READ | VM_PROT_WRITE, 0, true);
658 1.1 matt #endif
659 1.1 matt
660 1.1 matt /*
661 1.1 matt * Ok we have allocated physical pages for the primary kernel
662 1.1 matt * page tables and stacks. Let's just confirm that.
663 1.1 matt */
664 1.1 matt if (kernel_l1pt.pv_va == 0
665 1.1 matt && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
666 1.1 matt panic("%s: Failed to allocate or align the kernel "
667 1.1 matt "page directory", __func__);
668 1.1 matt
669 1.46 skrll VPRINTF("Creating L1 page table at 0x%08lx/0x%08lx\n",
670 1.46 skrll kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
671 1.1 matt
672 1.1 matt /*
673 1.1 matt * Now we start construction of the L1 page table
674 1.1 matt * We start by mapping the L2 page tables into the L1.
675 1.1 matt * This means that we can replace L1 mappings later on if necessary
676 1.1 matt */
677 1.1 matt vaddr_t l1pt_va = kernel_l1pt.pv_va;
678 1.1 matt paddr_t l1pt_pa = kernel_l1pt.pv_pa;
679 1.1 matt
680 1.19 matt if (map_vectors_p) {
681 1.19 matt /* Map the L2 pages tables in the L1 page table */
682 1.63 skrll const vaddr_t va = systempage.pv_va & -L2_S_SEGSIZE;
683 1.63 skrll
684 1.63 skrll pmap_link_l2pt(l1pt_va, va, &bmi->bmi_vector_l2pt);
685 1.63 skrll
686 1.63 skrll VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
687 1.19 matt __func__, bmi->bmi_vector_l2pt.pv_va,
688 1.63 skrll bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va, "(vectors)");
689 1.19 matt }
690 1.1 matt
691 1.46 skrll /*
692 1.57 skrll * This enforces an alignment requirement of L2_S_SEGSIZE for kernel
693 1.46 skrll * start PA
694 1.46 skrll */
695 1.1 matt const vaddr_t kernel_base =
696 1.44 skrll KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
697 1.46 skrll
698 1.46 skrll VPRINTF("%s: kernel_base %lx KERNEL_L2PT_KERNEL_NUM %zu\n", __func__,
699 1.46 skrll kernel_base, KERNEL_L2PT_KERNEL_NUM);
700 1.46 skrll
701 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
702 1.63 skrll const vaddr_t va = kernel_base + idx * L2_S_SEGSIZE;
703 1.63 skrll
704 1.63 skrll pmap_link_l2pt(l1pt_va, va, &kernel_l2pt[idx]);
705 1.63 skrll
706 1.63 skrll VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
707 1.63 skrll __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
708 1.63 skrll va, "(kernel)");
709 1.1 matt }
710 1.1 matt
711 1.49 skrll VPRINTF("%s: kernel_vm_base %lx KERNEL_L2PT_VMDATA_NUM %d\n", __func__,
712 1.49 skrll kernel_vm_base, KERNEL_L2PT_VMDATA_NUM);
713 1.46 skrll
714 1.1 matt for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
715 1.63 skrll const vaddr_t va = kernel_vm_base + idx * L2_S_SEGSIZE;
716 1.63 skrll
717 1.63 skrll pmap_link_l2pt(l1pt_va, va, &vmdata_l2pt[idx]);
718 1.63 skrll
719 1.63 skrll VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
720 1.1 matt __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
721 1.63 skrll va, "(vm)");
722 1.1 matt }
723 1.1 matt if (iovbase) {
724 1.63 skrll const vaddr_t va = iovbase & -L2_S_SEGSIZE;
725 1.63 skrll
726 1.63 skrll pmap_link_l2pt(l1pt_va, va, &bmi->bmi_io_l2pt);
727 1.63 skrll
728 1.63 skrll VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
729 1.1 matt __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
730 1.63 skrll va, "(io)");
731 1.1 matt }
732 1.1 matt
733 1.64 skrll #ifdef KASAN
734 1.64 skrll VPRINTF("%s: kasan_shadow_base %x KERNEL_L2PT_KASAN_NUM %d\n", __func__,
735 1.64 skrll VM_KERNEL_KASAN_BASE, KERNEL_L2PT_KASAN_NUM);
736 1.64 skrll
737 1.64 skrll for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; idx++) {
738 1.64 skrll const vaddr_t va = VM_KERNEL_KASAN_BASE + idx * L2_S_SEGSIZE;
739 1.64 skrll
740 1.64 skrll pmap_link_l2pt(l1pt_va, va, &kasan_l2pt[idx]);
741 1.64 skrll
742 1.64 skrll VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
743 1.64 skrll __func__, kasan_l2pt[idx].pv_va, kasan_l2pt[idx].pv_pa,
744 1.64 skrll va, "(kasan)");
745 1.64 skrll }
746 1.65 skrll kasan_l2pts_created = true;
747 1.64 skrll #endif
748 1.64 skrll
749 1.1 matt /* update the top of the kernel VM */
750 1.1 matt pmap_curmaxkvaddr =
751 1.1 matt kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
752 1.1 matt
753 1.46 skrll // This could be done earlier and then the kernel data and pages
754 1.46 skrll // allocated above would get merged (concatentated)
755 1.46 skrll
756 1.42 skrll VPRINTF("Mapping kernel\n");
757 1.1 matt
758 1.44 skrll extern char etext[];
759 1.1 matt size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
760 1.44 skrll size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
761 1.1 matt
762 1.1 matt textsize = (textsize + PGOFSET) & ~PGOFSET;
763 1.1 matt
764 1.1 matt /* start at offset of kernel in RAM */
765 1.1 matt
766 1.1 matt text.pv_pa = bmi->bmi_kernelstart;
767 1.44 skrll text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
768 1.1 matt text.pv_size = textsize;
769 1.40 skrll text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
770 1.1 matt text.pv_cache = PTE_CACHE;
771 1.1 matt
772 1.42 skrll VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
773 1.1 matt __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
774 1.1 matt
775 1.1 matt add_pages(bmi, &text);
776 1.1 matt
777 1.1 matt data.pv_pa = text.pv_pa + textsize;
778 1.1 matt data.pv_va = text.pv_va + textsize;
779 1.1 matt data.pv_size = totalsize - textsize;
780 1.51 skrll data.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
781 1.1 matt data.pv_cache = PTE_CACHE;
782 1.1 matt
783 1.42 skrll VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
784 1.1 matt __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
785 1.1 matt
786 1.1 matt add_pages(bmi, &data);
787 1.1 matt
788 1.42 skrll VPRINTF("Listing Chunks\n");
789 1.26 skrll
790 1.26 skrll pv_addr_t *lpv;
791 1.26 skrll SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
792 1.42 skrll VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
793 1.26 skrll "(PA %#lx, prot %d, cache %d)\n",
794 1.26 skrll __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
795 1.26 skrll lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
796 1.1 matt }
797 1.42 skrll VPRINTF("\nMapping Chunks\n");
798 1.1 matt
799 1.1 matt pv_addr_t cur_pv;
800 1.1 matt pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
801 1.1 matt if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
802 1.1 matt cur_pv = *pv;
803 1.35 matt KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
804 1.1 matt pv = SLIST_NEXT(pv, pv_list);
805 1.1 matt } else {
806 1.13 matt cur_pv.pv_va = KERNEL_BASE;
807 1.44 skrll cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
808 1.35 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
809 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
810 1.1 matt cur_pv.pv_cache = PTE_CACHE;
811 1.1 matt }
812 1.1 matt while (pv != NULL) {
813 1.54 skrll if (mapallmem_p) {
814 1.54 skrll if (concat_pvaddr(&cur_pv, pv)) {
815 1.54 skrll pv = SLIST_NEXT(pv, pv_list);
816 1.54 skrll continue;
817 1.54 skrll }
818 1.1 matt if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
819 1.1 matt /*
820 1.1 matt * See if we can extend the current pv to emcompass the
821 1.1 matt * hole, and if so do it and retry the concatenation.
822 1.1 matt */
823 1.61 skrll if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
824 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
825 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
826 1.1 matt continue;
827 1.1 matt }
828 1.1 matt
829 1.1 matt /*
830 1.1 matt * We couldn't so emit the current chunk and then
831 1.1 matt */
832 1.42 skrll VPRINTF("%s: mapping chunk VA %#lx..%#lx "
833 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
834 1.1 matt __func__,
835 1.1 matt cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
836 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
837 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
838 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
839 1.1 matt
840 1.1 matt /*
841 1.1 matt * set the current chunk to the hole and try again.
842 1.1 matt */
843 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
844 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
845 1.1 matt cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
846 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
847 1.1 matt cur_pv.pv_cache = PTE_CACHE;
848 1.1 matt continue;
849 1.1 matt }
850 1.1 matt }
851 1.1 matt
852 1.1 matt /*
853 1.1 matt * The new pv didn't concatenate so emit the current one
854 1.1 matt * and use the new pv as the current pv.
855 1.1 matt */
856 1.42 skrll VPRINTF("%s: mapping chunk VA %#lx..%#lx "
857 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
858 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
859 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
860 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
861 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
862 1.1 matt cur_pv = *pv;
863 1.1 matt pv = SLIST_NEXT(pv, pv_list);
864 1.1 matt }
865 1.1 matt
866 1.1 matt /*
867 1.1 matt * If we are mapping all of memory, let's map the rest of memory.
868 1.1 matt */
869 1.1 matt if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
870 1.1 matt if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
871 1.1 matt && cur_pv.pv_cache == PTE_CACHE) {
872 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
873 1.1 matt } else {
874 1.34 matt KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
875 1.34 matt "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
876 1.34 matt kernel_vm_base);
877 1.42 skrll VPRINTF("%s: mapping chunk VA %#lx..%#lx "
878 1.1 matt "(PA %#lx, prot %d, cache %d)\n",
879 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
880 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
881 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
882 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
883 1.1 matt cur_pv.pv_pa += cur_pv.pv_size;
884 1.1 matt cur_pv.pv_va += cur_pv.pv_size;
885 1.1 matt cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
886 1.1 matt cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
887 1.1 matt cur_pv.pv_cache = PTE_CACHE;
888 1.1 matt }
889 1.1 matt }
890 1.1 matt
891 1.50 skrll /*
892 1.50 skrll * The amount we can direct map is limited by the start of the
893 1.50 skrll * virtual part of the kernel address space. Don't overrun
894 1.50 skrll * into it.
895 1.50 skrll */
896 1.34 matt if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
897 1.34 matt cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
898 1.34 matt }
899 1.34 matt
900 1.1 matt /*
901 1.1 matt * Now we map the final chunk.
902 1.1 matt */
903 1.42 skrll VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
904 1.1 matt __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
905 1.1 matt cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
906 1.1 matt pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
907 1.1 matt cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
908 1.1 matt
909 1.1 matt /*
910 1.1 matt * Now we map the stuff that isn't directly after the kernel
911 1.1 matt */
912 1.19 matt if (map_vectors_p) {
913 1.19 matt /* Map the vector page. */
914 1.19 matt pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
915 1.61 skrll VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE, PTE_CACHE);
916 1.19 matt }
917 1.1 matt
918 1.36 skrll /* Map the Mini-Data cache clean area. */
919 1.1 matt #if ARM_MMU_XSCALE == 1
920 1.1 matt #if (ARM_NMMUS > 1)
921 1.1 matt if (xscale_use_minidata)
922 1.36 skrll #endif
923 1.30 kiyohara xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
924 1.36 skrll minidataclean.pv_pa);
925 1.1 matt #endif
926 1.1 matt
927 1.1 matt /*
928 1.1 matt * Map integrated peripherals at same address in first level page
929 1.1 matt * table so that we can continue to use console.
930 1.1 matt */
931 1.1 matt if (devmap)
932 1.1 matt pmap_devmap_bootstrap(l1pt_va, devmap);
933 1.1 matt
934 1.1 matt /* Tell the user about where all the bits and pieces live. */
935 1.42 skrll VPRINTF("%22s Physical Virtual Num\n", " ");
936 1.42 skrll VPRINTF("%22s Starting Ending Starting Ending Pages\n", " ");
937 1.1 matt
938 1.43 martin #ifdef VERBOSE_INIT_ARM
939 1.1 matt static const char mem_fmt[] =
940 1.1 matt "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
941 1.1 matt static const char mem_fmt_nov[] =
942 1.1 matt "%20s: 0x%08lx 0x%08lx %zu\n";
943 1.43 martin #endif
944 1.1 matt
945 1.46 skrll #if 0
946 1.46 skrll // XXX Doesn't make sense if kernel not at bottom of RAM
947 1.42 skrll VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
948 1.44 skrll KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
949 1.38 skrll (int)physmem);
950 1.46 skrll #endif
951 1.42 skrll VPRINTF(mem_fmt, "text section",
952 1.1 matt text.pv_pa, text.pv_pa + text.pv_size - 1,
953 1.1 matt text.pv_va, text.pv_va + text.pv_size - 1,
954 1.1 matt (int)(text.pv_size / PAGE_SIZE));
955 1.42 skrll VPRINTF(mem_fmt, "data section",
956 1.44 skrll KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
957 1.1 matt (vaddr_t)__data_start, (vaddr_t)_edata,
958 1.1 matt (int)((round_page((vaddr_t)_edata)
959 1.1 matt - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
960 1.42 skrll VPRINTF(mem_fmt, "bss section",
961 1.44 skrll KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
962 1.1 matt (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
963 1.1 matt (int)((round_page((vaddr_t)__bss_end__)
964 1.1 matt - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
965 1.42 skrll VPRINTF(mem_fmt, "L1 page directory",
966 1.1 matt kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
967 1.1 matt kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
968 1.1 matt L1_TABLE_SIZE / PAGE_SIZE);
969 1.42 skrll VPRINTF(mem_fmt, "ABT stack (CPU 0)",
970 1.7 skrll abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
971 1.7 skrll abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
972 1.7 skrll ABT_STACK_SIZE);
973 1.42 skrll VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
974 1.1 matt fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
975 1.1 matt fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
976 1.1 matt FIQ_STACK_SIZE);
977 1.42 skrll VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
978 1.1 matt irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
979 1.1 matt irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
980 1.1 matt IRQ_STACK_SIZE);
981 1.42 skrll VPRINTF(mem_fmt, "UND stack (CPU 0)",
982 1.1 matt undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
983 1.1 matt undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
984 1.1 matt UND_STACK_SIZE);
985 1.42 skrll VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
986 1.1 matt idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
987 1.1 matt idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
988 1.1 matt UPAGES);
989 1.42 skrll VPRINTF(mem_fmt, "SVC stack",
990 1.1 matt kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
991 1.1 matt kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
992 1.1 matt UPAGES);
993 1.42 skrll VPRINTF(mem_fmt, "Message Buffer",
994 1.9 skrll msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
995 1.9 skrll msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
996 1.9 skrll (int)msgbuf_pgs);
997 1.19 matt if (map_vectors_p) {
998 1.42 skrll VPRINTF(mem_fmt, "Exception Vectors",
999 1.19 matt systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1000 1.19 matt systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
1001 1.19 matt 1);
1002 1.19 matt }
1003 1.1 matt for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
1004 1.1 matt pv = &bmi->bmi_freeblocks[i];
1005 1.1 matt
1006 1.42 skrll VPRINTF(mem_fmt_nov, "Free Memory",
1007 1.1 matt pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
1008 1.1 matt pv->pv_size / PAGE_SIZE);
1009 1.1 matt }
1010 1.1 matt /*
1011 1.1 matt * Now we have the real page tables in place so we can switch to them.
1012 1.1 matt * Once this is done we will be running with the REAL kernel page
1013 1.1 matt * tables.
1014 1.1 matt */
1015 1.1 matt
1016 1.42 skrll VPRINTF("TTBR0=%#x", armreg_ttbr_read());
1017 1.2 matt #ifdef _ARM_ARCH_6
1018 1.42 skrll VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
1019 1.25 matt armreg_ttbr1_read(), armreg_ttbcr_read(),
1020 1.25 matt armreg_contextidr_read());
1021 1.2 matt #endif
1022 1.42 skrll VPRINTF("\n");
1023 1.2 matt
1024 1.1 matt /* Switch tables */
1025 1.46 skrll VPRINTF("switching to new L1 page table @%#lx...\n", l1pt_pa);
1026 1.46 skrll
1027 1.46 skrll cpu_ttb = l1pt_pa;
1028 1.46 skrll
1029 1.46 skrll cpu_domains(DOMAIN_DEFAULT);
1030 1.46 skrll
1031 1.46 skrll cpu_idcache_wbinv_all();
1032 1.46 skrll
1033 1.46 skrll #ifdef __HAVE_GENERIC_START
1034 1.1 matt
1035 1.46 skrll /*
1036 1.46 skrll * Turn on caches and set SCTLR/ACTLR
1037 1.46 skrll */
1038 1.46 skrll cpu_setup(boot_args);
1039 1.23 matt #endif
1040 1.46 skrll
1041 1.42 skrll VPRINTF(" ttb");
1042 1.46 skrll
1043 1.17 matt #ifdef ARM_MMU_EXTENDED
1044 1.23 matt /*
1045 1.23 matt * TTBCR should have been initialized by the MD start code.
1046 1.23 matt */
1047 1.25 matt KASSERT((armreg_contextidr_read() & 0xff) == 0);
1048 1.23 matt KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
1049 1.24 matt /*
1050 1.24 matt * Disable lookups via TTBR0 until there is an activated pmap.
1051 1.24 matt */
1052 1.24 matt armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
1053 1.17 matt cpu_setttb(l1pt_pa, KERNEL_PID);
1054 1.66 skrll isb();
1055 1.17 matt #else
1056 1.4 matt cpu_setttb(l1pt_pa, true);
1057 1.17 matt #endif
1058 1.46 skrll
1059 1.1 matt cpu_tlb_flushID();
1060 1.1 matt
1061 1.64 skrll #ifdef KASAN
1062 1.64 skrll extern uint8_t start_stacks_bottom[];
1063 1.64 skrll kasan_early_init((void *)start_stacks_bottom);
1064 1.64 skrll #endif
1065 1.64 skrll
1066 1.23 matt #ifdef ARM_MMU_EXTENDED
1067 1.46 skrll VPRINTF("\nsctlr=%#x actlr=%#x\n",
1068 1.46 skrll armreg_sctlr_read(), armreg_auxctl_read());
1069 1.23 matt #else
1070 1.42 skrll VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
1071 1.25 matt #endif
1072 1.25 matt
1073 1.25 matt #ifdef MULTIPROCESSOR
1074 1.46 skrll #ifndef __HAVE_GENERIC_START
1075 1.25 matt /*
1076 1.25 matt * Kick the secondaries to load the TTB. After which they'll go
1077 1.25 matt * back to sleep to wait for the final kick so they will hatch.
1078 1.25 matt */
1079 1.42 skrll VPRINTF(" hatchlings");
1080 1.25 matt cpu_boot_secondary_processors();
1081 1.25 matt #endif
1082 1.46 skrll #endif
1083 1.25 matt
1084 1.42 skrll VPRINTF(" OK\n");
1085 1.1 matt }
1086