arm32_kvminit.c revision 1.11 1 /* $NetBSD: arm32_kvminit.c,v 1.11 2012/10/19 09:56:32 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.11 2012/10/19 09:56:32 skrll Exp $");
126
127 #include <sys/param.h>
128 #include <sys/device.h>
129 #include <sys/kernel.h>
130 #include <sys/reboot.h>
131 #include <sys/bus.h>
132
133 #include <dev/cons.h>
134
135 #include <uvm/uvm_extern.h>
136
137 #include <arm/db_machdep.h>
138 #include <arm/undefined.h>
139 #include <arm/bootconfig.h>
140 #include <arm/arm32/machdep.h>
141
142 #include "ksyms.h"
143
144 struct bootmem_info bootmem_info;
145
146 paddr_t msgbufphys;
147 paddr_t physical_start;
148 paddr_t physical_end;
149
150 extern char etext[];
151 extern char __data_start[], _edata[];
152 extern char __bss_start[], __bss_end__[];
153 extern char _end[];
154
155 /* Page tables for mapping kernel VM */
156 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
157
158 /*
159 * Macros to translate between physical and virtual for a subset of the
160 * kernel address space. *Not* for general use.
161 */
162 #define KERN_VTOPHYS(bmi, va) \
163 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
164 #define KERN_PHYSTOV(bmi, pa) \
165 ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
166
167 void
168 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
169 {
170 struct bootmem_info * const bmi = &bootmem_info;
171 pv_addr_t *pv = bmi->bmi_freeblocks;
172
173 #ifdef VERBOSE_INIT_ARM
174 printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
175 __func__, memstart, memsize, kernelstart);
176 #endif
177
178 physical_start = bmi->bmi_start = memstart;
179 physical_end = bmi->bmi_end = memstart + memsize;
180 physmem = memsize / PAGE_SIZE;
181
182 /*
183 * Let's record where the kernel lives.
184 */
185 bmi->bmi_kernelstart = kernelstart;
186 bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
187
188 #ifdef VERBOSE_INIT_ARM
189 printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
190 #endif
191
192 /*
193 * Now the rest of the free memory must be after the kernel.
194 */
195 pv->pv_pa = bmi->bmi_kernelend;
196 pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
197 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
198 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
199 #ifdef VERBOSE_INIT_ARM
200 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
201 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
202 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
203 #endif
204 pv++;
205
206 /*
207 * Add a free block for any memory before the kernel.
208 */
209 if (bmi->bmi_start < bmi->bmi_kernelstart) {
210 pv->pv_pa = bmi->bmi_start;
211 pv->pv_va = KERNEL_BASE;
212 pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
213 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
214 #ifdef VERBOSE_INIT_ARM
215 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
216 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
217 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
218 #endif
219 pv++;
220 }
221
222 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
223
224 SLIST_INIT(&bmi->bmi_freechunks);
225 SLIST_INIT(&bmi->bmi_chunks);
226 }
227
228 static bool
229 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
230 {
231 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
232 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
233 && acc_pv->pv_prot == pv->pv_prot
234 && acc_pv->pv_cache == pv->pv_cache) {
235 #ifdef VERBOSE_INIT_ARMX
236 printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
237 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
238 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
239 #endif
240 acc_pv->pv_size += pv->pv_size;
241 return true;
242 }
243
244 return false;
245 }
246
247 static void
248 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
249 {
250 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
251 while ((*pvp) != 0 && (*pvp)->pv_va <= pv->pv_va) {
252 pv_addr_t * const pv0 = (*pvp);
253 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
254 if (concat_pvaddr(pv0, pv)) {
255 #ifdef VERBOSE_INIT_ARM
256 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 __func__, "appending", pv,
258 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
259 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
260 #endif
261 pv = SLIST_NEXT(pv0, pv_list);
262 if (pv != NULL && concat_pvaddr(pv0, pv)) {
263 #ifdef VERBOSE_INIT_ARM
264 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
265 __func__, "merging", pv,
266 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
267 pv0->pv_pa,
268 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
269 #endif
270 SLIST_REMOVE_AFTER(pv0, pv_list);
271 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
272 }
273 return;
274 }
275 KASSERT(pv->pv_va != (*pvp)->pv_va);
276 pvp = &SLIST_NEXT(*pvp, pv_list);
277 }
278 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
279 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
280 KASSERT(new_pv != NULL);
281 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
282 *new_pv = *pv;
283 SLIST_NEXT(new_pv, pv_list) = *pvp;
284 (*pvp) = new_pv;
285 #ifdef VERBOSE_INIT_ARM
286 printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
287 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
288 new_pv->pv_size / PAGE_SIZE);
289 if (SLIST_NEXT(new_pv, pv_list))
290 printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
291 else
292 printf("at tail\n");
293 #endif
294 }
295
296 static void
297 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
298 int prot, int cache)
299 {
300 size_t nbytes = npages * PAGE_SIZE;
301 pv_addr_t *free_pv = bmi->bmi_freeblocks;
302 size_t free_idx = 0;
303 static bool l1pt_found;
304
305 /*
306 * If we haven't allocated the kernel L1 page table and we are aligned
307 * at a L1 table boundary, alloc the memory for it.
308 */
309 if (!l1pt_found
310 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
311 && free_pv->pv_size >= L1_TABLE_SIZE) {
312 l1pt_found = true;
313 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
314 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
315 add_pages(bmi, &kernel_l1pt);
316 }
317
318 while (nbytes > free_pv->pv_size) {
319 free_pv++;
320 free_idx++;
321 if (free_idx == bmi->bmi_nfreeblocks) {
322 panic("%s: could not allocate %zu bytes",
323 __func__, nbytes);
324 }
325 }
326
327 pv->pv_pa = free_pv->pv_pa;
328 pv->pv_va = free_pv->pv_va;
329 pv->pv_size = nbytes;
330 pv->pv_prot = prot;
331 pv->pv_cache = cache;
332
333 /*
334 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
335 * just use PTE_CACHE.
336 */
337 if (cache == PTE_PAGETABLE
338 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
339 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
340 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
341 pv->pv_cache = PTE_CACHE;
342
343 free_pv->pv_pa += nbytes;
344 free_pv->pv_va += nbytes;
345 free_pv->pv_size -= nbytes;
346 if (free_pv->pv_size == 0) {
347 --bmi->bmi_nfreeblocks;
348 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
349 free_pv[0] = free_pv[1];
350 }
351 }
352
353 bmi->bmi_freepages -= npages;
354
355 memset((void *)pv->pv_va, 0, nbytes);
356 }
357
358 void
359 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
360 const struct pmap_devmap *devmap, bool mapallmem_p)
361 {
362 struct bootmem_info * const bmi = &bootmem_info;
363 #ifdef MULTIPROCESSOR
364 const size_t cpu_num = arm_cpu_max + 1;
365 #else
366 const size_t cpu_num = 1;
367 #endif
368
369 /*
370 * Calculate the number of L2 pages needed for mapping the
371 * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
372 * and 1 for IO
373 */
374 size_t kernel_size = bmi->bmi_kernelend;
375 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
376 kernel_size += L1_TABLE_SIZE;
377 kernel_size += L2_TABLE_SIZE * (2 + 1 + KERNEL_L2PT_VMDATA_NUM + 1);
378 kernel_size +=
379 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
380 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
381 kernel_size += round_page(MSGBUFSIZE);
382 kernel_size += 0x10000; /* slop */
383 kernel_size += (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
384 kernel_size = round_page(kernel_size);
385
386 /*
387 * Now we know how many L2 pages it will take.
388 */
389 const size_t KERNEL_L2PT_KERNEL_NUM =
390 (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
391
392 #ifdef VERBOSE_INIT_ARM
393 printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
394 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
395 #endif
396
397 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
398 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
399 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
400 pv_addr_t msgbuf;
401 pv_addr_t text;
402 pv_addr_t data;
403 pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
404 #if ARM_MMU_XSCALE == 1
405 pv_addr_t minidataclean;
406 #endif
407
408 /*
409 * We need to allocate some fixed page tables to get the kernel going.
410 *
411 * We are going to allocate our bootstrap pages from the beginning of
412 * the free space that we just calculated. We allocate one page
413 * directory and a number of page tables and store the physical
414 * addresses in the bmi_l2pts array in bootmem_info.
415 *
416 * The kernel page directory must be on a 16K boundary. The page
417 * tables must be on 4K boundaries. What we do is allocate the
418 * page directory on the first 16K boundary that we encounter, and
419 * the page tables on 4K boundaries otherwise. Since we allocate
420 * at least 3 L2 page tables, we are guaranteed to encounter at
421 * least one 16K aligned region.
422 */
423
424 #ifdef VERBOSE_INIT_ARM
425 printf("%s: allocating page tables for", __func__);
426 #endif
427 for (size_t i = 0; i < __arraycount(chunks); i++) {
428 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
429 }
430
431 /*
432 * As we allocate the memory, make sure that we don't walk over
433 * our temporary first level translation table.
434 */
435
436 kernel_l1pt.pv_pa = 0;
437 kernel_l1pt.pv_va = 0;
438
439 /*
440 * Allocate the L2 pages, but if we get to a page that is aligned for
441 * an L1 page table, we will allocate the pages for it first and then
442 * allocate the L2 page.
443 */
444
445 /*
446 * First allocate L2 page for the vectors.
447 */
448 #ifdef VERBOSE_INIT_ARM
449 printf(" vector");
450 #endif
451 valloc_pages(bmi, &bmi->bmi_vector_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
452 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
453 add_pages(bmi, &bmi->bmi_vector_l2pt);
454
455 /*
456 * Now allocate L2 pages for the kernel
457 */
458 #ifdef VERBOSE_INIT_ARM
459 printf(" kernel");
460 #endif
461 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
462 valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
463 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
464 add_pages(bmi, &kernel_l2pt[idx]);
465 }
466
467 /*
468 * Now allocate L2 pages for the initial kernel VA space.
469 */
470 #ifdef VERBOSE_INIT_ARM
471 printf(" vm");
472 #endif
473 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
474 valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
475 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
476 add_pages(bmi, &vmdata_l2pt[idx]);
477 }
478
479 /*
480 * If someone wanted a L2 page for I/O, allocate it now.
481 */
482 if (iovbase != 0) {
483 #ifdef VERBOSE_INIT_ARM
484 printf(" io");
485 #endif
486 valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
487 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
488 add_pages(bmi, &bmi->bmi_io_l2pt);
489 }
490
491 #ifdef VERBOSE_ARM_INIT
492 printf("%s: allocating stacks\n", __func__);
493 #endif
494
495 /* Allocate stacks for all modes and CPUs */
496 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
497 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
498 add_pages(bmi, &abtstack);
499 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
500 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
501 add_pages(bmi, &fiqstack);
502 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
503 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
504 add_pages(bmi, &irqstack);
505 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
506 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
507 add_pages(bmi, &undstack);
508 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
509 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
510 add_pages(bmi, &idlestack);
511 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
512 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
513 add_pages(bmi, &kernelstack);
514
515 /* Allocate the message buffer from the end of memory. */
516 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
517 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
518 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
519 add_pages(bmi, &msgbuf);
520 msgbufphys = msgbuf.pv_pa;
521
522 /*
523 * Allocate a page for the system vector page.
524 * This page will just contain the system vectors and can be
525 * shared by all processes.
526 */
527 valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
528 systempage.pv_va = vectors;
529
530 /*
531 * If the caller needed a few extra pages for some reason, allocate
532 * them now.
533 */
534 #if ARM_MMU_XSCALE == 1
535 #if (ARM_NMMUS > 1)
536 if (xscale_use_minidata)
537 #endif
538 valloc_pages(bmi, extrapv, nextrapages,
539 VM_PROT_READ|VM_PROT_WRITE, 0);
540 #endif
541
542 /*
543 * Ok we have allocated physical pages for the primary kernel
544 * page tables and stacks. Let's just confirm that.
545 */
546 if (kernel_l1pt.pv_va == 0
547 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
548 panic("%s: Failed to allocate or align the kernel "
549 "page directory", __func__);
550
551
552 #ifdef VERBOSE_INIT_ARM
553 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
554 #endif
555
556 /*
557 * Now we start construction of the L1 page table
558 * We start by mapping the L2 page tables into the L1.
559 * This means that we can replace L1 mappings later on if necessary
560 */
561 vaddr_t l1pt_va = kernel_l1pt.pv_va;
562 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
563
564 /* Map the L2 pages tables in the L1 page table */
565 pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
566 &bmi->bmi_vector_l2pt);
567 #ifdef VERBOSE_INIT_ARM
568 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n (vectors)",
569 __func__, bmi->bmi_vector_l2pt.pv_va, bmi->bmi_vector_l2pt.pv_pa,
570 systempage.pv_va);
571 #endif
572
573 const vaddr_t kernel_base =
574 KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
575 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
576 pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
577 &kernel_l2pt[idx]);
578 #ifdef VERBOSE_INIT_ARM
579 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
580 __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
581 kernel_base + idx * L2_S_SEGSIZE);
582 #endif
583 }
584
585 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
586 pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
587 &vmdata_l2pt[idx]);
588 #ifdef VERBOSE_INIT_ARM
589 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
590 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
591 kernel_vm_base + idx * L2_S_SEGSIZE);
592 #endif
593 }
594 if (iovbase) {
595 pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
596 #ifdef VERBOSE_INIT_ARM
597 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
598 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
599 iovbase & -L2_S_SEGSIZE);
600 #endif
601 }
602
603 /* update the top of the kernel VM */
604 pmap_curmaxkvaddr =
605 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
606
607 #ifdef VERBOSE_INIT_ARM
608 printf("Mapping kernel\n");
609 #endif
610
611 extern char etext[], _end[];
612 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
613 size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
614
615 textsize = (textsize + PGOFSET) & ~PGOFSET;
616
617 /* start at offset of kernel in RAM */
618
619 text.pv_pa = bmi->bmi_kernelstart;
620 text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
621 text.pv_size = textsize;
622 text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
623 text.pv_cache = PTE_CACHE;
624
625 #ifdef VERBOSE_INIT_ARM
626 printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
627 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
628 #endif
629
630 add_pages(bmi, &text);
631
632 data.pv_pa = text.pv_pa + textsize;
633 data.pv_va = text.pv_va + textsize;
634 data.pv_size = totalsize - textsize;
635 data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
636 data.pv_cache = PTE_CACHE;
637
638 #ifdef VERBOSE_INIT_ARM
639 printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
640 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
641 #endif
642
643 add_pages(bmi, &data);
644
645 #ifdef VERBOSE_INIT_ARM
646 printf("Listing Chunks\n");
647 {
648 pv_addr_t *pv;
649 SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
650 printf("%s: pv %p: chunk VA %#lx..%#lx "
651 "(PA %#lx, prot %d, cache %d)\n",
652 __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
653 pv->pv_pa, pv->pv_prot, pv->pv_cache);
654 }
655 }
656 printf("\nMapping Chunks\n");
657 #endif
658
659 pv_addr_t cur_pv;
660 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
661 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
662 cur_pv = *pv;
663 pv = SLIST_NEXT(pv, pv_list);
664 } else {
665 cur_pv.pv_va = kernel_base;
666 cur_pv.pv_pa = bmi->bmi_start;
667 cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
668 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
669 cur_pv.pv_cache = PTE_CACHE;
670 }
671 while (pv != NULL) {
672 if (mapallmem_p) {
673 if (concat_pvaddr(&cur_pv, pv)) {
674 pv = SLIST_NEXT(pv, pv_list);
675 continue;
676 }
677 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
678 /*
679 * See if we can extend the current pv to emcompass the
680 * hole, and if so do it and retry the concatenation.
681 */
682 if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
683 && cur_pv.pv_cache == PTE_CACHE) {
684 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
685 continue;
686 }
687
688 /*
689 * We couldn't so emit the current chunk and then
690 */
691 #ifdef VERBOSE_INIT_ARM
692 printf("%s: mapping chunk VA %#lx..%#lx "
693 "(PA %#lx, prot %d, cache %d)\n",
694 __func__,
695 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
696 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
697 #endif
698 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
699 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
700
701 /*
702 * set the current chunk to the hole and try again.
703 */
704 cur_pv.pv_pa += cur_pv.pv_size;
705 cur_pv.pv_va += cur_pv.pv_size;
706 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
707 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
708 cur_pv.pv_cache = PTE_CACHE;
709 continue;
710 }
711 }
712
713 /*
714 * The new pv didn't concatenate so emit the current one
715 * and use the new pv as the current pv.
716 */
717 #ifdef VERBOSE_INIT_ARM
718 printf("%s: mapping chunk VA %#lx..%#lx "
719 "(PA %#lx, prot %d, cache %d)\n",
720 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
721 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
722 #endif
723 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
724 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
725 cur_pv = *pv;
726 pv = SLIST_NEXT(pv, pv_list);
727 }
728
729 /*
730 * If we are mapping all of memory, let's map the rest of memory.
731 */
732 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
733 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
734 && cur_pv.pv_cache == PTE_CACHE) {
735 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
736 } else {
737 #ifdef VERBOSE_INIT_ARM
738 printf("%s: mapping chunk VA %#lx..%#lx "
739 "(PA %#lx, prot %d, cache %d)\n",
740 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
741 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
742 #endif
743 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
744 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
745 cur_pv.pv_pa += cur_pv.pv_size;
746 cur_pv.pv_va += cur_pv.pv_size;
747 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
748 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
749 cur_pv.pv_cache = PTE_CACHE;
750 }
751 }
752
753 /*
754 * Now we map the final chunk.
755 */
756 #ifdef VERBOSE_INIT_ARM
757 printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
758 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
759 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
760 #endif
761 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
762 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
763
764 /*
765 * Now we map the stuff that isn't directly after the kernel
766 */
767
768 /* Map the vector page. */
769 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
770 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
771
772 /* Map the Mini-Data cache clean area. */
773 #if ARM_MMU_XSCALE == 1
774 #if (ARM_NMMUS > 1)
775 if (xscale_use_minidata)
776 #endif
777 xscale_setup_minidata(l1_va, minidataclean.pv_va,
778 minidataclean.pv_pa);
779 #endif
780
781 /*
782 * Map integrated peripherals at same address in first level page
783 * table so that we can continue to use console.
784 */
785 if (devmap)
786 pmap_devmap_bootstrap(l1pt_va, devmap);
787
788 #ifdef VERBOSE_INIT_ARM
789 /* Tell the user about where all the bits and pieces live. */
790 printf("%22s Physical Virtual Num\n", " ");
791 printf("%22s Starting Ending Starting Ending Pages\n", " ");
792
793 static const char mem_fmt[] =
794 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
795 static const char mem_fmt_nov[] =
796 "%20s: 0x%08lx 0x%08lx %zu\n";
797
798 printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
799 KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
800 physmem);
801 printf(mem_fmt, "text section",
802 text.pv_pa, text.pv_pa + text.pv_size - 1,
803 text.pv_va, text.pv_va + text.pv_size - 1,
804 (int)(text.pv_size / PAGE_SIZE));
805 printf(mem_fmt, "data section",
806 KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
807 (vaddr_t)__data_start, (vaddr_t)_edata,
808 (int)((round_page((vaddr_t)_edata)
809 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
810 printf(mem_fmt, "bss section",
811 KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
812 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
813 (int)((round_page((vaddr_t)__bss_end__)
814 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
815 printf(mem_fmt, "L1 page directory",
816 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
817 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
818 L1_TABLE_SIZE / PAGE_SIZE);
819 printf(mem_fmt, "ABT stack (CPU 0)",
820 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
821 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
822 ABT_STACK_SIZE);
823 printf(mem_fmt, "FIQ stack (CPU 0)",
824 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
825 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
826 FIQ_STACK_SIZE);
827 printf(mem_fmt, "IRQ stack (CPU 0)",
828 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
829 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
830 IRQ_STACK_SIZE);
831 printf(mem_fmt, "UND stack (CPU 0)",
832 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
833 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
834 UND_STACK_SIZE);
835 printf(mem_fmt, "IDLE stack (CPU 0)",
836 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
837 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
838 UPAGES);
839 printf(mem_fmt, "SVC stack",
840 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
841 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
842 UPAGES);
843 printf(mem_fmt, "Message Buffer",
844 msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
845 msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
846 (int)msgbuf_pgs);
847 printf(mem_fmt, "Exception Vectors",
848 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
849 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
850 1);
851 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
852 pv = &bmi->bmi_freeblocks[i];
853
854 printf(mem_fmt_nov, "Free Memory",
855 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
856 pv->pv_size / PAGE_SIZE);
857 }
858 #endif
859 /*
860 * Now we have the real page tables in place so we can switch to them.
861 * Once this is done we will be running with the REAL kernel page
862 * tables.
863 */
864
865 #if defined(VERBOSE_INIT_ARM) && 0
866 printf("TTBR0=%#x", armreg_ttbr_read());
867 #ifdef _ARM_ARCH_6
868 printf(" TTBR1=%#x TTBCR=%#x",
869 armreg_ttbr1_read(), armreg_ttbcr_read());
870 #endif
871 printf("\n");
872 #endif
873
874 /* Switch tables */
875 #ifdef VERBOSE_INIT_ARM
876 printf("switching to new L1 page table @%#lx...", l1pt_pa);
877 #endif
878
879 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
880 cpu_idcache_wbinv_all();
881 cpu_setttb(l1pt_pa, true);
882 cpu_tlb_flushID();
883 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
884
885 #ifdef VERBOSE_INIT_ARM
886 printf("TTBR0=%#x OK\n", armreg_ttbr_read());
887 #endif
888 }
889