arm32_kvminit.c revision 1.13 1 /* $NetBSD: arm32_kvminit.c,v 1.13 2012/10/21 22:04:05 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.13 2012/10/21 22:04:05 matt Exp $");
126
127 #include <sys/param.h>
128 #include <sys/device.h>
129 #include <sys/kernel.h>
130 #include <sys/reboot.h>
131 #include <sys/bus.h>
132
133 #include <dev/cons.h>
134
135 #include <uvm/uvm_extern.h>
136
137 #include <arm/db_machdep.h>
138 #include <arm/undefined.h>
139 #include <arm/bootconfig.h>
140 #include <arm/arm32/machdep.h>
141
142 #include "ksyms.h"
143
144 struct bootmem_info bootmem_info;
145
146 paddr_t msgbufphys;
147 paddr_t physical_start;
148 paddr_t physical_end;
149
150 extern char etext[];
151 extern char __data_start[], _edata[];
152 extern char __bss_start[], __bss_end__[];
153 extern char _end[];
154
155 /* Page tables for mapping kernel VM */
156 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
157
158 /*
159 * Macros to translate between physical and virtual for a subset of the
160 * kernel address space. *Not* for general use.
161 */
162 #define KERN_VTOPHYS(bmi, va) \
163 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
164 #define KERN_PHYSTOV(bmi, pa) \
165 ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
166
167 void
168 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
169 {
170 struct bootmem_info * const bmi = &bootmem_info;
171 pv_addr_t *pv = bmi->bmi_freeblocks;
172
173 #ifdef VERBOSE_INIT_ARM
174 printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
175 __func__, memstart, memsize, kernelstart);
176 #endif
177
178 physical_start = bmi->bmi_start = memstart;
179 physical_end = bmi->bmi_end = memstart + memsize;
180 physmem = memsize / PAGE_SIZE;
181
182 /*
183 * Let's record where the kernel lives.
184 */
185 bmi->bmi_kernelstart = kernelstart;
186 bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
187
188 #ifdef VERBOSE_INIT_ARM
189 printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
190 #endif
191
192 /*
193 * Now the rest of the free memory must be after the kernel.
194 */
195 pv->pv_pa = bmi->bmi_kernelend;
196 pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
197 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
198 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
199 #ifdef VERBOSE_INIT_ARM
200 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
201 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
202 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
203 #endif
204 pv++;
205
206 /*
207 * Add a free block for any memory before the kernel.
208 */
209 if (bmi->bmi_start < bmi->bmi_kernelstart) {
210 pv->pv_pa = bmi->bmi_start;
211 pv->pv_va = KERNEL_BASE;
212 pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
213 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
214 #ifdef VERBOSE_INIT_ARM
215 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
216 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
217 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
218 #endif
219 pv++;
220 }
221
222 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
223
224 SLIST_INIT(&bmi->bmi_freechunks);
225 SLIST_INIT(&bmi->bmi_chunks);
226 }
227
228 static bool
229 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
230 {
231 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
232 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
233 && acc_pv->pv_prot == pv->pv_prot
234 && acc_pv->pv_cache == pv->pv_cache) {
235 #ifdef VERBOSE_INIT_ARMX
236 printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
237 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
238 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
239 #endif
240 acc_pv->pv_size += pv->pv_size;
241 return true;
242 }
243
244 return false;
245 }
246
247 static void
248 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
249 {
250 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
251 while ((*pvp) != 0 && (*pvp)->pv_va <= pv->pv_va) {
252 pv_addr_t * const pv0 = (*pvp);
253 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
254 if (concat_pvaddr(pv0, pv)) {
255 #ifdef VERBOSE_INIT_ARM
256 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 __func__, "appending", pv,
258 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
259 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
260 #endif
261 pv = SLIST_NEXT(pv0, pv_list);
262 if (pv != NULL && concat_pvaddr(pv0, pv)) {
263 #ifdef VERBOSE_INIT_ARM
264 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
265 __func__, "merging", pv,
266 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
267 pv0->pv_pa,
268 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
269 #endif
270 SLIST_REMOVE_AFTER(pv0, pv_list);
271 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
272 }
273 return;
274 }
275 KASSERT(pv->pv_va != (*pvp)->pv_va);
276 pvp = &SLIST_NEXT(*pvp, pv_list);
277 }
278 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
279 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
280 KASSERT(new_pv != NULL);
281 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
282 *new_pv = *pv;
283 SLIST_NEXT(new_pv, pv_list) = *pvp;
284 (*pvp) = new_pv;
285 #ifdef VERBOSE_INIT_ARM
286 printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
287 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
288 new_pv->pv_size / PAGE_SIZE);
289 if (SLIST_NEXT(new_pv, pv_list))
290 printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
291 else
292 printf("at tail\n");
293 #endif
294 }
295
296 static void
297 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
298 int prot, int cache)
299 {
300 size_t nbytes = npages * PAGE_SIZE;
301 pv_addr_t *free_pv = bmi->bmi_freeblocks;
302 size_t free_idx = 0;
303 static bool l1pt_found;
304
305 /*
306 * If we haven't allocated the kernel L1 page table and we are aligned
307 * at a L1 table boundary, alloc the memory for it.
308 */
309 if (!l1pt_found
310 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
311 && free_pv->pv_size >= L1_TABLE_SIZE) {
312 l1pt_found = true;
313 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
314 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
315 add_pages(bmi, &kernel_l1pt);
316 }
317
318 while (nbytes > free_pv->pv_size) {
319 free_pv++;
320 free_idx++;
321 if (free_idx == bmi->bmi_nfreeblocks) {
322 panic("%s: could not allocate %zu bytes",
323 __func__, nbytes);
324 }
325 }
326
327 /*
328 * As we allocate the memory, make sure that we don't walk over
329 * our current first level translation table.
330 */
331 KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
332
333 pv->pv_pa = free_pv->pv_pa;
334 pv->pv_va = free_pv->pv_va;
335 pv->pv_size = nbytes;
336 pv->pv_prot = prot;
337 pv->pv_cache = cache;
338
339 /*
340 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
341 * just use PTE_CACHE.
342 */
343 if (cache == PTE_PAGETABLE
344 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
345 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
346 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
347 pv->pv_cache = PTE_CACHE;
348
349 free_pv->pv_pa += nbytes;
350 free_pv->pv_va += nbytes;
351 free_pv->pv_size -= nbytes;
352 if (free_pv->pv_size == 0) {
353 --bmi->bmi_nfreeblocks;
354 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
355 free_pv[0] = free_pv[1];
356 }
357 }
358
359 bmi->bmi_freepages -= npages;
360
361 memset((void *)pv->pv_va, 0, nbytes);
362 }
363
364 void
365 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
366 const struct pmap_devmap *devmap, bool mapallmem_p)
367 {
368 struct bootmem_info * const bmi = &bootmem_info;
369 #ifdef MULTIPROCESSOR
370 const size_t cpu_num = arm_cpu_max + 1;
371 #else
372 const size_t cpu_num = 1;
373 #endif
374
375 /*
376 * Calculate the number of L2 pages needed for mapping the
377 * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
378 * and 1 for IO
379 */
380 size_t kernel_size = bmi->bmi_kernelend;
381 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
382 kernel_size += L1_TABLE_SIZE;
383 kernel_size += L2_TABLE_SIZE * (2 + 1 + KERNEL_L2PT_VMDATA_NUM + 1);
384 kernel_size +=
385 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
386 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
387 kernel_size += round_page(MSGBUFSIZE);
388 kernel_size += 0x10000; /* slop */
389 kernel_size += (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
390 kernel_size = round_page(kernel_size);
391
392 /*
393 * Now we know how many L2 pages it will take.
394 */
395 const size_t KERNEL_L2PT_KERNEL_NUM =
396 (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
397
398 #ifdef VERBOSE_INIT_ARM
399 printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
400 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
401 #endif
402
403 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
404 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
405 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
406 pv_addr_t msgbuf;
407 pv_addr_t text;
408 pv_addr_t data;
409 pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
410 #if ARM_MMU_XSCALE == 1
411 pv_addr_t minidataclean;
412 #endif
413
414 /*
415 * We need to allocate some fixed page tables to get the kernel going.
416 *
417 * We are going to allocate our bootstrap pages from the beginning of
418 * the free space that we just calculated. We allocate one page
419 * directory and a number of page tables and store the physical
420 * addresses in the bmi_l2pts array in bootmem_info.
421 *
422 * The kernel page directory must be on a 16K boundary. The page
423 * tables must be on 4K boundaries. What we do is allocate the
424 * page directory on the first 16K boundary that we encounter, and
425 * the page tables on 4K boundaries otherwise. Since we allocate
426 * at least 3 L2 page tables, we are guaranteed to encounter at
427 * least one 16K aligned region.
428 */
429
430 #ifdef VERBOSE_INIT_ARM
431 printf("%s: allocating page tables for", __func__);
432 #endif
433 for (size_t i = 0; i < __arraycount(chunks); i++) {
434 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
435 }
436
437 kernel_l1pt.pv_pa = 0;
438 kernel_l1pt.pv_va = 0;
439
440 /*
441 * Allocate the L2 pages, but if we get to a page that is aligned for
442 * an L1 page table, we will allocate the pages for it first and then
443 * allocate the L2 page.
444 */
445
446 /*
447 * First allocate L2 page for the vectors.
448 */
449 #ifdef VERBOSE_INIT_ARM
450 printf(" vector");
451 #endif
452 valloc_pages(bmi, &bmi->bmi_vector_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
453 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
454 add_pages(bmi, &bmi->bmi_vector_l2pt);
455
456 /*
457 * Now allocate L2 pages for the kernel
458 */
459 #ifdef VERBOSE_INIT_ARM
460 printf(" kernel");
461 #endif
462 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
463 valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
464 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
465 add_pages(bmi, &kernel_l2pt[idx]);
466 }
467
468 /*
469 * Now allocate L2 pages for the initial kernel VA space.
470 */
471 #ifdef VERBOSE_INIT_ARM
472 printf(" vm");
473 #endif
474 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
475 valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
476 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
477 add_pages(bmi, &vmdata_l2pt[idx]);
478 }
479
480 /*
481 * If someone wanted a L2 page for I/O, allocate it now.
482 */
483 if (iovbase != 0) {
484 #ifdef VERBOSE_INIT_ARM
485 printf(" io");
486 #endif
487 valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
488 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
489 add_pages(bmi, &bmi->bmi_io_l2pt);
490 }
491
492 #ifdef VERBOSE_ARM_INIT
493 printf("%s: allocating stacks\n", __func__);
494 #endif
495
496 /* Allocate stacks for all modes and CPUs */
497 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
498 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
499 add_pages(bmi, &abtstack);
500 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
501 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
502 add_pages(bmi, &fiqstack);
503 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
504 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
505 add_pages(bmi, &irqstack);
506 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
507 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
508 add_pages(bmi, &undstack);
509 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
510 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
511 add_pages(bmi, &idlestack);
512 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
513 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
514 add_pages(bmi, &kernelstack);
515
516 /* Allocate the message buffer from the end of memory. */
517 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
518 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
519 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
520 add_pages(bmi, &msgbuf);
521 msgbufphys = msgbuf.pv_pa;
522
523 /*
524 * Allocate a page for the system vector page.
525 * This page will just contain the system vectors and can be
526 * shared by all processes.
527 */
528 valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
529 systempage.pv_va = vectors;
530
531 /*
532 * If the caller needed a few extra pages for some reason, allocate
533 * them now.
534 */
535 #if ARM_MMU_XSCALE == 1
536 #if (ARM_NMMUS > 1)
537 if (xscale_use_minidata)
538 #endif
539 valloc_pages(bmi, extrapv, nextrapages,
540 VM_PROT_READ|VM_PROT_WRITE, 0);
541 #endif
542
543 /*
544 * Ok we have allocated physical pages for the primary kernel
545 * page tables and stacks. Let's just confirm that.
546 */
547 if (kernel_l1pt.pv_va == 0
548 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
549 panic("%s: Failed to allocate or align the kernel "
550 "page directory", __func__);
551
552
553 #ifdef VERBOSE_INIT_ARM
554 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
555 #endif
556
557 /*
558 * Now we start construction of the L1 page table
559 * We start by mapping the L2 page tables into the L1.
560 * This means that we can replace L1 mappings later on if necessary
561 */
562 vaddr_t l1pt_va = kernel_l1pt.pv_va;
563 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
564
565 /* Map the L2 pages tables in the L1 page table */
566 pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
567 &bmi->bmi_vector_l2pt);
568 #ifdef VERBOSE_INIT_ARM
569 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n (vectors)",
570 __func__, bmi->bmi_vector_l2pt.pv_va, bmi->bmi_vector_l2pt.pv_pa,
571 systempage.pv_va);
572 #endif
573
574 const vaddr_t kernel_base =
575 KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
576 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
577 pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
578 &kernel_l2pt[idx]);
579 #ifdef VERBOSE_INIT_ARM
580 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
581 __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
582 kernel_base + idx * L2_S_SEGSIZE);
583 #endif
584 }
585
586 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
587 pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
588 &vmdata_l2pt[idx]);
589 #ifdef VERBOSE_INIT_ARM
590 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
591 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
592 kernel_vm_base + idx * L2_S_SEGSIZE);
593 #endif
594 }
595 if (iovbase) {
596 pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
597 #ifdef VERBOSE_INIT_ARM
598 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
599 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
600 iovbase & -L2_S_SEGSIZE);
601 #endif
602 }
603
604 /* update the top of the kernel VM */
605 pmap_curmaxkvaddr =
606 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
607
608 #ifdef VERBOSE_INIT_ARM
609 printf("Mapping kernel\n");
610 #endif
611
612 extern char etext[], _end[];
613 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
614 size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
615
616 textsize = (textsize + PGOFSET) & ~PGOFSET;
617
618 /* start at offset of kernel in RAM */
619
620 text.pv_pa = bmi->bmi_kernelstart;
621 text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
622 text.pv_size = textsize;
623 text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
624 text.pv_cache = PTE_CACHE;
625
626 #ifdef VERBOSE_INIT_ARM
627 printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
628 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
629 #endif
630
631 add_pages(bmi, &text);
632
633 data.pv_pa = text.pv_pa + textsize;
634 data.pv_va = text.pv_va + textsize;
635 data.pv_size = totalsize - textsize;
636 data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
637 data.pv_cache = PTE_CACHE;
638
639 #ifdef VERBOSE_INIT_ARM
640 printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
641 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
642 #endif
643
644 add_pages(bmi, &data);
645
646 #ifdef VERBOSE_INIT_ARM
647 printf("Listing Chunks\n");
648 {
649 pv_addr_t *pv;
650 SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
651 printf("%s: pv %p: chunk VA %#lx..%#lx "
652 "(PA %#lx, prot %d, cache %d)\n",
653 __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
654 pv->pv_pa, pv->pv_prot, pv->pv_cache);
655 }
656 }
657 printf("\nMapping Chunks\n");
658 #endif
659
660 pv_addr_t cur_pv;
661 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
662 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
663 cur_pv = *pv;
664 pv = SLIST_NEXT(pv, pv_list);
665 } else {
666 cur_pv.pv_va = KERNEL_BASE;
667 cur_pv.pv_pa = bmi->bmi_start;
668 cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
669 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
670 cur_pv.pv_cache = PTE_CACHE;
671 }
672 while (pv != NULL) {
673 if (mapallmem_p) {
674 if (concat_pvaddr(&cur_pv, pv)) {
675 pv = SLIST_NEXT(pv, pv_list);
676 continue;
677 }
678 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
679 /*
680 * See if we can extend the current pv to emcompass the
681 * hole, and if so do it and retry the concatenation.
682 */
683 if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
684 && cur_pv.pv_cache == PTE_CACHE) {
685 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
686 continue;
687 }
688
689 /*
690 * We couldn't so emit the current chunk and then
691 */
692 #ifdef VERBOSE_INIT_ARM
693 printf("%s: mapping chunk VA %#lx..%#lx "
694 "(PA %#lx, prot %d, cache %d)\n",
695 __func__,
696 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
697 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
698 #endif
699 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
700 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
701
702 /*
703 * set the current chunk to the hole and try again.
704 */
705 cur_pv.pv_pa += cur_pv.pv_size;
706 cur_pv.pv_va += cur_pv.pv_size;
707 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
708 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
709 cur_pv.pv_cache = PTE_CACHE;
710 continue;
711 }
712 }
713
714 /*
715 * The new pv didn't concatenate so emit the current one
716 * and use the new pv as the current pv.
717 */
718 #ifdef VERBOSE_INIT_ARM
719 printf("%s: mapping chunk VA %#lx..%#lx "
720 "(PA %#lx, prot %d, cache %d)\n",
721 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
722 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
723 #endif
724 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
725 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
726 cur_pv = *pv;
727 pv = SLIST_NEXT(pv, pv_list);
728 }
729
730 /*
731 * If we are mapping all of memory, let's map the rest of memory.
732 */
733 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
734 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
735 && cur_pv.pv_cache == PTE_CACHE) {
736 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
737 } else {
738 #ifdef VERBOSE_INIT_ARM
739 printf("%s: mapping chunk VA %#lx..%#lx "
740 "(PA %#lx, prot %d, cache %d)\n",
741 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
742 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
743 #endif
744 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
745 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
746 cur_pv.pv_pa += cur_pv.pv_size;
747 cur_pv.pv_va += cur_pv.pv_size;
748 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
749 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
750 cur_pv.pv_cache = PTE_CACHE;
751 }
752 }
753
754 /*
755 * Now we map the final chunk.
756 */
757 #ifdef VERBOSE_INIT_ARM
758 printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
759 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
760 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
761 #endif
762 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
763 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
764
765 /*
766 * Now we map the stuff that isn't directly after the kernel
767 */
768
769 /* Map the vector page. */
770 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
771 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
772
773 /* Map the Mini-Data cache clean area. */
774 #if ARM_MMU_XSCALE == 1
775 #if (ARM_NMMUS > 1)
776 if (xscale_use_minidata)
777 #endif
778 xscale_setup_minidata(l1_va, minidataclean.pv_va,
779 minidataclean.pv_pa);
780 #endif
781
782 /*
783 * Map integrated peripherals at same address in first level page
784 * table so that we can continue to use console.
785 */
786 if (devmap)
787 pmap_devmap_bootstrap(l1pt_va, devmap);
788
789 #ifdef VERBOSE_INIT_ARM
790 /* Tell the user about where all the bits and pieces live. */
791 printf("%22s Physical Virtual Num\n", " ");
792 printf("%22s Starting Ending Starting Ending Pages\n", " ");
793
794 static const char mem_fmt[] =
795 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
796 static const char mem_fmt_nov[] =
797 "%20s: 0x%08lx 0x%08lx %zu\n";
798
799 printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
800 KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
801 physmem);
802 printf(mem_fmt, "text section",
803 text.pv_pa, text.pv_pa + text.pv_size - 1,
804 text.pv_va, text.pv_va + text.pv_size - 1,
805 (int)(text.pv_size / PAGE_SIZE));
806 printf(mem_fmt, "data section",
807 KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
808 (vaddr_t)__data_start, (vaddr_t)_edata,
809 (int)((round_page((vaddr_t)_edata)
810 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
811 printf(mem_fmt, "bss section",
812 KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
813 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
814 (int)((round_page((vaddr_t)__bss_end__)
815 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
816 printf(mem_fmt, "L1 page directory",
817 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
818 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
819 L1_TABLE_SIZE / PAGE_SIZE);
820 printf(mem_fmt, "ABT stack (CPU 0)",
821 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
822 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
823 ABT_STACK_SIZE);
824 printf(mem_fmt, "FIQ stack (CPU 0)",
825 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
826 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
827 FIQ_STACK_SIZE);
828 printf(mem_fmt, "IRQ stack (CPU 0)",
829 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
830 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
831 IRQ_STACK_SIZE);
832 printf(mem_fmt, "UND stack (CPU 0)",
833 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
834 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
835 UND_STACK_SIZE);
836 printf(mem_fmt, "IDLE stack (CPU 0)",
837 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
838 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
839 UPAGES);
840 printf(mem_fmt, "SVC stack",
841 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
842 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
843 UPAGES);
844 printf(mem_fmt, "Message Buffer",
845 msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
846 msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
847 (int)msgbuf_pgs);
848 printf(mem_fmt, "Exception Vectors",
849 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
850 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
851 1);
852 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
853 pv = &bmi->bmi_freeblocks[i];
854
855 printf(mem_fmt_nov, "Free Memory",
856 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
857 pv->pv_size / PAGE_SIZE);
858 }
859 #endif
860 /*
861 * Now we have the real page tables in place so we can switch to them.
862 * Once this is done we will be running with the REAL kernel page
863 * tables.
864 */
865
866 #if defined(VERBOSE_INIT_ARM) && 0
867 printf("TTBR0=%#x", armreg_ttbr_read());
868 #ifdef _ARM_ARCH_6
869 printf(" TTBR1=%#x TTBCR=%#x",
870 armreg_ttbr1_read(), armreg_ttbcr_read());
871 #endif
872 printf("\n");
873 #endif
874
875 /* Switch tables */
876 #ifdef VERBOSE_INIT_ARM
877 printf("switching to new L1 page table @%#lx...", l1pt_pa);
878 #endif
879
880 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
881 cpu_idcache_wbinv_all();
882 cpu_setttb(l1pt_pa, true);
883 cpu_tlb_flushID();
884 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
885
886 #ifdef VERBOSE_INIT_ARM
887 printf("TTBR0=%#x OK\n", armreg_ttbr_read());
888 #endif
889 }
890