arm32_kvminit.c revision 1.19 1 /* $NetBSD: arm32_kvminit.c,v 1.19 2013/06/12 17:13:05 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.19 2013/06/12 17:13:05 matt Exp $");
126
127 #include <sys/param.h>
128 #include <sys/device.h>
129 #include <sys/kernel.h>
130 #include <sys/reboot.h>
131 #include <sys/bus.h>
132
133 #include <dev/cons.h>
134
135 #include <uvm/uvm_extern.h>
136
137 #include <arm/db_machdep.h>
138 #include <arm/undefined.h>
139 #include <arm/bootconfig.h>
140 #include <arm/arm32/machdep.h>
141
142 #include "ksyms.h"
143
144 struct bootmem_info bootmem_info;
145
146 paddr_t msgbufphys;
147 paddr_t physical_start;
148 paddr_t physical_end;
149
150 extern char etext[];
151 extern char __data_start[], _edata[];
152 extern char __bss_start[], __bss_end__[];
153 extern char _end[];
154
155 /* Page tables for mapping kernel VM */
156 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
157
158 /*
159 * Macros to translate between physical and virtual for a subset of the
160 * kernel address space. *Not* for general use.
161 */
162 #define KERN_VTOPHYS(bmi, va) \
163 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
164 #define KERN_PHYSTOV(bmi, pa) \
165 ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
166
167 void
168 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
169 {
170 struct bootmem_info * const bmi = &bootmem_info;
171 pv_addr_t *pv = bmi->bmi_freeblocks;
172
173 #ifdef VERBOSE_INIT_ARM
174 printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
175 __func__, memstart, memsize, kernelstart);
176 #endif
177
178 physical_start = bmi->bmi_start = memstart;
179 physical_end = bmi->bmi_end = memstart + memsize;
180 physmem = memsize / PAGE_SIZE;
181
182 /*
183 * Let's record where the kernel lives.
184 */
185 bmi->bmi_kernelstart = kernelstart;
186 bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
187
188 #ifdef VERBOSE_INIT_ARM
189 printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
190 #endif
191
192 /*
193 * Now the rest of the free memory must be after the kernel.
194 */
195 pv->pv_pa = bmi->bmi_kernelend;
196 pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
197 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
198 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
199 #ifdef VERBOSE_INIT_ARM
200 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
201 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
202 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
203 #endif
204 pv++;
205
206 /*
207 * Add a free block for any memory before the kernel.
208 */
209 if (bmi->bmi_start < bmi->bmi_kernelstart) {
210 pv->pv_pa = bmi->bmi_start;
211 pv->pv_va = KERNEL_BASE;
212 pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
213 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
214 #ifdef VERBOSE_INIT_ARM
215 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
216 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
217 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
218 #endif
219 pv++;
220 }
221
222 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
223
224 SLIST_INIT(&bmi->bmi_freechunks);
225 SLIST_INIT(&bmi->bmi_chunks);
226 }
227
228 static bool
229 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
230 {
231 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
232 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
233 && acc_pv->pv_prot == pv->pv_prot
234 && acc_pv->pv_cache == pv->pv_cache) {
235 #ifdef VERBOSE_INIT_ARMX
236 printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
237 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
238 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
239 #endif
240 acc_pv->pv_size += pv->pv_size;
241 return true;
242 }
243
244 return false;
245 }
246
247 static void
248 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
249 {
250 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
251 while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
252 pv_addr_t * const pv0 = (*pvp);
253 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
254 if (concat_pvaddr(pv0, pv)) {
255 #ifdef VERBOSE_INIT_ARM
256 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 __func__, "appending", pv,
258 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
259 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
260 #endif
261 pv = SLIST_NEXT(pv0, pv_list);
262 if (pv != NULL && concat_pvaddr(pv0, pv)) {
263 #ifdef VERBOSE_INIT_ARM
264 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
265 __func__, "merging", pv,
266 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
267 pv0->pv_pa,
268 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
269 #endif
270 SLIST_REMOVE_AFTER(pv0, pv_list);
271 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
272 }
273 return;
274 }
275 KASSERT(pv->pv_va != (*pvp)->pv_va);
276 pvp = &SLIST_NEXT(*pvp, pv_list);
277 }
278 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
279 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
280 KASSERT(new_pv != NULL);
281 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
282 *new_pv = *pv;
283 SLIST_NEXT(new_pv, pv_list) = *pvp;
284 (*pvp) = new_pv;
285 #ifdef VERBOSE_INIT_ARM
286 printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
287 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
288 new_pv->pv_size / PAGE_SIZE);
289 if (SLIST_NEXT(new_pv, pv_list))
290 printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
291 else
292 printf("at tail\n");
293 #endif
294 }
295
296 static void
297 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
298 int prot, int cache, bool zero_p)
299 {
300 size_t nbytes = npages * PAGE_SIZE;
301 pv_addr_t *free_pv = bmi->bmi_freeblocks;
302 size_t free_idx = 0;
303 static bool l1pt_found;
304
305 /*
306 * If we haven't allocated the kernel L1 page table and we are aligned
307 * at a L1 table boundary, alloc the memory for it.
308 */
309 if (!l1pt_found
310 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
311 && free_pv->pv_size >= L1_TABLE_SIZE) {
312 l1pt_found = true;
313 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
314 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
315 add_pages(bmi, &kernel_l1pt);
316 }
317
318 while (nbytes > free_pv->pv_size) {
319 free_pv++;
320 free_idx++;
321 if (free_idx == bmi->bmi_nfreeblocks) {
322 panic("%s: could not allocate %zu bytes",
323 __func__, nbytes);
324 }
325 }
326
327 /*
328 * As we allocate the memory, make sure that we don't walk over
329 * our current first level translation table.
330 */
331 KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
332
333 pv->pv_pa = free_pv->pv_pa;
334 pv->pv_va = free_pv->pv_va;
335 pv->pv_size = nbytes;
336 pv->pv_prot = prot;
337 pv->pv_cache = cache;
338
339 /*
340 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
341 * just use PTE_CACHE.
342 */
343 if (cache == PTE_PAGETABLE
344 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
345 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
346 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
347 pv->pv_cache = PTE_CACHE;
348
349 free_pv->pv_pa += nbytes;
350 free_pv->pv_va += nbytes;
351 free_pv->pv_size -= nbytes;
352 if (free_pv->pv_size == 0) {
353 --bmi->bmi_nfreeblocks;
354 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
355 free_pv[0] = free_pv[1];
356 }
357 }
358
359 bmi->bmi_freepages -= npages;
360
361 if (zero_p)
362 memset((void *)pv->pv_va, 0, nbytes);
363 }
364
365 void
366 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
367 const struct pmap_devmap *devmap, bool mapallmem_p)
368 {
369 struct bootmem_info * const bmi = &bootmem_info;
370 #ifdef MULTIPROCESSOR
371 const size_t cpu_num = arm_cpu_max + 1;
372 #else
373 const size_t cpu_num = 1;
374 #endif
375 #if defined(CPU_ARMV7) || defined(CPU_ARM11)
376 const bool map_vectors_p = vectors == ARM_VECTORS_LOW
377 && !(armreg_pfr1_read() & ARM_PFR1_SEC_MASK);
378 #else
379 const bool map_vectors_p = true;
380 #endif
381
382 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
383 KASSERT(mapallmem_p);
384 #endif
385
386 /*
387 * Calculate the number of L2 pages needed for mapping the
388 * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
389 * and 1 for IO
390 */
391 size_t kernel_size = bmi->bmi_kernelend;
392 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
393 kernel_size += L1_TABLE_SIZE;
394 kernel_size += L2_TABLE_SIZE * (2 + 1 + KERNEL_L2PT_VMDATA_NUM + 1);
395 kernel_size +=
396 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
397 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
398 kernel_size += round_page(MSGBUFSIZE);
399 kernel_size += 0x10000; /* slop */
400 kernel_size += PAGE_SIZE * (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
401 kernel_size = round_page(kernel_size);
402
403 /*
404 * Now we know how many L2 pages it will take.
405 */
406 const size_t KERNEL_L2PT_KERNEL_NUM =
407 (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
408
409 #ifdef VERBOSE_INIT_ARM
410 printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
411 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
412 #endif
413
414 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
415 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
416 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
417 pv_addr_t msgbuf;
418 pv_addr_t text;
419 pv_addr_t data;
420 pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
421 #if ARM_MMU_XSCALE == 1
422 pv_addr_t minidataclean;
423 #endif
424
425 /*
426 * We need to allocate some fixed page tables to get the kernel going.
427 *
428 * We are going to allocate our bootstrap pages from the beginning of
429 * the free space that we just calculated. We allocate one page
430 * directory and a number of page tables and store the physical
431 * addresses in the bmi_l2pts array in bootmem_info.
432 *
433 * The kernel page directory must be on a 16K boundary. The page
434 * tables must be on 4K boundaries. What we do is allocate the
435 * page directory on the first 16K boundary that we encounter, and
436 * the page tables on 4K boundaries otherwise. Since we allocate
437 * at least 3 L2 page tables, we are guaranteed to encounter at
438 * least one 16K aligned region.
439 */
440
441 #ifdef VERBOSE_INIT_ARM
442 printf("%s: allocating page tables for", __func__);
443 #endif
444 for (size_t i = 0; i < __arraycount(chunks); i++) {
445 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
446 }
447
448 kernel_l1pt.pv_pa = 0;
449 kernel_l1pt.pv_va = 0;
450
451 /*
452 * Allocate the L2 pages, but if we get to a page that is aligned for
453 * an L1 page table, we will allocate the pages for it first and then
454 * allocate the L2 page.
455 */
456
457 if (map_vectors_p) {
458 /*
459 * First allocate L2 page for the vectors.
460 */
461 #ifdef VERBOSE_INIT_ARM
462 printf(" vector");
463 #endif
464 valloc_pages(bmi, &bmi->bmi_vector_l2pt,
465 L2_TABLE_SIZE / PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE,
466 PTE_PAGETABLE, true);
467 add_pages(bmi, &bmi->bmi_vector_l2pt);
468 }
469
470 /*
471 * Now allocate L2 pages for the kernel
472 */
473 #ifdef VERBOSE_INIT_ARM
474 printf(" kernel");
475 #endif
476 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
477 valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
478 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
479 add_pages(bmi, &kernel_l2pt[idx]);
480 }
481
482 /*
483 * Now allocate L2 pages for the initial kernel VA space.
484 */
485 #ifdef VERBOSE_INIT_ARM
486 printf(" vm");
487 #endif
488 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
489 valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
490 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
491 add_pages(bmi, &vmdata_l2pt[idx]);
492 }
493
494 /*
495 * If someone wanted a L2 page for I/O, allocate it now.
496 */
497 if (iovbase != 0) {
498 #ifdef VERBOSE_INIT_ARM
499 printf(" io");
500 #endif
501 valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
502 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
503 add_pages(bmi, &bmi->bmi_io_l2pt);
504 }
505
506 #ifdef VERBOSE_ARM_INIT
507 printf("%s: allocating stacks\n", __func__);
508 #endif
509
510 /* Allocate stacks for all modes and CPUs */
511 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
512 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
513 add_pages(bmi, &abtstack);
514 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
515 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
516 add_pages(bmi, &fiqstack);
517 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
518 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
519 add_pages(bmi, &irqstack);
520 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
521 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
522 add_pages(bmi, &undstack);
523 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
524 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
525 add_pages(bmi, &idlestack);
526 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
527 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
528 add_pages(bmi, &kernelstack);
529
530 /* Allocate the message buffer from the end of memory. */
531 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
532 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
533 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
534 add_pages(bmi, &msgbuf);
535 msgbufphys = msgbuf.pv_pa;
536
537 if (map_vectors_p) {
538 /*
539 * Allocate a page for the system vector page.
540 * This page will just contain the system vectors and can be
541 * shared by all processes.
542 */
543 valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
544 PTE_CACHE, true);
545 }
546 systempage.pv_va = vectors;
547
548 /*
549 * If the caller needed a few extra pages for some reason, allocate
550 * them now.
551 */
552 #if ARM_MMU_XSCALE == 1
553 #if (ARM_NMMUS > 1)
554 if (xscale_use_minidata)
555 #endif
556 valloc_pages(bmi, extrapv, nextrapages,
557 VM_PROT_READ|VM_PROT_WRITE, 0, true);
558 #endif
559
560 /*
561 * Ok we have allocated physical pages for the primary kernel
562 * page tables and stacks. Let's just confirm that.
563 */
564 if (kernel_l1pt.pv_va == 0
565 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
566 panic("%s: Failed to allocate or align the kernel "
567 "page directory", __func__);
568
569
570 #ifdef VERBOSE_INIT_ARM
571 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
572 #endif
573
574 /*
575 * Now we start construction of the L1 page table
576 * We start by mapping the L2 page tables into the L1.
577 * This means that we can replace L1 mappings later on if necessary
578 */
579 vaddr_t l1pt_va = kernel_l1pt.pv_va;
580 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
581
582 if (map_vectors_p) {
583 /* Map the L2 pages tables in the L1 page table */
584 pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
585 &bmi->bmi_vector_l2pt);
586 #ifdef VERBOSE_INIT_ARM
587 printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
588 "for VA %#lx\n (vectors)",
589 __func__, bmi->bmi_vector_l2pt.pv_va,
590 bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
591 #endif
592 }
593
594 const vaddr_t kernel_base =
595 KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
596 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
597 pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
598 &kernel_l2pt[idx]);
599 #ifdef VERBOSE_INIT_ARM
600 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
601 __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
602 kernel_base + idx * L2_S_SEGSIZE);
603 #endif
604 }
605
606 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
607 pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
608 &vmdata_l2pt[idx]);
609 #ifdef VERBOSE_INIT_ARM
610 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
611 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
612 kernel_vm_base + idx * L2_S_SEGSIZE);
613 #endif
614 }
615 if (iovbase) {
616 pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
617 #ifdef VERBOSE_INIT_ARM
618 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
619 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
620 iovbase & -L2_S_SEGSIZE);
621 #endif
622 }
623
624 /* update the top of the kernel VM */
625 pmap_curmaxkvaddr =
626 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
627
628 #ifdef VERBOSE_INIT_ARM
629 printf("Mapping kernel\n");
630 #endif
631
632 extern char etext[], _end[];
633 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
634 size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
635
636 textsize = (textsize + PGOFSET) & ~PGOFSET;
637
638 /* start at offset of kernel in RAM */
639
640 text.pv_pa = bmi->bmi_kernelstart;
641 text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
642 text.pv_size = textsize;
643 text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
644 text.pv_cache = PTE_CACHE;
645
646 #ifdef VERBOSE_INIT_ARM
647 printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
648 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
649 #endif
650
651 add_pages(bmi, &text);
652
653 data.pv_pa = text.pv_pa + textsize;
654 data.pv_va = text.pv_va + textsize;
655 data.pv_size = totalsize - textsize;
656 data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
657 data.pv_cache = PTE_CACHE;
658
659 #ifdef VERBOSE_INIT_ARM
660 printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
661 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
662 #endif
663
664 add_pages(bmi, &data);
665
666 #ifdef VERBOSE_INIT_ARM
667 printf("Listing Chunks\n");
668 {
669 pv_addr_t *pv;
670 SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
671 printf("%s: pv %p: chunk VA %#lx..%#lx "
672 "(PA %#lx, prot %d, cache %d)\n",
673 __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
674 pv->pv_pa, pv->pv_prot, pv->pv_cache);
675 }
676 }
677 printf("\nMapping Chunks\n");
678 #endif
679
680 pv_addr_t cur_pv;
681 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
682 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
683 cur_pv = *pv;
684 pv = SLIST_NEXT(pv, pv_list);
685 } else {
686 cur_pv.pv_va = KERNEL_BASE;
687 cur_pv.pv_pa = bmi->bmi_start;
688 cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
689 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
690 cur_pv.pv_cache = PTE_CACHE;
691 }
692 while (pv != NULL) {
693 if (mapallmem_p) {
694 if (concat_pvaddr(&cur_pv, pv)) {
695 pv = SLIST_NEXT(pv, pv_list);
696 continue;
697 }
698 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
699 /*
700 * See if we can extend the current pv to emcompass the
701 * hole, and if so do it and retry the concatenation.
702 */
703 if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
704 && cur_pv.pv_cache == PTE_CACHE) {
705 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
706 continue;
707 }
708
709 /*
710 * We couldn't so emit the current chunk and then
711 */
712 #ifdef VERBOSE_INIT_ARM
713 printf("%s: mapping chunk VA %#lx..%#lx "
714 "(PA %#lx, prot %d, cache %d)\n",
715 __func__,
716 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
717 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
718 #endif
719 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
720 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
721
722 /*
723 * set the current chunk to the hole and try again.
724 */
725 cur_pv.pv_pa += cur_pv.pv_size;
726 cur_pv.pv_va += cur_pv.pv_size;
727 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
728 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
729 cur_pv.pv_cache = PTE_CACHE;
730 continue;
731 }
732 }
733
734 /*
735 * The new pv didn't concatenate so emit the current one
736 * and use the new pv as the current pv.
737 */
738 #ifdef VERBOSE_INIT_ARM
739 printf("%s: mapping chunk VA %#lx..%#lx "
740 "(PA %#lx, prot %d, cache %d)\n",
741 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
742 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
743 #endif
744 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
745 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
746 cur_pv = *pv;
747 pv = SLIST_NEXT(pv, pv_list);
748 }
749
750 /*
751 * If we are mapping all of memory, let's map the rest of memory.
752 */
753 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
754 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
755 && cur_pv.pv_cache == PTE_CACHE) {
756 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
757 } else {
758 #ifdef VERBOSE_INIT_ARM
759 printf("%s: mapping chunk VA %#lx..%#lx "
760 "(PA %#lx, prot %d, cache %d)\n",
761 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
762 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
763 #endif
764 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
765 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
766 cur_pv.pv_pa += cur_pv.pv_size;
767 cur_pv.pv_va += cur_pv.pv_size;
768 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
769 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
770 cur_pv.pv_cache = PTE_CACHE;
771 }
772 }
773
774 /*
775 * Now we map the final chunk.
776 */
777 #ifdef VERBOSE_INIT_ARM
778 printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
779 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
780 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
781 #endif
782 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
783 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
784
785 /*
786 * Now we map the stuff that isn't directly after the kernel
787 */
788
789 if (map_vectors_p) {
790 /* Map the vector page. */
791 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
792 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
793 }
794
795 /* Map the Mini-Data cache clean area. */
796 #if ARM_MMU_XSCALE == 1
797 #if (ARM_NMMUS > 1)
798 if (xscale_use_minidata)
799 #endif
800 xscale_setup_minidata(l1_va, minidataclean.pv_va,
801 minidataclean.pv_pa);
802 #endif
803
804 /*
805 * Map integrated peripherals at same address in first level page
806 * table so that we can continue to use console.
807 */
808 if (devmap)
809 pmap_devmap_bootstrap(l1pt_va, devmap);
810
811 #ifdef VERBOSE_INIT_ARM
812 /* Tell the user about where all the bits and pieces live. */
813 printf("%22s Physical Virtual Num\n", " ");
814 printf("%22s Starting Ending Starting Ending Pages\n", " ");
815
816 static const char mem_fmt[] =
817 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
818 static const char mem_fmt_nov[] =
819 "%20s: 0x%08lx 0x%08lx %zu\n";
820
821 printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
822 KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
823 physmem);
824 printf(mem_fmt, "text section",
825 text.pv_pa, text.pv_pa + text.pv_size - 1,
826 text.pv_va, text.pv_va + text.pv_size - 1,
827 (int)(text.pv_size / PAGE_SIZE));
828 printf(mem_fmt, "data section",
829 KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
830 (vaddr_t)__data_start, (vaddr_t)_edata,
831 (int)((round_page((vaddr_t)_edata)
832 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
833 printf(mem_fmt, "bss section",
834 KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
835 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
836 (int)((round_page((vaddr_t)__bss_end__)
837 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
838 printf(mem_fmt, "L1 page directory",
839 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
840 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
841 L1_TABLE_SIZE / PAGE_SIZE);
842 printf(mem_fmt, "ABT stack (CPU 0)",
843 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
844 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
845 ABT_STACK_SIZE);
846 printf(mem_fmt, "FIQ stack (CPU 0)",
847 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
848 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
849 FIQ_STACK_SIZE);
850 printf(mem_fmt, "IRQ stack (CPU 0)",
851 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
852 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
853 IRQ_STACK_SIZE);
854 printf(mem_fmt, "UND stack (CPU 0)",
855 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
856 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
857 UND_STACK_SIZE);
858 printf(mem_fmt, "IDLE stack (CPU 0)",
859 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
860 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
861 UPAGES);
862 printf(mem_fmt, "SVC stack",
863 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
864 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
865 UPAGES);
866 printf(mem_fmt, "Message Buffer",
867 msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
868 msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
869 (int)msgbuf_pgs);
870 if (map_vectors_p) {
871 printf(mem_fmt, "Exception Vectors",
872 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
873 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
874 1);
875 }
876 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
877 pv = &bmi->bmi_freeblocks[i];
878
879 printf(mem_fmt_nov, "Free Memory",
880 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
881 pv->pv_size / PAGE_SIZE);
882 }
883 #endif
884 /*
885 * Now we have the real page tables in place so we can switch to them.
886 * Once this is done we will be running with the REAL kernel page
887 * tables.
888 */
889
890 #if defined(VERBOSE_INIT_ARM) && 0
891 printf("TTBR0=%#x", armreg_ttbr_read());
892 #ifdef _ARM_ARCH_6
893 printf(" TTBR1=%#x TTBCR=%#x",
894 armreg_ttbr1_read(), armreg_ttbcr_read());
895 #endif
896 printf("\n");
897 #endif
898
899 /* Switch tables */
900 #ifdef VERBOSE_INIT_ARM
901 printf("switching to new L1 page table @%#lx...", l1pt_pa);
902 #endif
903
904 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
905 cpu_idcache_wbinv_all();
906 #ifdef ARM_MMU_EXTENDED
907 cpu_setttb(l1pt_pa, KERNEL_PID);
908 #else
909 cpu_setttb(l1pt_pa, true);
910 #endif
911 cpu_tlb_flushID();
912 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
913
914 #ifdef VERBOSE_INIT_ARM
915 printf("TTBR0=%#x OK\n", armreg_ttbr_read());
916 #endif
917 }
918