arm32_kvminit.c revision 1.2 1 /* $NetBSD: arm32_kvminit.c,v 1.2 2012/09/05 00:20:57 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.2 2012/09/05 00:20:57 matt Exp $");
126
127 #include <sys/param.h>
128 #include <sys/device.h>
129 #include <sys/kernel.h>
130 #include <sys/reboot.h>
131 #include <sys/bus.h>
132
133 #include <dev/cons.h>
134
135 #include <uvm/uvm_extern.h>
136
137 #include <arm/db_machdep.h>
138 #include <arm/undefined.h>
139 #include <arm/bootconfig.h>
140 #include <arm/arm32/machdep.h>
141
142 #include "ksyms.h"
143
144 struct bootmem_info bootmem_info;
145
146 paddr_t msgbufphys;
147 paddr_t physical_start;
148 paddr_t physical_end;
149
150 extern char etext[];
151 extern char __data_start[], _edata[];
152 extern char __bss_start[], __bss_end__[];
153 extern char _end[];
154
155 /* Page tables for mapping kernel VM */
156 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
157
158 /*
159 * Macros to translate between physical and virtual for a subset of the
160 * kernel address space. *Not* for general use.
161 */
162 #define KERN_VTOPHYS(bmi, va) \
163 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
164 #define KERN_PHYSTOV(bmi, pa) \
165 ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
166
167 void
168 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
169 {
170 struct bootmem_info * const bmi = &bootmem_info;
171 pv_addr_t *pv = bmi->bmi_freeblocks;
172
173 #ifdef VERBOSE_INIT_ARM
174 printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
175 __func__, memstart, memsize, kernelstart);
176 #endif
177
178 physical_start = bmi->bmi_start = memstart;
179 physical_end = bmi->bmi_end = memstart + memsize;
180 physmem = memsize / PAGE_SIZE;
181
182 /*
183 * Let's record where the kernel lives.
184 */
185 bmi->bmi_kernelstart = kernelstart;
186 bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
187
188 #ifdef VERBOSE_INIT_ARM
189 printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
190 #endif
191
192 /*
193 * Now the rest of the free memory must be after the kernel.
194 */
195 pv->pv_pa = bmi->bmi_kernelend;
196 pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
197 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
198 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
199 #ifdef VERBOSE_INIT_ARM
200 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
201 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
202 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
203 #endif
204 pv++;
205
206 /*
207 * Add a free block for any memory before the kernel.
208 */
209 if (bmi->bmi_start < bmi->bmi_kernelstart) {
210 pv->pv_pa = bmi->bmi_start;
211 pv->pv_va = KERNEL_BASE;
212 pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
213 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
214 #ifdef VERBOSE_INIT_ARM
215 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
216 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
217 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
218 #endif
219 pv++;
220 }
221
222 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
223
224 SLIST_INIT(&bmi->bmi_freechunks);
225 SLIST_INIT(&bmi->bmi_chunks);
226 }
227
228 static bool
229 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
230 {
231 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
232 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
233 && acc_pv->pv_prot == pv->pv_prot
234 && acc_pv->pv_cache == pv->pv_cache) {
235 #ifdef VERBOSE_INIT_ARMX
236 printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
237 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
238 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
239 #endif
240 acc_pv->pv_size += pv->pv_size;
241 return true;
242 }
243
244 return false;
245 }
246
247 static void
248 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
249 {
250 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
251 while ((*pvp) != 0 && (*pvp)->pv_va <= pv->pv_va) {
252 pv_addr_t * const pv0 = (*pvp);
253 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
254 if (concat_pvaddr(pv0, pv)) {
255 #ifdef VERBOSE_INIT_ARM
256 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 __func__, "appending", pv,
258 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
259 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
260 #endif
261 pv = SLIST_NEXT(pv0, pv_list);
262 if (pv != NULL && concat_pvaddr(pv0, pv)) {
263 #ifdef VERBOSE_INIT_ARM
264 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
265 __func__, "merging", pv,
266 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
267 pv0->pv_pa,
268 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
269 #endif
270 SLIST_REMOVE_AFTER(pv0, pv_list);
271 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
272 }
273 return;
274 }
275 KASSERT(pv->pv_va != (*pvp)->pv_va);
276 pvp = &SLIST_NEXT(*pvp, pv_list);
277 }
278 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
279 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
280 KASSERT(new_pv != NULL);
281 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
282 *new_pv = *pv;
283 SLIST_NEXT(new_pv, pv_list) = *pvp;
284 (*pvp) = new_pv;
285 #ifdef VERBOSE_INIT_ARM
286 printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
287 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
288 new_pv->pv_size / PAGE_SIZE);
289 if (SLIST_NEXT(new_pv, pv_list))
290 printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
291 else
292 printf("at tail\n");
293 #endif
294 }
295
296 static void
297 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
298 int prot, int cache)
299 {
300 size_t nbytes = npages * PAGE_SIZE;
301 pv_addr_t *free_pv = bmi->bmi_freeblocks;
302 size_t free_idx = 0;
303 static bool l1pt_found;
304
305 /*
306 * If we haven't allcoated the kernel L1 page table and we are aligned
307 * at a L1 table boundary, alloc the memory for it.
308 */
309 if (!l1pt_found
310 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
311 && free_pv->pv_size >= L1_TABLE_SIZE) {
312 l1pt_found = true;
313 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
314 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
315 add_pages(bmi, &kernel_l1pt);
316 }
317
318 while (nbytes > free_pv->pv_size) {
319 free_pv++;
320 free_idx++;
321 if (free_idx == bmi->bmi_nfreeblocks) {
322 panic("%s: could not allocate %zu bytes",
323 __func__, nbytes);
324 }
325 }
326
327 pv->pv_pa = free_pv->pv_pa;
328 pv->pv_va = free_pv->pv_va;
329 pv->pv_size = nbytes;
330 pv->pv_prot = prot;
331 pv->pv_cache = cache;
332
333 /*
334 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
335 * just use PTE_CACHE.
336 */
337 if (cache == PTE_PAGETABLE
338 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
339 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
340 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
341 pv->pv_cache = PTE_CACHE;
342
343 free_pv->pv_pa += nbytes;
344 free_pv->pv_va += nbytes;
345 free_pv->pv_size -= nbytes;
346 if (free_pv->pv_size == 0) {
347 --bmi->bmi_nfreeblocks;
348 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
349 free_pv[0] = free_pv[1];
350 }
351 }
352
353 bmi->bmi_freepages -= npages;
354
355 memset((void *)pv->pv_va, 0, nbytes);
356 }
357
358 void
359 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
360 const struct pmap_devmap *devmap, bool mapallmem_p)
361 {
362 struct bootmem_info * const bmi = &bootmem_info;
363 #ifdef MULTIPROCESSOR
364 const size_t cpu_num = arm_cpu_max + 1;
365 #else
366 const size_t cpu_num = 1;
367 #endif
368
369 /*
370 * Calculate the number of L2 pages needed for mapping the
371 * kernel + data + stuff
372 */
373 size_t kernel_size = bmi->bmi_kernelend;
374 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
375 kernel_size += L1_TABLE_SIZE;
376 kernel_size += round_page(MSGBUFSIZE);
377 kernel_size +=
378 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
379 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
380 kernel_size += 0x10000; /* slop */
381 kernel_size += (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
382 kernel_size = round_page(kernel_size);
383
384 /*
385 * Now we know how many L2 pages it will take.
386 */
387 const size_t KERNEL_L2PT_KERNEL_NUM =
388 (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
389
390 #ifdef VERBOSE_INIT_ARM
391 printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
392 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
393 #endif
394
395 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
396 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
397 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
398 pv_addr_t msgbuf;
399 pv_addr_t text;
400 pv_addr_t data;
401 pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
402 #if ARM_MMU_XSCALE == 1
403 pv_addr_t minidataclean;
404 #endif
405
406 /*
407 * We need to allocate some fixed page tables to get the kernel going.
408 *
409 * We are going to allocate our bootstrap pages from the beginning of
410 * the free space that we just calculated. We allocate one page
411 * directory and a number of page tables and store the physical
412 * addresses in the kernel_l2pt_table array.
413 *
414 * The kernel page directory must be on a 16K boundary. The page
415 * tables must be on 4K boundaries. What we do is allocate the
416 * page directory on the first 16K boundary that we encounter, and
417 * the page tables on 4K boundaries otherwise. Since we allocate
418 * at least 3 L2 page tables, we are guaranteed to encounter at
419 * least one 16K aligned region.
420 */
421
422 #ifdef VERBOSE_INIT_ARM
423 printf("%s: allocating page tables for", __func__);
424 #endif
425 for (size_t i = 0; i < __arraycount(chunks); i++) {
426 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
427 }
428
429 /*
430 * As we allocate the memory, make sure that we don't walk over
431 * our temporary first level translation table.
432 */
433
434 kernel_l1pt.pv_pa = 0;
435 kernel_l1pt.pv_va = 0;
436
437 /*
438 * First allocate L2 page for the vectors.
439 */
440 #ifdef VERBOSE_INIT_ARM
441 printf(" vector");
442 #endif
443 valloc_pages(bmi, &bmi->bmi_vector_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
444 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
445 add_pages(bmi, &bmi->bmi_vector_l2pt);
446
447 /*
448 * Allocate the L2 pages, but if we get to a page that aligned for a
449 * L1 page table, we will allocate pages for it first and allocate
450 * L2 page.
451 */
452 #ifdef VERBOSE_INIT_ARM
453 printf(" kernel");
454 #endif
455 for (size_t idx = 0; idx <= KERNEL_L2PT_KERNEL_NUM; ++idx) {
456 valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
457 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
458 add_pages(bmi, &kernel_l2pt[idx]);
459 }
460 #ifdef VERBOSE_INIT_ARM
461 printf(" vm");
462 #endif
463 for (size_t idx = 0; idx <= KERNEL_L2PT_VMDATA_NUM; ++idx) {
464 valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
465 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
466 add_pages(bmi, &vmdata_l2pt[idx]);
467 }
468
469 /*
470 * If someone wanted a L2 page for I/O, allocate it now.
471 */
472 if (iovbase != 0) {
473 #ifdef VERBOSE_INIT_ARM
474 printf(" io");
475 #endif
476 valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
477 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
478 add_pages(bmi, &bmi->bmi_io_l2pt);
479 }
480
481 #ifdef VERBOSE_ARM_INIT
482 printf("%s: allocating stacks\n", __func__);
483 #endif
484
485 /* Allocate stacks for all modes */
486 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
487 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
488 add_pages(bmi, &abtstack);
489 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
490 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
491 add_pages(bmi, &fiqstack);
492 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
493 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
494 add_pages(bmi, &irqstack);
495 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
496 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
497 add_pages(bmi, &undstack);
498 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
499 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
500 add_pages(bmi, &idlestack);
501 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
502 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
503 add_pages(bmi, &kernelstack);
504
505 /* Allocate the message buffer from the end of memory. */
506 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
507 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
508 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
509 add_pages(bmi, &msgbuf);
510 msgbufphys = msgbuf.pv_pa;
511
512 /*
513 * Allocate a page for the system vector page.
514 * This page will just contain the system vectors and can be
515 * shared by all processes.
516 */
517 valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
518 systempage.pv_va = vectors;
519
520 /*
521 * If the caller needed a few extra pages for some reason, allocate
522 * them now.
523 */
524 #if ARM_MMU_XSCALE == 1
525 #if (ARM_NMMUS > 1)
526 if (xscale_use_minidata)
527 #endif
528 valloc_pages(bmi, extrapv, nextrapages,
529 VM_PROT_READ|VM_PROT_WRITE, 0);
530 #endif
531
532 /*
533 * Ok we have allocated physical pages for the primary kernel
534 * page tables and stacks. Let's just confirm that.
535 */
536 if (kernel_l1pt.pv_va == 0
537 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
538 panic("%s: Failed to allocate or align the kernel "
539 "page directory", __func__);
540
541
542 #ifdef VERBOSE_INIT_ARM
543 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
544 #endif
545
546 /*
547 * Now we start construction of the L1 page table
548 * We start by mapping the L2 page tables into the L1.
549 * This means that we can replace L1 mappings later on if necessary
550 */
551 vaddr_t l1pt_va = kernel_l1pt.pv_va;
552 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
553
554 /* Map the L2 pages tables in the L1 page table */
555 pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
556 &bmi->bmi_vector_l2pt);
557 #ifdef VERBOSE_INIT_ARM
558 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
559 __func__, bmi->bmi_vector_l2pt.pv_va, bmi->bmi_vector_l2pt.pv_pa,
560 systempage.pv_va);
561 #endif
562
563 const vaddr_t kernel_base =
564 KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
565 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
566 pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
567 &kernel_l2pt[idx]);
568 #ifdef VERBOSE_INIT_ARM
569 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
570 __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
571 kernel_base + idx * L2_S_SEGSIZE);
572 #endif
573 }
574
575 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
576 pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
577 &vmdata_l2pt[idx]);
578 #ifdef VERBOSE_INIT_ARM
579 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
580 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
581 kernel_vm_base + idx * L2_S_SEGSIZE);
582 #endif
583 }
584 if (iovbase) {
585 pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
586 #ifdef VERBOSE_INIT_ARM
587 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx\n",
588 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
589 iovbase & -L2_S_SEGSIZE);
590 #endif
591 }
592
593 /* update the top of the kernel VM */
594 pmap_curmaxkvaddr =
595 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
596
597 #ifdef VERBOSE_INIT_ARM
598 printf("Mapping kernel\n");
599 #endif
600
601 extern char etext[], _end[];
602 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
603 size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
604
605 textsize = (textsize + PGOFSET) & ~PGOFSET;
606
607 /* start at offset of kernel in RAM */
608
609 text.pv_pa = bmi->bmi_kernelstart;
610 text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
611 text.pv_size = textsize;
612 text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
613 text.pv_cache = PTE_CACHE;
614
615 #ifdef VERBOSE_INIT_ARM
616 printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
617 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
618 #endif
619
620 add_pages(bmi, &text);
621
622 data.pv_pa = text.pv_pa + textsize;
623 data.pv_va = text.pv_va + textsize;
624 data.pv_size = totalsize - textsize;
625 data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
626 data.pv_cache = PTE_CACHE;
627
628 #ifdef VERBOSE_INIT_ARM
629 printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
630 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
631 #endif
632
633 add_pages(bmi, &data);
634
635 #ifdef VERBOSE_INIT_ARM
636 printf("Listing Chunks\n");
637 {
638 pv_addr_t *pv;
639 SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
640 printf("%s: pv %p: chunk VA %#lx..%#lx "
641 "(PA %#lx, prot %d, cache %d)\n",
642 __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
643 pv->pv_pa, pv->pv_prot, pv->pv_cache);
644 }
645 }
646 printf("\nMapping Chunks\n");
647 #endif
648
649 pv_addr_t cur_pv;
650 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
651 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
652 cur_pv = *pv;
653 pv = SLIST_NEXT(pv, pv_list);
654 } else {
655 cur_pv.pv_va = kernel_base;
656 cur_pv.pv_pa = bmi->bmi_start;
657 cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
658 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
659 cur_pv.pv_cache = PTE_CACHE;
660 }
661 while (pv != NULL) {
662 if (mapallmem_p) {
663 if (concat_pvaddr(&cur_pv, pv)) {
664 pv = SLIST_NEXT(pv, pv_list);
665 continue;
666 }
667 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
668 /*
669 * See if we can extend the current pv to emcompass the
670 * hole, and if so do it and retry the concatenation.
671 */
672 if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
673 && cur_pv.pv_cache == PTE_CACHE) {
674 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
675 continue;
676 }
677
678 /*
679 * We couldn't so emit the current chunk and then
680 */
681 #ifdef VERBOSE_INIT_ARM
682 printf("%s: mapping chunk VA %#lx..%#lx "
683 "(PA %#lx, prot %d, cache %d)\n",
684 __func__,
685 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
686 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
687 #endif
688 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
689 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
690
691 /*
692 * set the current chunk to the hole and try again.
693 */
694 cur_pv.pv_pa += cur_pv.pv_size;
695 cur_pv.pv_va += cur_pv.pv_size;
696 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
697 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
698 cur_pv.pv_cache = PTE_CACHE;
699 continue;
700 }
701 }
702
703 /*
704 * The new pv didn't concatenate so emit the current one
705 * and use the new pv as the current pv.
706 */
707 #ifdef VERBOSE_INIT_ARM
708 printf("%s: mapping chunk VA %#lx..%#lx "
709 "(PA %#lx, prot %d, cache %d)\n",
710 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
711 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
712 #endif
713 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
714 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
715 cur_pv = *pv;
716 pv = SLIST_NEXT(pv, pv_list);
717 }
718
719 /*
720 * If we are mapping all of memory, let's map the rest of memory.
721 */
722 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
723 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
724 && cur_pv.pv_cache == PTE_CACHE) {
725 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
726 } else {
727 #ifdef VERBOSE_INIT_ARM
728 printf("%s: mapping chunk VA %#lx..%#lx "
729 "(PA %#lx, prot %d, cache %d)\n",
730 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
731 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
732 #endif
733 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
734 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
735 cur_pv.pv_pa += cur_pv.pv_size;
736 cur_pv.pv_va += cur_pv.pv_size;
737 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
738 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
739 cur_pv.pv_cache = PTE_CACHE;
740 }
741 }
742
743 /*
744 * Now we map the final chunk.
745 */
746 #ifdef VERBOSE_INIT_ARM
747 printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
748 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
749 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
750 #endif
751 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
752 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
753
754 /*
755 * Now we map the stuff that isn't directly after the kernel
756 */
757
758 /* Map the vector page. */
759 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
760 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
761
762 /* Map the Mini-Data cache clean area. */
763 #if ARM_MMU_XSCALE == 1
764 #if (ARM_NMMUS > 1)
765 if (xscale_use_minidata)
766 #endif
767 xscale_setup_minidata(l1_va, minidataclean.pv_va,
768 minidataclean.pv_pa);
769 #endif
770
771 /*
772 * Map integrated peripherals at same address in first level page
773 * table so that we can continue to use console.
774 */
775 if (devmap)
776 pmap_devmap_bootstrap(l1pt_va, devmap);
777
778 #ifdef VERBOSE_INIT_ARM
779 /* Tell the user about where all the bits and pieces live. */
780 printf("%22s Physical Virtual Num\n", " ");
781 printf("%22s Starting Ending Starting Ending Pages\n", " ");
782
783 static const char mem_fmt[] =
784 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
785 static const char mem_fmt_nov[] =
786 "%20s: 0x%08lx 0x%08lx %zu\n";
787
788 printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
789 KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
790 physmem);
791 printf(mem_fmt, "text section",
792 text.pv_pa, text.pv_pa + text.pv_size - 1,
793 text.pv_va, text.pv_va + text.pv_size - 1,
794 (int)(text.pv_size / PAGE_SIZE));
795 printf(mem_fmt, "data section",
796 KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
797 (vaddr_t)__data_start, (vaddr_t)_edata,
798 (int)((round_page((vaddr_t)_edata)
799 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
800 printf(mem_fmt, "bss section",
801 KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
802 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
803 (int)((round_page((vaddr_t)__bss_end__)
804 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
805 printf(mem_fmt, "L1 page directory",
806 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
807 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
808 L1_TABLE_SIZE / PAGE_SIZE);
809 printf(mem_fmt, "Exception Vectors",
810 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
811 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
812 1);
813 printf(mem_fmt, "FIQ stack (CPU 0)",
814 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
815 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
816 FIQ_STACK_SIZE);
817 printf(mem_fmt, "IRQ stack (CPU 0)",
818 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
819 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
820 IRQ_STACK_SIZE);
821 printf(mem_fmt, "ABT stack (CPU 0)",
822 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
823 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
824 ABT_STACK_SIZE);
825 printf(mem_fmt, "UND stack (CPU 0)",
826 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
827 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
828 UND_STACK_SIZE);
829 printf(mem_fmt, "IDLE stack (CPU 0)",
830 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
831 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
832 UPAGES);
833 printf(mem_fmt, "SVC stack",
834 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
835 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
836 UPAGES);
837 printf(mem_fmt_nov, "Message Buffer",
838 msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
839 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
840 pv = &bmi->bmi_freeblocks[i];
841
842 printf(mem_fmt_nov, "Free Memory",
843 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
844 pv->pv_size / PAGE_SIZE);
845 }
846 #endif
847 /*
848 * Now we have the real page tables in place so we can switch to them.
849 * Once this is done we will be running with the REAL kernel page
850 * tables.
851 */
852
853 #if defined(VERBOSE_INIT_ARM) && 0
854 printf("TTBR0=%#x", armreg_ttbr_read());
855 #ifdef _ARM_ARCH_6
856 printf(" TTBR1=%#x TTBCR=%#x",
857 armreg_ttbr1_read(), armreg_ttbcr_read());
858 #endif
859 printf("\n");
860 #endif
861
862 /* Switch tables */
863 #ifdef VERBOSE_INIT_ARM
864 printf("switching to new L1 page table @%#lx...", l1pt_pa);
865 #endif
866
867 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
868 cpu_setttb(l1pt_pa);
869 cpu_tlb_flushID();
870 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
871
872 #ifdef VERBOSE_INIT_ARM
873 printf("OK.\n");
874 #endif
875 }
876