arm32_kvminit.c revision 1.22 1 /* $NetBSD: arm32_kvminit.c,v 1.22 2013/08/29 15:46:17 riz Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.22 2013/08/29 15:46:17 riz Exp $");
126
127 #include <sys/param.h>
128 #include <sys/device.h>
129 #include <sys/kernel.h>
130 #include <sys/reboot.h>
131 #include <sys/bus.h>
132
133 #include <dev/cons.h>
134
135 #include <uvm/uvm_extern.h>
136
137 #include <arm/db_machdep.h>
138 #include <arm/undefined.h>
139 #include <arm/bootconfig.h>
140 #include <arm/arm32/machdep.h>
141
142 #include "ksyms.h"
143
144 struct bootmem_info bootmem_info;
145
146 paddr_t msgbufphys;
147 paddr_t physical_start;
148 paddr_t physical_end;
149
150 extern char etext[];
151 extern char __data_start[], _edata[];
152 extern char __bss_start[], __bss_end__[];
153 extern char _end[];
154
155 /* Page tables for mapping kernel VM */
156 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
157
158 /*
159 * Macros to translate between physical and virtual for a subset of the
160 * kernel address space. *Not* for general use.
161 */
162 #define KERN_VTOPHYS(bmi, va) \
163 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
164 #define KERN_PHYSTOV(bmi, pa) \
165 ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
166
167 void
168 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
169 {
170 struct bootmem_info * const bmi = &bootmem_info;
171 pv_addr_t *pv = bmi->bmi_freeblocks;
172
173 #ifdef VERBOSE_INIT_ARM
174 printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
175 __func__, memstart, memsize, kernelstart);
176 #endif
177
178 physical_start = bmi->bmi_start = memstart;
179 physical_end = bmi->bmi_end = memstart + memsize;
180 physmem = memsize / PAGE_SIZE;
181
182 /*
183 * Let's record where the kernel lives.
184 */
185 bmi->bmi_kernelstart = kernelstart;
186 bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
187
188 #ifdef VERBOSE_INIT_ARM
189 printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
190 #endif
191
192 /*
193 * Now the rest of the free memory must be after the kernel.
194 */
195 pv->pv_pa = bmi->bmi_kernelend;
196 pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
197 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
198 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
199 #ifdef VERBOSE_INIT_ARM
200 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
201 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
202 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
203 #endif
204 pv++;
205
206 /*
207 * Add a free block for any memory before the kernel.
208 */
209 if (bmi->bmi_start < bmi->bmi_kernelstart) {
210 pv->pv_pa = bmi->bmi_start;
211 pv->pv_va = KERNEL_BASE;
212 pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
213 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
214 #ifdef VERBOSE_INIT_ARM
215 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
216 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
217 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
218 #endif
219 pv++;
220 }
221
222 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
223
224 SLIST_INIT(&bmi->bmi_freechunks);
225 SLIST_INIT(&bmi->bmi_chunks);
226 }
227
228 static bool
229 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
230 {
231 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
232 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
233 && acc_pv->pv_prot == pv->pv_prot
234 && acc_pv->pv_cache == pv->pv_cache) {
235 #ifdef VERBOSE_INIT_ARMX
236 printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
237 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
238 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
239 #endif
240 acc_pv->pv_size += pv->pv_size;
241 return true;
242 }
243
244 return false;
245 }
246
247 static void
248 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
249 {
250 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
251 while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
252 pv_addr_t * const pv0 = (*pvp);
253 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
254 if (concat_pvaddr(pv0, pv)) {
255 #ifdef VERBOSE_INIT_ARM
256 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 __func__, "appending", pv,
258 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
259 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
260 #endif
261 pv = SLIST_NEXT(pv0, pv_list);
262 if (pv != NULL && concat_pvaddr(pv0, pv)) {
263 #ifdef VERBOSE_INIT_ARM
264 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
265 __func__, "merging", pv,
266 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
267 pv0->pv_pa,
268 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
269 #endif
270 SLIST_REMOVE_AFTER(pv0, pv_list);
271 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
272 }
273 return;
274 }
275 KASSERT(pv->pv_va != (*pvp)->pv_va);
276 pvp = &SLIST_NEXT(*pvp, pv_list);
277 }
278 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
279 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
280 KASSERT(new_pv != NULL);
281 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
282 *new_pv = *pv;
283 SLIST_NEXT(new_pv, pv_list) = *pvp;
284 (*pvp) = new_pv;
285 #ifdef VERBOSE_INIT_ARM
286 printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
287 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
288 new_pv->pv_size / PAGE_SIZE);
289 if (SLIST_NEXT(new_pv, pv_list))
290 printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
291 else
292 printf("at tail\n");
293 #endif
294 }
295
296 static void
297 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
298 int prot, int cache, bool zero_p)
299 {
300 size_t nbytes = npages * PAGE_SIZE;
301 pv_addr_t *free_pv = bmi->bmi_freeblocks;
302 size_t free_idx = 0;
303 static bool l1pt_found;
304
305 /*
306 * If we haven't allocated the kernel L1 page table and we are aligned
307 * at a L1 table boundary, alloc the memory for it.
308 */
309 if (!l1pt_found
310 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
311 && free_pv->pv_size >= L1_TABLE_SIZE) {
312 l1pt_found = true;
313 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
314 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
315 add_pages(bmi, &kernel_l1pt);
316 }
317
318 while (nbytes > free_pv->pv_size) {
319 free_pv++;
320 free_idx++;
321 if (free_idx == bmi->bmi_nfreeblocks) {
322 panic("%s: could not allocate %zu bytes",
323 __func__, nbytes);
324 }
325 }
326
327 /*
328 * As we allocate the memory, make sure that we don't walk over
329 * our current first level translation table.
330 */
331 KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
332
333 pv->pv_pa = free_pv->pv_pa;
334 pv->pv_va = free_pv->pv_va;
335 pv->pv_size = nbytes;
336 pv->pv_prot = prot;
337 pv->pv_cache = cache;
338
339 /*
340 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
341 * just use PTE_CACHE.
342 */
343 if (cache == PTE_PAGETABLE
344 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
345 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
346 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
347 pv->pv_cache = PTE_CACHE;
348
349 free_pv->pv_pa += nbytes;
350 free_pv->pv_va += nbytes;
351 free_pv->pv_size -= nbytes;
352 if (free_pv->pv_size == 0) {
353 --bmi->bmi_nfreeblocks;
354 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
355 free_pv[0] = free_pv[1];
356 }
357 }
358
359 bmi->bmi_freepages -= npages;
360
361 if (zero_p)
362 memset((void *)pv->pv_va, 0, nbytes);
363 }
364
365 void
366 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
367 const struct pmap_devmap *devmap, bool mapallmem_p)
368 {
369 struct bootmem_info * const bmi = &bootmem_info;
370 #ifdef MULTIPROCESSOR
371 const size_t cpu_num = arm_cpu_max + 1;
372 #else
373 const size_t cpu_num = 1;
374 #endif
375 #ifdef ARM_HAS_VBAR
376 const bool map_vectors_p = false;
377 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
378 const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
379 || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
380 #else
381 const bool map_vectors_p = true;
382 #endif
383
384 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
385 KASSERT(mapallmem_p);
386 #endif
387
388 /*
389 * Calculate the number of L2 pages needed for mapping the
390 * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
391 * and 1 for IO
392 */
393 size_t kernel_size = bmi->bmi_kernelend;
394 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
395 kernel_size += L1_TABLE_SIZE;
396 kernel_size += L2_TABLE_SIZE * (2 + 1 + KERNEL_L2PT_VMDATA_NUM + 1);
397 kernel_size +=
398 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
399 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
400 kernel_size += round_page(MSGBUFSIZE);
401 kernel_size += 0x10000; /* slop */
402 kernel_size += PAGE_SIZE * (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
403 kernel_size = round_page(kernel_size);
404
405 /*
406 * Now we know how many L2 pages it will take.
407 */
408 const size_t KERNEL_L2PT_KERNEL_NUM =
409 (kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
410
411 #ifdef VERBOSE_INIT_ARM
412 printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
413 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
414 #endif
415
416 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
417 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
418 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
419 pv_addr_t msgbuf;
420 pv_addr_t text;
421 pv_addr_t data;
422 pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
423 #if ARM_MMU_XSCALE == 1
424 pv_addr_t minidataclean;
425 #endif
426
427 /*
428 * We need to allocate some fixed page tables to get the kernel going.
429 *
430 * We are going to allocate our bootstrap pages from the beginning of
431 * the free space that we just calculated. We allocate one page
432 * directory and a number of page tables and store the physical
433 * addresses in the bmi_l2pts array in bootmem_info.
434 *
435 * The kernel page directory must be on a 16K boundary. The page
436 * tables must be on 4K boundaries. What we do is allocate the
437 * page directory on the first 16K boundary that we encounter, and
438 * the page tables on 4K boundaries otherwise. Since we allocate
439 * at least 3 L2 page tables, we are guaranteed to encounter at
440 * least one 16K aligned region.
441 */
442
443 #ifdef VERBOSE_INIT_ARM
444 printf("%s: allocating page tables for", __func__);
445 #endif
446 for (size_t i = 0; i < __arraycount(chunks); i++) {
447 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
448 }
449
450 kernel_l1pt.pv_pa = 0;
451 kernel_l1pt.pv_va = 0;
452
453 /*
454 * Allocate the L2 pages, but if we get to a page that is aligned for
455 * an L1 page table, we will allocate the pages for it first and then
456 * allocate the L2 page.
457 */
458
459 if (map_vectors_p) {
460 /*
461 * First allocate L2 page for the vectors.
462 */
463 #ifdef VERBOSE_INIT_ARM
464 printf(" vector");
465 #endif
466 valloc_pages(bmi, &bmi->bmi_vector_l2pt,
467 L2_TABLE_SIZE / PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE,
468 PTE_PAGETABLE, true);
469 add_pages(bmi, &bmi->bmi_vector_l2pt);
470 }
471
472 /*
473 * Now allocate L2 pages for the kernel
474 */
475 #ifdef VERBOSE_INIT_ARM
476 printf(" kernel");
477 #endif
478 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
479 valloc_pages(bmi, &kernel_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
480 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
481 add_pages(bmi, &kernel_l2pt[idx]);
482 }
483
484 /*
485 * Now allocate L2 pages for the initial kernel VA space.
486 */
487 #ifdef VERBOSE_INIT_ARM
488 printf(" vm");
489 #endif
490 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
491 valloc_pages(bmi, &vmdata_l2pt[idx], L2_TABLE_SIZE / PAGE_SIZE,
492 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
493 add_pages(bmi, &vmdata_l2pt[idx]);
494 }
495
496 /*
497 * If someone wanted a L2 page for I/O, allocate it now.
498 */
499 if (iovbase != 0) {
500 #ifdef VERBOSE_INIT_ARM
501 printf(" io");
502 #endif
503 valloc_pages(bmi, &bmi->bmi_io_l2pt, L2_TABLE_SIZE / PAGE_SIZE,
504 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
505 add_pages(bmi, &bmi->bmi_io_l2pt);
506 }
507
508 #ifdef VERBOSE_INIT_ARM
509 printf("%s: allocating stacks\n", __func__);
510 #endif
511
512 /* Allocate stacks for all modes and CPUs */
513 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
514 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
515 add_pages(bmi, &abtstack);
516 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
517 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
518 add_pages(bmi, &fiqstack);
519 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
520 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
521 add_pages(bmi, &irqstack);
522 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
523 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
524 add_pages(bmi, &undstack);
525 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
526 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
527 add_pages(bmi, &idlestack);
528 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
529 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
530 add_pages(bmi, &kernelstack);
531
532 /* Allocate the message buffer from the end of memory. */
533 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
534 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
535 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
536 add_pages(bmi, &msgbuf);
537 msgbufphys = msgbuf.pv_pa;
538
539 if (map_vectors_p) {
540 /*
541 * Allocate a page for the system vector page.
542 * This page will just contain the system vectors and can be
543 * shared by all processes.
544 */
545 valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
546 PTE_CACHE, true);
547 }
548 systempage.pv_va = vectors;
549
550 /*
551 * If the caller needed a few extra pages for some reason, allocate
552 * them now.
553 */
554 #if ARM_MMU_XSCALE == 1
555 #if (ARM_NMMUS > 1)
556 if (xscale_use_minidata)
557 #endif
558 valloc_pages(bmi, extrapv, nextrapages,
559 VM_PROT_READ|VM_PROT_WRITE, 0, true);
560 #endif
561
562 /*
563 * Ok we have allocated physical pages for the primary kernel
564 * page tables and stacks. Let's just confirm that.
565 */
566 if (kernel_l1pt.pv_va == 0
567 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
568 panic("%s: Failed to allocate or align the kernel "
569 "page directory", __func__);
570
571
572 #ifdef VERBOSE_INIT_ARM
573 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
574 #endif
575
576 /*
577 * Now we start construction of the L1 page table
578 * We start by mapping the L2 page tables into the L1.
579 * This means that we can replace L1 mappings later on if necessary
580 */
581 vaddr_t l1pt_va = kernel_l1pt.pv_va;
582 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
583
584 if (map_vectors_p) {
585 /* Map the L2 pages tables in the L1 page table */
586 pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
587 &bmi->bmi_vector_l2pt);
588 #ifdef VERBOSE_INIT_ARM
589 printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
590 "for VA %#lx\n (vectors)",
591 __func__, bmi->bmi_vector_l2pt.pv_va,
592 bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
593 #endif
594 }
595
596 const vaddr_t kernel_base =
597 KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
598 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
599 pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
600 &kernel_l2pt[idx]);
601 #ifdef VERBOSE_INIT_ARM
602 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
603 __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
604 kernel_base + idx * L2_S_SEGSIZE);
605 #endif
606 }
607
608 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
609 pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
610 &vmdata_l2pt[idx]);
611 #ifdef VERBOSE_INIT_ARM
612 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
613 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
614 kernel_vm_base + idx * L2_S_SEGSIZE);
615 #endif
616 }
617 if (iovbase) {
618 pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
619 #ifdef VERBOSE_INIT_ARM
620 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
621 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
622 iovbase & -L2_S_SEGSIZE);
623 #endif
624 }
625
626 /* update the top of the kernel VM */
627 pmap_curmaxkvaddr =
628 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
629
630 #ifdef VERBOSE_INIT_ARM
631 printf("Mapping kernel\n");
632 #endif
633
634 extern char etext[], _end[];
635 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
636 size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
637
638 textsize = (textsize + PGOFSET) & ~PGOFSET;
639
640 /* start at offset of kernel in RAM */
641
642 text.pv_pa = bmi->bmi_kernelstart;
643 text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
644 text.pv_size = textsize;
645 text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
646 text.pv_cache = PTE_CACHE;
647
648 #ifdef VERBOSE_INIT_ARM
649 printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
650 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
651 #endif
652
653 add_pages(bmi, &text);
654
655 data.pv_pa = text.pv_pa + textsize;
656 data.pv_va = text.pv_va + textsize;
657 data.pv_size = totalsize - textsize;
658 data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
659 data.pv_cache = PTE_CACHE;
660
661 #ifdef VERBOSE_INIT_ARM
662 printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
663 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
664 #endif
665
666 add_pages(bmi, &data);
667
668 #ifdef VERBOSE_INIT_ARM
669 printf("Listing Chunks\n");
670 {
671 pv_addr_t *pv;
672 SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
673 printf("%s: pv %p: chunk VA %#lx..%#lx "
674 "(PA %#lx, prot %d, cache %d)\n",
675 __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
676 pv->pv_pa, pv->pv_prot, pv->pv_cache);
677 }
678 }
679 printf("\nMapping Chunks\n");
680 #endif
681
682 pv_addr_t cur_pv;
683 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
684 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
685 cur_pv = *pv;
686 pv = SLIST_NEXT(pv, pv_list);
687 } else {
688 cur_pv.pv_va = KERNEL_BASE;
689 cur_pv.pv_pa = bmi->bmi_start;
690 cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
691 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
692 cur_pv.pv_cache = PTE_CACHE;
693 }
694 while (pv != NULL) {
695 if (mapallmem_p) {
696 if (concat_pvaddr(&cur_pv, pv)) {
697 pv = SLIST_NEXT(pv, pv_list);
698 continue;
699 }
700 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
701 /*
702 * See if we can extend the current pv to emcompass the
703 * hole, and if so do it and retry the concatenation.
704 */
705 if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
706 && cur_pv.pv_cache == PTE_CACHE) {
707 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
708 continue;
709 }
710
711 /*
712 * We couldn't so emit the current chunk and then
713 */
714 #ifdef VERBOSE_INIT_ARM
715 printf("%s: mapping chunk VA %#lx..%#lx "
716 "(PA %#lx, prot %d, cache %d)\n",
717 __func__,
718 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
719 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
720 #endif
721 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
722 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
723
724 /*
725 * set the current chunk to the hole and try again.
726 */
727 cur_pv.pv_pa += cur_pv.pv_size;
728 cur_pv.pv_va += cur_pv.pv_size;
729 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
730 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
731 cur_pv.pv_cache = PTE_CACHE;
732 continue;
733 }
734 }
735
736 /*
737 * The new pv didn't concatenate so emit the current one
738 * and use the new pv as the current pv.
739 */
740 #ifdef VERBOSE_INIT_ARM
741 printf("%s: mapping chunk VA %#lx..%#lx "
742 "(PA %#lx, prot %d, cache %d)\n",
743 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
744 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
745 #endif
746 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
747 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
748 cur_pv = *pv;
749 pv = SLIST_NEXT(pv, pv_list);
750 }
751
752 /*
753 * If we are mapping all of memory, let's map the rest of memory.
754 */
755 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
756 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
757 && cur_pv.pv_cache == PTE_CACHE) {
758 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
759 } else {
760 #ifdef VERBOSE_INIT_ARM
761 printf("%s: mapping chunk VA %#lx..%#lx "
762 "(PA %#lx, prot %d, cache %d)\n",
763 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
764 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
765 #endif
766 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
767 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
768 cur_pv.pv_pa += cur_pv.pv_size;
769 cur_pv.pv_va += cur_pv.pv_size;
770 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
771 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
772 cur_pv.pv_cache = PTE_CACHE;
773 }
774 }
775
776 /*
777 * Now we map the final chunk.
778 */
779 #ifdef VERBOSE_INIT_ARM
780 printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
781 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
782 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
783 #endif
784 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
785 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
786
787 /*
788 * Now we map the stuff that isn't directly after the kernel
789 */
790
791 if (map_vectors_p) {
792 /* Map the vector page. */
793 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
794 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
795 }
796
797 /* Map the Mini-Data cache clean area. */
798 #if ARM_MMU_XSCALE == 1
799 #if (ARM_NMMUS > 1)
800 if (xscale_use_minidata)
801 #endif
802 xscale_setup_minidata(l1_va, minidataclean.pv_va,
803 minidataclean.pv_pa);
804 #endif
805
806 /*
807 * Map integrated peripherals at same address in first level page
808 * table so that we can continue to use console.
809 */
810 if (devmap)
811 pmap_devmap_bootstrap(l1pt_va, devmap);
812
813 #ifdef VERBOSE_INIT_ARM
814 /* Tell the user about where all the bits and pieces live. */
815 printf("%22s Physical Virtual Num\n", " ");
816 printf("%22s Starting Ending Starting Ending Pages\n", " ");
817
818 static const char mem_fmt[] =
819 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
820 static const char mem_fmt_nov[] =
821 "%20s: 0x%08lx 0x%08lx %zu\n";
822
823 printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
824 KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
825 physmem);
826 printf(mem_fmt, "text section",
827 text.pv_pa, text.pv_pa + text.pv_size - 1,
828 text.pv_va, text.pv_va + text.pv_size - 1,
829 (int)(text.pv_size / PAGE_SIZE));
830 printf(mem_fmt, "data section",
831 KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
832 (vaddr_t)__data_start, (vaddr_t)_edata,
833 (int)((round_page((vaddr_t)_edata)
834 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
835 printf(mem_fmt, "bss section",
836 KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
837 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
838 (int)((round_page((vaddr_t)__bss_end__)
839 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
840 printf(mem_fmt, "L1 page directory",
841 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
842 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
843 L1_TABLE_SIZE / PAGE_SIZE);
844 printf(mem_fmt, "ABT stack (CPU 0)",
845 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
846 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
847 ABT_STACK_SIZE);
848 printf(mem_fmt, "FIQ stack (CPU 0)",
849 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
850 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
851 FIQ_STACK_SIZE);
852 printf(mem_fmt, "IRQ stack (CPU 0)",
853 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
854 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
855 IRQ_STACK_SIZE);
856 printf(mem_fmt, "UND stack (CPU 0)",
857 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
858 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
859 UND_STACK_SIZE);
860 printf(mem_fmt, "IDLE stack (CPU 0)",
861 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
862 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
863 UPAGES);
864 printf(mem_fmt, "SVC stack",
865 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
866 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
867 UPAGES);
868 printf(mem_fmt, "Message Buffer",
869 msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
870 msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
871 (int)msgbuf_pgs);
872 if (map_vectors_p) {
873 printf(mem_fmt, "Exception Vectors",
874 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
875 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
876 1);
877 }
878 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
879 pv = &bmi->bmi_freeblocks[i];
880
881 printf(mem_fmt_nov, "Free Memory",
882 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
883 pv->pv_size / PAGE_SIZE);
884 }
885 #endif
886 /*
887 * Now we have the real page tables in place so we can switch to them.
888 * Once this is done we will be running with the REAL kernel page
889 * tables.
890 */
891
892 #if defined(VERBOSE_INIT_ARM) && 0
893 printf("TTBR0=%#x", armreg_ttbr_read());
894 #ifdef _ARM_ARCH_6
895 printf(" TTBR1=%#x TTBCR=%#x",
896 armreg_ttbr1_read(), armreg_ttbcr_read());
897 #endif
898 printf("\n");
899 #endif
900
901 /* Switch tables */
902 #ifdef VERBOSE_INIT_ARM
903 printf("switching to new L1 page table @%#lx...", l1pt_pa);
904 #endif
905
906 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
907 cpu_idcache_wbinv_all();
908 #ifdef ARM_MMU_EXTENDED
909 cpu_setttb(l1pt_pa, KERNEL_PID);
910 #else
911 cpu_setttb(l1pt_pa, true);
912 #endif
913 cpu_tlb_flushID();
914 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
915
916 #ifdef VERBOSE_INIT_ARM
917 printf("TTBR0=%#x OK\n", armreg_ttbr_read());
918 #endif
919 }
920