arm32_kvminit.c revision 1.23 1 /* $NetBSD: arm32_kvminit.c,v 1.23 2014/03/03 14:03:14 matt Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.23 2014/03/03 14:03:14 matt Exp $");
126
127 #include <sys/param.h>
128 #include <sys/device.h>
129 #include <sys/kernel.h>
130 #include <sys/reboot.h>
131 #include <sys/bus.h>
132
133 #include <dev/cons.h>
134
135 #include <uvm/uvm_extern.h>
136
137 #include <arm/db_machdep.h>
138 #include <arm/undefined.h>
139 #include <arm/bootconfig.h>
140 #include <arm/arm32/machdep.h>
141
142 #include "ksyms.h"
143
144 struct bootmem_info bootmem_info;
145
146 paddr_t msgbufphys;
147 paddr_t physical_start;
148 paddr_t physical_end;
149
150 extern char etext[];
151 extern char __data_start[], _edata[];
152 extern char __bss_start[], __bss_end__[];
153 extern char _end[];
154
155 /* Page tables for mapping kernel VM */
156 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
157
158 /*
159 * Macros to translate between physical and virtual for a subset of the
160 * kernel address space. *Not* for general use.
161 */
162 #define KERN_VTOPHYS(bmi, va) \
163 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
164 #define KERN_PHYSTOV(bmi, pa) \
165 ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
166
167 void
168 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
169 {
170 struct bootmem_info * const bmi = &bootmem_info;
171 pv_addr_t *pv = bmi->bmi_freeblocks;
172
173 #ifdef VERBOSE_INIT_ARM
174 printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
175 __func__, memstart, memsize, kernelstart);
176 #endif
177
178 physical_start = bmi->bmi_start = memstart;
179 physical_end = bmi->bmi_end = memstart + memsize;
180 physmem = memsize / PAGE_SIZE;
181
182 /*
183 * Let's record where the kernel lives.
184 */
185 bmi->bmi_kernelstart = kernelstart;
186 bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
187
188 #ifdef VERBOSE_INIT_ARM
189 printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
190 #endif
191
192 /*
193 * Now the rest of the free memory must be after the kernel.
194 */
195 pv->pv_pa = bmi->bmi_kernelend;
196 pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
197 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
198 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
199 #ifdef VERBOSE_INIT_ARM
200 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
201 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
202 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
203 #endif
204 pv++;
205
206 /*
207 * Add a free block for any memory before the kernel.
208 */
209 if (bmi->bmi_start < bmi->bmi_kernelstart) {
210 pv->pv_pa = bmi->bmi_start;
211 pv->pv_va = KERNEL_BASE;
212 pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
213 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
214 #ifdef VERBOSE_INIT_ARM
215 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
216 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
217 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
218 #endif
219 pv++;
220 }
221
222 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
223
224 SLIST_INIT(&bmi->bmi_freechunks);
225 SLIST_INIT(&bmi->bmi_chunks);
226 }
227
228 static bool
229 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
230 {
231 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
232 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
233 && acc_pv->pv_prot == pv->pv_prot
234 && acc_pv->pv_cache == pv->pv_cache) {
235 #ifdef VERBOSE_INIT_ARMX
236 printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
237 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
238 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
239 #endif
240 acc_pv->pv_size += pv->pv_size;
241 return true;
242 }
243
244 return false;
245 }
246
247 static void
248 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
249 {
250 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
251 while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
252 pv_addr_t * const pv0 = (*pvp);
253 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
254 if (concat_pvaddr(pv0, pv)) {
255 #ifdef VERBOSE_INIT_ARM
256 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
257 __func__, "appending", pv,
258 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
259 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
260 #endif
261 pv = SLIST_NEXT(pv0, pv_list);
262 if (pv != NULL && concat_pvaddr(pv0, pv)) {
263 #ifdef VERBOSE_INIT_ARM
264 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
265 __func__, "merging", pv,
266 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
267 pv0->pv_pa,
268 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
269 #endif
270 SLIST_REMOVE_AFTER(pv0, pv_list);
271 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
272 }
273 return;
274 }
275 KASSERT(pv->pv_va != (*pvp)->pv_va);
276 pvp = &SLIST_NEXT(*pvp, pv_list);
277 }
278 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
279 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
280 KASSERT(new_pv != NULL);
281 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
282 *new_pv = *pv;
283 SLIST_NEXT(new_pv, pv_list) = *pvp;
284 (*pvp) = new_pv;
285 #ifdef VERBOSE_INIT_ARM
286 printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
287 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
288 new_pv->pv_size / PAGE_SIZE);
289 if (SLIST_NEXT(new_pv, pv_list))
290 printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
291 else
292 printf("at tail\n");
293 #endif
294 }
295
296 static void
297 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
298 int prot, int cache, bool zero_p)
299 {
300 size_t nbytes = npages * PAGE_SIZE;
301 pv_addr_t *free_pv = bmi->bmi_freeblocks;
302 size_t free_idx = 0;
303 static bool l1pt_found;
304
305 KASSERT(npages > 0);
306
307 /*
308 * If we haven't allocated the kernel L1 page table and we are aligned
309 * at a L1 table boundary, alloc the memory for it.
310 */
311 if (!l1pt_found
312 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
313 && free_pv->pv_size >= L1_TABLE_SIZE) {
314 l1pt_found = true;
315 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
316 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
317 add_pages(bmi, &kernel_l1pt);
318 }
319
320 while (nbytes > free_pv->pv_size) {
321 free_pv++;
322 free_idx++;
323 if (free_idx == bmi->bmi_nfreeblocks) {
324 panic("%s: could not allocate %zu bytes",
325 __func__, nbytes);
326 }
327 }
328
329 /*
330 * As we allocate the memory, make sure that we don't walk over
331 * our current first level translation table.
332 */
333 KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
334
335 pv->pv_pa = free_pv->pv_pa;
336 pv->pv_va = free_pv->pv_va;
337 pv->pv_size = nbytes;
338 pv->pv_prot = prot;
339 pv->pv_cache = cache;
340
341 /*
342 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
343 * just use PTE_CACHE.
344 */
345 if (cache == PTE_PAGETABLE
346 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
347 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
348 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
349 pv->pv_cache = PTE_CACHE;
350
351 free_pv->pv_pa += nbytes;
352 free_pv->pv_va += nbytes;
353 free_pv->pv_size -= nbytes;
354 if (free_pv->pv_size == 0) {
355 --bmi->bmi_nfreeblocks;
356 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
357 free_pv[0] = free_pv[1];
358 }
359 }
360
361 bmi->bmi_freepages -= npages;
362
363 if (zero_p)
364 memset((void *)pv->pv_va, 0, nbytes);
365 }
366
367 void
368 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
369 const struct pmap_devmap *devmap, bool mapallmem_p)
370 {
371 struct bootmem_info * const bmi = &bootmem_info;
372 #ifdef MULTIPROCESSOR
373 const size_t cpu_num = arm_cpu_max + 1;
374 #else
375 const size_t cpu_num = 1;
376 #endif
377 #ifdef ARM_HAS_VBAR
378 const bool map_vectors_p = false;
379 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
380 const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
381 || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
382 #else
383 const bool map_vectors_p = true;
384 #endif
385
386 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
387 KASSERT(mapallmem_p);
388 #endif
389
390 /*
391 * Calculate the number of L2 pages needed for mapping the
392 * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
393 * and 1 for IO
394 */
395 size_t kernel_size = bmi->bmi_kernelend;
396 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
397 kernel_size += L1_TABLE_SIZE_REAL;
398 kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
399 if (map_vectors_p) {
400 kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
401 }
402 if (iovbase) {
403 kernel_size += PAGE_SIZE; /* L2PT for IO */
404 }
405 kernel_size +=
406 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
407 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
408 kernel_size += round_page(MSGBUFSIZE);
409 kernel_size += 0x10000; /* slop */
410 if (!mapallmem_p) {
411 kernel_size += PAGE_SIZE
412 * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
413 }
414 kernel_size = round_page(kernel_size);
415
416 /*
417 * Now we know how many L2 pages it will take. If we've mapped
418 * all of memory, then it won't take any.
419 */
420 const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
421 ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
422
423 #ifdef VERBOSE_INIT_ARM
424 printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
425 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
426 #endif
427
428 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
429 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
430 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
431 pv_addr_t msgbuf;
432 pv_addr_t text;
433 pv_addr_t data;
434 pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
435 #if ARM_MMU_XSCALE == 1
436 pv_addr_t minidataclean;
437 #endif
438
439 /*
440 * We need to allocate some fixed page tables to get the kernel going.
441 *
442 * We are going to allocate our bootstrap pages from the beginning of
443 * the free space that we just calculated. We allocate one page
444 * directory and a number of page tables and store the physical
445 * addresses in the bmi_l2pts array in bootmem_info.
446 *
447 * The kernel page directory must be on a 16K boundary. The page
448 * tables must be on 4K boundaries. What we do is allocate the
449 * page directory on the first 16K boundary that we encounter, and
450 * the page tables on 4K boundaries otherwise. Since we allocate
451 * at least 3 L2 page tables, we are guaranteed to encounter at
452 * least one 16K aligned region.
453 */
454
455 #ifdef VERBOSE_INIT_ARM
456 printf("%s: allocating page tables for", __func__);
457 #endif
458 for (size_t i = 0; i < __arraycount(chunks); i++) {
459 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
460 }
461
462 kernel_l1pt.pv_pa = 0;
463 kernel_l1pt.pv_va = 0;
464
465 /*
466 * Allocate the L2 pages, but if we get to a page that is aligned for
467 * an L1 page table, we will allocate the pages for it first and then
468 * allocate the L2 page.
469 */
470
471 if (map_vectors_p) {
472 /*
473 * First allocate L2 page for the vectors.
474 */
475 #ifdef VERBOSE_INIT_ARM
476 printf(" vector");
477 #endif
478 valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
479 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
480 add_pages(bmi, &bmi->bmi_vector_l2pt);
481 }
482
483 /*
484 * Now allocate L2 pages for the kernel
485 */
486 #ifdef VERBOSE_INIT_ARM
487 printf(" kernel");
488 #endif
489 KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
490 KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
491 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
492 valloc_pages(bmi, &kernel_l2pt[idx], 1,
493 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
494 add_pages(bmi, &kernel_l2pt[idx]);
495 }
496
497 /*
498 * Now allocate L2 pages for the initial kernel VA space.
499 */
500 #ifdef VERBOSE_INIT_ARM
501 printf(" vm");
502 #endif
503 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
504 valloc_pages(bmi, &vmdata_l2pt[idx], 1,
505 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
506 add_pages(bmi, &vmdata_l2pt[idx]);
507 }
508
509 /*
510 * If someone wanted a L2 page for I/O, allocate it now.
511 */
512 if (iovbase) {
513 #ifdef VERBOSE_INIT_ARM
514 printf(" io");
515 #endif
516 valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
517 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
518 add_pages(bmi, &bmi->bmi_io_l2pt);
519 }
520
521 #ifdef VERBOSE_INIT_ARM
522 printf("%s: allocating stacks\n", __func__);
523 #endif
524
525 /* Allocate stacks for all modes and CPUs */
526 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
527 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
528 add_pages(bmi, &abtstack);
529 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
530 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
531 add_pages(bmi, &fiqstack);
532 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
533 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
534 add_pages(bmi, &irqstack);
535 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
536 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
537 add_pages(bmi, &undstack);
538 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
539 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
540 add_pages(bmi, &idlestack);
541 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
542 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
543 add_pages(bmi, &kernelstack);
544
545 /* Allocate the message buffer from the end of memory. */
546 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
547 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
548 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
549 add_pages(bmi, &msgbuf);
550 msgbufphys = msgbuf.pv_pa;
551
552 if (map_vectors_p) {
553 /*
554 * Allocate a page for the system vector page.
555 * This page will just contain the system vectors and can be
556 * shared by all processes.
557 */
558 valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
559 PTE_CACHE, true);
560 }
561 systempage.pv_va = vectors;
562
563 /*
564 * If the caller needed a few extra pages for some reason, allocate
565 * them now.
566 */
567 #if ARM_MMU_XSCALE == 1
568 #if (ARM_NMMUS > 1)
569 if (xscale_use_minidata)
570 #endif
571 valloc_pages(bmi, extrapv, nextrapages,
572 VM_PROT_READ|VM_PROT_WRITE, 0, true);
573 #endif
574
575 /*
576 * Ok we have allocated physical pages for the primary kernel
577 * page tables and stacks. Let's just confirm that.
578 */
579 if (kernel_l1pt.pv_va == 0
580 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
581 panic("%s: Failed to allocate or align the kernel "
582 "page directory", __func__);
583
584
585 #ifdef VERBOSE_INIT_ARM
586 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
587 #endif
588
589 /*
590 * Now we start construction of the L1 page table
591 * We start by mapping the L2 page tables into the L1.
592 * This means that we can replace L1 mappings later on if necessary
593 */
594 vaddr_t l1pt_va = kernel_l1pt.pv_va;
595 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
596
597 if (map_vectors_p) {
598 /* Map the L2 pages tables in the L1 page table */
599 pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
600 &bmi->bmi_vector_l2pt);
601 #ifdef VERBOSE_INIT_ARM
602 printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
603 "for VA %#lx\n (vectors)",
604 __func__, bmi->bmi_vector_l2pt.pv_va,
605 bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
606 #endif
607 }
608
609 const vaddr_t kernel_base =
610 KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
611 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
612 pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
613 &kernel_l2pt[idx]);
614 #ifdef VERBOSE_INIT_ARM
615 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
616 __func__, kernel_l2pt[idx].pv_va,
617 kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
618 #endif
619 }
620
621 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
622 pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
623 &vmdata_l2pt[idx]);
624 #ifdef VERBOSE_INIT_ARM
625 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
626 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
627 kernel_vm_base + idx * L2_S_SEGSIZE);
628 #endif
629 }
630 if (iovbase) {
631 pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
632 #ifdef VERBOSE_INIT_ARM
633 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
634 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
635 iovbase & -L2_S_SEGSIZE);
636 #endif
637 }
638
639 /* update the top of the kernel VM */
640 pmap_curmaxkvaddr =
641 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
642
643 #ifdef VERBOSE_INIT_ARM
644 printf("Mapping kernel\n");
645 #endif
646
647 extern char etext[], _end[];
648 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
649 size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
650
651 textsize = (textsize + PGOFSET) & ~PGOFSET;
652
653 /* start at offset of kernel in RAM */
654
655 text.pv_pa = bmi->bmi_kernelstart;
656 text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
657 text.pv_size = textsize;
658 text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
659 text.pv_cache = PTE_CACHE;
660
661 #ifdef VERBOSE_INIT_ARM
662 printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
663 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
664 #endif
665
666 add_pages(bmi, &text);
667
668 data.pv_pa = text.pv_pa + textsize;
669 data.pv_va = text.pv_va + textsize;
670 data.pv_size = totalsize - textsize;
671 data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
672 data.pv_cache = PTE_CACHE;
673
674 #ifdef VERBOSE_INIT_ARM
675 printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
676 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
677 #endif
678
679 add_pages(bmi, &data);
680
681 #ifdef VERBOSE_INIT_ARM
682 printf("Listing Chunks\n");
683 {
684 pv_addr_t *pv;
685 SLIST_FOREACH(pv, &bmi->bmi_chunks, pv_list) {
686 printf("%s: pv %p: chunk VA %#lx..%#lx "
687 "(PA %#lx, prot %d, cache %d)\n",
688 __func__, pv, pv->pv_va, pv->pv_va + pv->pv_size - 1,
689 pv->pv_pa, pv->pv_prot, pv->pv_cache);
690 }
691 }
692 printf("\nMapping Chunks\n");
693 #endif
694
695 pv_addr_t cur_pv;
696 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
697 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
698 cur_pv = *pv;
699 pv = SLIST_NEXT(pv, pv_list);
700 } else {
701 cur_pv.pv_va = KERNEL_BASE;
702 cur_pv.pv_pa = bmi->bmi_start;
703 cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
704 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
705 cur_pv.pv_cache = PTE_CACHE;
706 }
707 while (pv != NULL) {
708 if (mapallmem_p) {
709 if (concat_pvaddr(&cur_pv, pv)) {
710 pv = SLIST_NEXT(pv, pv_list);
711 continue;
712 }
713 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
714 /*
715 * See if we can extend the current pv to emcompass the
716 * hole, and if so do it and retry the concatenation.
717 */
718 if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
719 && cur_pv.pv_cache == PTE_CACHE) {
720 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
721 continue;
722 }
723
724 /*
725 * We couldn't so emit the current chunk and then
726 */
727 #ifdef VERBOSE_INIT_ARM
728 printf("%s: mapping chunk VA %#lx..%#lx "
729 "(PA %#lx, prot %d, cache %d)\n",
730 __func__,
731 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
732 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
733 #endif
734 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
735 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
736
737 /*
738 * set the current chunk to the hole and try again.
739 */
740 cur_pv.pv_pa += cur_pv.pv_size;
741 cur_pv.pv_va += cur_pv.pv_size;
742 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
743 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
744 cur_pv.pv_cache = PTE_CACHE;
745 continue;
746 }
747 }
748
749 /*
750 * The new pv didn't concatenate so emit the current one
751 * and use the new pv as the current pv.
752 */
753 #ifdef VERBOSE_INIT_ARM
754 printf("%s: mapping chunk VA %#lx..%#lx "
755 "(PA %#lx, prot %d, cache %d)\n",
756 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
757 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
758 #endif
759 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
760 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
761 cur_pv = *pv;
762 pv = SLIST_NEXT(pv, pv_list);
763 }
764
765 /*
766 * If we are mapping all of memory, let's map the rest of memory.
767 */
768 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
769 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
770 && cur_pv.pv_cache == PTE_CACHE) {
771 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
772 } else {
773 #ifdef VERBOSE_INIT_ARM
774 printf("%s: mapping chunk VA %#lx..%#lx "
775 "(PA %#lx, prot %d, cache %d)\n",
776 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
777 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
778 #endif
779 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
780 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
781 cur_pv.pv_pa += cur_pv.pv_size;
782 cur_pv.pv_va += cur_pv.pv_size;
783 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
784 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
785 cur_pv.pv_cache = PTE_CACHE;
786 }
787 }
788
789 /*
790 * Now we map the final chunk.
791 */
792 #ifdef VERBOSE_INIT_ARM
793 printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
794 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
795 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
796 #endif
797 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
798 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
799
800 /*
801 * Now we map the stuff that isn't directly after the kernel
802 */
803
804 if (map_vectors_p) {
805 /* Map the vector page. */
806 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
807 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
808 }
809
810 /* Map the Mini-Data cache clean area. */
811 #if ARM_MMU_XSCALE == 1
812 #if (ARM_NMMUS > 1)
813 if (xscale_use_minidata)
814 #endif
815 xscale_setup_minidata(l1_va, minidataclean.pv_va,
816 minidataclean.pv_pa);
817 #endif
818
819 /*
820 * Map integrated peripherals at same address in first level page
821 * table so that we can continue to use console.
822 */
823 if (devmap)
824 pmap_devmap_bootstrap(l1pt_va, devmap);
825
826 #ifdef VERBOSE_INIT_ARM
827 /* Tell the user about where all the bits and pieces live. */
828 printf("%22s Physical Virtual Num\n", " ");
829 printf("%22s Starting Ending Starting Ending Pages\n", " ");
830
831 static const char mem_fmt[] =
832 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
833 static const char mem_fmt_nov[] =
834 "%20s: 0x%08lx 0x%08lx %zu\n";
835
836 printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
837 KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
838 physmem);
839 printf(mem_fmt, "text section",
840 text.pv_pa, text.pv_pa + text.pv_size - 1,
841 text.pv_va, text.pv_va + text.pv_size - 1,
842 (int)(text.pv_size / PAGE_SIZE));
843 printf(mem_fmt, "data section",
844 KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
845 (vaddr_t)__data_start, (vaddr_t)_edata,
846 (int)((round_page((vaddr_t)_edata)
847 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
848 printf(mem_fmt, "bss section",
849 KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
850 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
851 (int)((round_page((vaddr_t)__bss_end__)
852 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
853 printf(mem_fmt, "L1 page directory",
854 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
855 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
856 L1_TABLE_SIZE / PAGE_SIZE);
857 printf(mem_fmt, "ABT stack (CPU 0)",
858 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
859 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
860 ABT_STACK_SIZE);
861 printf(mem_fmt, "FIQ stack (CPU 0)",
862 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
863 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
864 FIQ_STACK_SIZE);
865 printf(mem_fmt, "IRQ stack (CPU 0)",
866 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
867 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
868 IRQ_STACK_SIZE);
869 printf(mem_fmt, "UND stack (CPU 0)",
870 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
871 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
872 UND_STACK_SIZE);
873 printf(mem_fmt, "IDLE stack (CPU 0)",
874 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
875 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
876 UPAGES);
877 printf(mem_fmt, "SVC stack",
878 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
879 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
880 UPAGES);
881 printf(mem_fmt, "Message Buffer",
882 msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
883 msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
884 (int)msgbuf_pgs);
885 if (map_vectors_p) {
886 printf(mem_fmt, "Exception Vectors",
887 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
888 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
889 1);
890 }
891 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
892 pv = &bmi->bmi_freeblocks[i];
893
894 printf(mem_fmt_nov, "Free Memory",
895 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
896 pv->pv_size / PAGE_SIZE);
897 }
898 #endif
899 /*
900 * Now we have the real page tables in place so we can switch to them.
901 * Once this is done we will be running with the REAL kernel page
902 * tables.
903 */
904
905 #if defined(VERBOSE_INIT_ARM) && 0
906 printf("TTBR0=%#x", armreg_ttbr_read());
907 #ifdef _ARM_ARCH_6
908 printf(" TTBR1=%#x TTBCR=%#x",
909 armreg_ttbr1_read(), armreg_ttbcr_read());
910 #endif
911 printf("\n");
912 #endif
913
914 /* Switch tables */
915 #ifdef VERBOSE_INIT_ARM
916 printf("switching to new L1 page table @%#lx...", l1pt_pa);
917 #endif
918
919 #ifdef ARM_MMU_EXTENDED
920 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
921 | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
922 #else
923 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
924 #endif
925 cpu_idcache_wbinv_all();
926 #ifdef VERBOSE_INIT_ARM
927 printf(" ttb");
928 #endif
929 #ifdef ARM_MMU_EXTENDED
930 /*
931 * TTBCR should have been initialized by the MD start code.
932 */
933 KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
934 cpu_setttb(l1pt_pa, KERNEL_PID);
935 #else
936 cpu_setttb(l1pt_pa, true);
937 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
938 #endif
939 cpu_tlb_flushID();
940
941 #ifdef VERBOSE_INIT_ARM
942 #ifdef ARM_MMU_EXTENDED
943 printf("TTBCR=%#x TTBR0=%#x TTBR1=%#x OK\n",
944 armreg_ttbcr_read(),
945 armreg_ttbr_read(),
946 armreg_ttbr1_read());
947 #else
948 printf("TTBR0=%#x OK\n", armreg_ttbr_read());
949 #endif
950 #endif
951 }
952