Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.26
      1 /*	$NetBSD: arm32_kvminit.c,v 1.26 2014/04/01 05:37:35 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include <sys/cdefs.h>
    125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.26 2014/04/01 05:37:35 skrll Exp $");
    126 
    127 #include <sys/param.h>
    128 #include <sys/device.h>
    129 #include <sys/kernel.h>
    130 #include <sys/reboot.h>
    131 #include <sys/bus.h>
    132 
    133 #include <dev/cons.h>
    134 
    135 #include <uvm/uvm_extern.h>
    136 
    137 #include <arm/locore.h>
    138 #include <arm/db_machdep.h>
    139 #include <arm/undefined.h>
    140 #include <arm/bootconfig.h>
    141 #include <arm/arm32/machdep.h>
    142 
    143 #include "ksyms.h"
    144 
    145 struct bootmem_info bootmem_info;
    146 
    147 paddr_t msgbufphys;
    148 paddr_t physical_start;
    149 paddr_t physical_end;
    150 
    151 extern char etext[];
    152 extern char __data_start[], _edata[];
    153 extern char __bss_start[], __bss_end__[];
    154 extern char _end[];
    155 
    156 /* Page tables for mapping kernel VM */
    157 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    158 
    159 /*
    160  * Macros to translate between physical and virtual for a subset of the
    161  * kernel address space.  *Not* for general use.
    162  */
    163 #define KERN_VTOPHYS(bmi, va) \
    164 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    165 #define KERN_PHYSTOV(bmi, pa) \
    166 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    167 
    168 void
    169 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    170 {
    171 	struct bootmem_info * const bmi = &bootmem_info;
    172 	pv_addr_t *pv = bmi->bmi_freeblocks;
    173 
    174 #ifdef VERBOSE_INIT_ARM
    175 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    176 	    __func__, memstart, memsize, kernelstart);
    177 #endif
    178 
    179 	physical_start = bmi->bmi_start = memstart;
    180 	physical_end = bmi->bmi_end = memstart + memsize;
    181 	physmem = memsize / PAGE_SIZE;
    182 
    183 	/*
    184 	 * Let's record where the kernel lives.
    185 	 */
    186 	bmi->bmi_kernelstart = kernelstart;
    187 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    188 
    189 #ifdef VERBOSE_INIT_ARM
    190 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    191 #endif
    192 
    193 	/*
    194 	 * Now the rest of the free memory must be after the kernel.
    195 	 */
    196 	pv->pv_pa = bmi->bmi_kernelend;
    197 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    198 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    199 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    200 #ifdef VERBOSE_INIT_ARM
    201 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    202 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    203 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    204 #endif
    205 	pv++;
    206 
    207 	/*
    208 	 * Add a free block for any memory before the kernel.
    209 	 */
    210 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    211 		pv->pv_pa = bmi->bmi_start;
    212 		pv->pv_va = KERNEL_BASE;
    213 		pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
    214 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    215 #ifdef VERBOSE_INIT_ARM
    216 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    217 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    218 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    219 #endif
    220 		pv++;
    221 	}
    222 
    223 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    224 
    225 	SLIST_INIT(&bmi->bmi_freechunks);
    226 	SLIST_INIT(&bmi->bmi_chunks);
    227 }
    228 
    229 static bool
    230 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    231 {
    232 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    233 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    234 	    && acc_pv->pv_prot == pv->pv_prot
    235 	    && acc_pv->pv_cache == pv->pv_cache) {
    236 #ifdef VERBOSE_INIT_ARMX
    237 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    238 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    239 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    240 #endif
    241 		acc_pv->pv_size += pv->pv_size;
    242 		return true;
    243 	}
    244 
    245 	return false;
    246 }
    247 
    248 static void
    249 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    250 {
    251 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    252 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    253 		pv_addr_t * const pv0 = (*pvp);
    254 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    255 		if (concat_pvaddr(pv0, pv)) {
    256 #ifdef VERBOSE_INIT_ARM
    257 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    258 			    __func__, "appending", pv,
    259 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    260 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    261 #endif
    262 			pv = SLIST_NEXT(pv0, pv_list);
    263 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    264 #ifdef VERBOSE_INIT_ARM
    265 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    266 				    __func__, "merging", pv,
    267 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    268 				    pv0->pv_pa,
    269 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    270 #endif
    271 				SLIST_REMOVE_AFTER(pv0, pv_list);
    272 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    273 			}
    274 			return;
    275 		}
    276 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    277 		pvp = &SLIST_NEXT(*pvp, pv_list);
    278 	}
    279 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    280 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    281 	KASSERT(new_pv != NULL);
    282 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    283 	*new_pv = *pv;
    284 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    285 	(*pvp) = new_pv;
    286 #ifdef VERBOSE_INIT_ARM
    287 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    288 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    289 	    new_pv->pv_size / PAGE_SIZE);
    290 	if (SLIST_NEXT(new_pv, pv_list))
    291 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    292 	else
    293 		printf("at tail\n");
    294 #endif
    295 }
    296 
    297 static void
    298 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    299 	int prot, int cache, bool zero_p)
    300 {
    301 	size_t nbytes = npages * PAGE_SIZE;
    302 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    303 	size_t free_idx = 0;
    304 	static bool l1pt_found;
    305 
    306 	KASSERT(npages > 0);
    307 
    308 	/*
    309 	 * If we haven't allocated the kernel L1 page table and we are aligned
    310 	 * at a L1 table boundary, alloc the memory for it.
    311 	 */
    312 	if (!l1pt_found
    313 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    314 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    315 		l1pt_found = true;
    316 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    317 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    318 		add_pages(bmi, &kernel_l1pt);
    319 	}
    320 
    321 	while (nbytes > free_pv->pv_size) {
    322 		free_pv++;
    323 		free_idx++;
    324 		if (free_idx == bmi->bmi_nfreeblocks) {
    325 			panic("%s: could not allocate %zu bytes",
    326 			    __func__, nbytes);
    327 		}
    328 	}
    329 
    330 	/*
    331 	 * As we allocate the memory, make sure that we don't walk over
    332 	 * our current first level translation table.
    333 	 */
    334 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    335 
    336 	pv->pv_pa = free_pv->pv_pa;
    337 	pv->pv_va = free_pv->pv_va;
    338 	pv->pv_size = nbytes;
    339 	pv->pv_prot = prot;
    340 	pv->pv_cache = cache;
    341 
    342 	/*
    343 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    344 	 * just use PTE_CACHE.
    345 	 */
    346 	if (cache == PTE_PAGETABLE
    347 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    348 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    349 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    350 		pv->pv_cache = PTE_CACHE;
    351 
    352 	free_pv->pv_pa += nbytes;
    353 	free_pv->pv_va += nbytes;
    354 	free_pv->pv_size -= nbytes;
    355 	if (free_pv->pv_size == 0) {
    356 		--bmi->bmi_nfreeblocks;
    357 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    358 			free_pv[0] = free_pv[1];
    359 		}
    360 	}
    361 
    362 	bmi->bmi_freepages -= npages;
    363 
    364 	if (zero_p)
    365 		memset((void *)pv->pv_va, 0, nbytes);
    366 }
    367 
    368 void
    369 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    370 	const struct pmap_devmap *devmap, bool mapallmem_p)
    371 {
    372 	struct bootmem_info * const bmi = &bootmem_info;
    373 #ifdef MULTIPROCESSOR
    374 	const size_t cpu_num = arm_cpu_max;
    375 #else
    376 	const size_t cpu_num = 1;
    377 #endif
    378 #ifdef ARM_HAS_VBAR
    379 	const bool map_vectors_p = false;
    380 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    381 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    382 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    383 #else
    384 	const bool map_vectors_p = true;
    385 #endif
    386 
    387 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    388 	KASSERT(mapallmem_p);
    389 #endif
    390 
    391 	/*
    392 	 * Calculate the number of L2 pages needed for mapping the
    393 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    394 	 * and 1 for IO
    395 	 */
    396 	size_t kernel_size = bmi->bmi_kernelend;
    397 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    398 	kernel_size += L1_TABLE_SIZE_REAL;
    399 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    400 	if (map_vectors_p) {
    401 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    402 	}
    403 	if (iovbase) {
    404 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    405 	}
    406 	kernel_size +=
    407 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    408 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    409 	kernel_size += round_page(MSGBUFSIZE);
    410 	kernel_size += 0x10000;	/* slop */
    411 	if (!mapallmem_p) {
    412 		kernel_size += PAGE_SIZE
    413 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    414 	}
    415 	kernel_size = round_page(kernel_size);
    416 
    417 	/*
    418 	 * Now we know how many L2 pages it will take.  If we've mapped
    419 	 * all of memory, then it won't take any.
    420 	 */
    421 	const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
    422 	    ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    423 
    424 #ifdef VERBOSE_INIT_ARM
    425 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    426 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    427 #endif
    428 
    429 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    430 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    431 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    432 	pv_addr_t msgbuf;
    433 	pv_addr_t text;
    434 	pv_addr_t data;
    435 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    436 #if ARM_MMU_XSCALE == 1
    437 	pv_addr_t minidataclean;
    438 #endif
    439 
    440 	/*
    441 	 * We need to allocate some fixed page tables to get the kernel going.
    442 	 *
    443 	 * We are going to allocate our bootstrap pages from the beginning of
    444 	 * the free space that we just calculated.  We allocate one page
    445 	 * directory and a number of page tables and store the physical
    446 	 * addresses in the bmi_l2pts array in bootmem_info.
    447 	 *
    448 	 * The kernel page directory must be on a 16K boundary.  The page
    449 	 * tables must be on 4K boundaries.  What we do is allocate the
    450 	 * page directory on the first 16K boundary that we encounter, and
    451 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    452 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    453 	 * least one 16K aligned region.
    454 	 */
    455 
    456 #ifdef VERBOSE_INIT_ARM
    457 	printf("%s: allocating page tables for", __func__);
    458 #endif
    459 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    460 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    461 	}
    462 
    463 	kernel_l1pt.pv_pa = 0;
    464 	kernel_l1pt.pv_va = 0;
    465 
    466 	/*
    467 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    468 	 * an L1 page table, we will allocate the pages for it first and then
    469 	 * allocate the L2 page.
    470 	 */
    471 
    472 	if (map_vectors_p) {
    473 		/*
    474 		 * First allocate L2 page for the vectors.
    475 		 */
    476 #ifdef VERBOSE_INIT_ARM
    477 		printf(" vector");
    478 #endif
    479 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    480 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    481 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    482 	}
    483 
    484 	/*
    485 	 * Now allocate L2 pages for the kernel
    486 	 */
    487 #ifdef VERBOSE_INIT_ARM
    488 	printf(" kernel");
    489 #endif
    490 	KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
    491 	KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
    492 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    493 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    494 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    495 		add_pages(bmi, &kernel_l2pt[idx]);
    496 	}
    497 
    498 	/*
    499 	 * Now allocate L2 pages for the initial kernel VA space.
    500 	 */
    501 #ifdef VERBOSE_INIT_ARM
    502 	printf(" vm");
    503 #endif
    504 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    505 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    506 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    507 		add_pages(bmi, &vmdata_l2pt[idx]);
    508 	}
    509 
    510 	/*
    511 	 * If someone wanted a L2 page for I/O, allocate it now.
    512 	 */
    513 	if (iovbase) {
    514 #ifdef VERBOSE_INIT_ARM
    515 		printf(" io");
    516 #endif
    517 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    518 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    519 		add_pages(bmi, &bmi->bmi_io_l2pt);
    520 	}
    521 
    522 #ifdef VERBOSE_INIT_ARM
    523 	printf("%s: allocating stacks\n", __func__);
    524 #endif
    525 
    526 	/* Allocate stacks for all modes and CPUs */
    527 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    528 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    529 	add_pages(bmi, &abtstack);
    530 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    531 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    532 	add_pages(bmi, &fiqstack);
    533 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    534 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    535 	add_pages(bmi, &irqstack);
    536 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    537 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    538 	add_pages(bmi, &undstack);
    539 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    540 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    541 	add_pages(bmi, &idlestack);
    542 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    543 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    544 	add_pages(bmi, &kernelstack);
    545 
    546 	/* Allocate the message buffer from the end of memory. */
    547 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    548 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    549 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    550 	add_pages(bmi, &msgbuf);
    551 	msgbufphys = msgbuf.pv_pa;
    552 
    553 	if (map_vectors_p) {
    554 		/*
    555 		 * Allocate a page for the system vector page.
    556 		 * This page will just contain the system vectors and can be
    557 		 * shared by all processes.
    558 		 */
    559 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
    560 		    PTE_CACHE, true);
    561 	}
    562 	systempage.pv_va = vectors;
    563 
    564 	/*
    565 	 * If the caller needed a few extra pages for some reason, allocate
    566 	 * them now.
    567 	 */
    568 #if ARM_MMU_XSCALE == 1
    569 #if (ARM_NMMUS > 1)
    570 	if (xscale_use_minidata)
    571 #endif
    572 		valloc_pages(bmi, extrapv, nextrapages,
    573 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    574 #endif
    575 
    576 	/*
    577 	 * Ok we have allocated physical pages for the primary kernel
    578 	 * page tables and stacks.  Let's just confirm that.
    579 	 */
    580 	if (kernel_l1pt.pv_va == 0
    581 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    582 		panic("%s: Failed to allocate or align the kernel "
    583 		    "page directory", __func__);
    584 
    585 
    586 #ifdef VERBOSE_INIT_ARM
    587 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    588 #endif
    589 
    590 	/*
    591 	 * Now we start construction of the L1 page table
    592 	 * We start by mapping the L2 page tables into the L1.
    593 	 * This means that we can replace L1 mappings later on if necessary
    594 	 */
    595 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    596 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    597 
    598 	if (map_vectors_p) {
    599 		/* Map the L2 pages tables in the L1 page table */
    600 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    601 		    &bmi->bmi_vector_l2pt);
    602 #ifdef VERBOSE_INIT_ARM
    603 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    604 		    "for VA %#lx\n (vectors)",
    605 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    606 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    607 #endif
    608 	}
    609 
    610 	const vaddr_t kernel_base =
    611 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    612 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    613 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    614 		    &kernel_l2pt[idx]);
    615 #ifdef VERBOSE_INIT_ARM
    616 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    617 		    __func__, kernel_l2pt[idx].pv_va,
    618 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    619 #endif
    620 	}
    621 
    622 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    623 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    624 		    &vmdata_l2pt[idx]);
    625 #ifdef VERBOSE_INIT_ARM
    626 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    627 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    628 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    629 #endif
    630 	}
    631 	if (iovbase) {
    632 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    633 #ifdef VERBOSE_INIT_ARM
    634 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    635 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    636 		    iovbase & -L2_S_SEGSIZE);
    637 #endif
    638 	}
    639 
    640 	/* update the top of the kernel VM */
    641 	pmap_curmaxkvaddr =
    642 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    643 
    644 #ifdef VERBOSE_INIT_ARM
    645 	printf("Mapping kernel\n");
    646 #endif
    647 
    648 	extern char etext[], _end[];
    649 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    650 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    651 
    652 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    653 
    654 	/* start at offset of kernel in RAM */
    655 
    656 	text.pv_pa = bmi->bmi_kernelstart;
    657 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    658 	text.pv_size = textsize;
    659 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
    660 	text.pv_cache = PTE_CACHE;
    661 
    662 #ifdef VERBOSE_INIT_ARM
    663 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    664 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    665 #endif
    666 
    667 	add_pages(bmi, &text);
    668 
    669 	data.pv_pa = text.pv_pa + textsize;
    670 	data.pv_va = text.pv_va + textsize;
    671 	data.pv_size = totalsize - textsize;
    672 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    673 	data.pv_cache = PTE_CACHE;
    674 
    675 #ifdef VERBOSE_INIT_ARM
    676 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    677 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    678 #endif
    679 
    680 	add_pages(bmi, &data);
    681 
    682 #ifdef VERBOSE_INIT_ARM
    683 	printf("Listing Chunks\n");
    684 
    685 	pv_addr_t *lpv;
    686 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    687 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    688 		    "(PA %#lx, prot %d, cache %d)\n",
    689 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    690 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    691 	}
    692 	printf("\nMapping Chunks\n");
    693 #endif
    694 
    695 	pv_addr_t cur_pv;
    696 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    697 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    698 		cur_pv = *pv;
    699 		pv = SLIST_NEXT(pv, pv_list);
    700 	} else {
    701 		cur_pv.pv_va = KERNEL_BASE;
    702 		cur_pv.pv_pa = bmi->bmi_start;
    703 		cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
    704 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    705 		cur_pv.pv_cache = PTE_CACHE;
    706 	}
    707 	while (pv != NULL) {
    708 		if (mapallmem_p) {
    709 			if (concat_pvaddr(&cur_pv, pv)) {
    710 				pv = SLIST_NEXT(pv, pv_list);
    711 				continue;
    712 			}
    713 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    714 				/*
    715 				 * See if we can extend the current pv to emcompass the
    716 				 * hole, and if so do it and retry the concatenation.
    717 				 */
    718 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    719 				    && cur_pv.pv_cache == PTE_CACHE) {
    720 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    721 					continue;
    722 				}
    723 
    724 				/*
    725 				 * We couldn't so emit the current chunk and then
    726 				 */
    727 #ifdef VERBOSE_INIT_ARM
    728 				printf("%s: mapping chunk VA %#lx..%#lx "
    729 				    "(PA %#lx, prot %d, cache %d)\n",
    730 				    __func__,
    731 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    732 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    733 #endif
    734 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    735 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    736 
    737 				/*
    738 				 * set the current chunk to the hole and try again.
    739 				 */
    740 				cur_pv.pv_pa += cur_pv.pv_size;
    741 				cur_pv.pv_va += cur_pv.pv_size;
    742 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    743 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    744 				cur_pv.pv_cache = PTE_CACHE;
    745 				continue;
    746 			}
    747 		}
    748 
    749 		/*
    750 		 * The new pv didn't concatenate so emit the current one
    751 		 * and use the new pv as the current pv.
    752 		 */
    753 #ifdef VERBOSE_INIT_ARM
    754 		printf("%s: mapping chunk VA %#lx..%#lx "
    755 		    "(PA %#lx, prot %d, cache %d)\n",
    756 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    757 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    758 #endif
    759 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    760 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    761 		cur_pv = *pv;
    762 		pv = SLIST_NEXT(pv, pv_list);
    763 	}
    764 
    765 	/*
    766 	 * If we are mapping all of memory, let's map the rest of memory.
    767 	 */
    768 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    769 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    770 		    && cur_pv.pv_cache == PTE_CACHE) {
    771 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    772 		} else {
    773 #ifdef VERBOSE_INIT_ARM
    774 			printf("%s: mapping chunk VA %#lx..%#lx "
    775 			    "(PA %#lx, prot %d, cache %d)\n",
    776 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    777 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    778 #endif
    779 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    780 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    781 			cur_pv.pv_pa += cur_pv.pv_size;
    782 			cur_pv.pv_va += cur_pv.pv_size;
    783 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    784 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    785 			cur_pv.pv_cache = PTE_CACHE;
    786 		}
    787 	}
    788 
    789 	/*
    790 	 * Now we map the final chunk.
    791 	 */
    792 #ifdef VERBOSE_INIT_ARM
    793 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    794 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    795 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    796 #endif
    797 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    798 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    799 
    800 	/*
    801 	 * Now we map the stuff that isn't directly after the kernel
    802 	 */
    803 
    804 	if (map_vectors_p) {
    805 		/* Map the vector page. */
    806 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    807 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    808 	}
    809 
    810 	/* Map the Mini-Data cache clean area. */
    811 #if ARM_MMU_XSCALE == 1
    812 #if (ARM_NMMUS > 1)
    813 	if (xscale_use_minidata)
    814 #endif
    815 		xscale_setup_minidata(l1_va, minidataclean.pv_va,
    816 		    minidataclean.pv_pa);
    817 #endif
    818 
    819 	/*
    820 	 * Map integrated peripherals at same address in first level page
    821 	 * table so that we can continue to use console.
    822 	 */
    823 	if (devmap)
    824 		pmap_devmap_bootstrap(l1pt_va, devmap);
    825 
    826 #ifdef VERBOSE_INIT_ARM
    827 	/* Tell the user about where all the bits and pieces live. */
    828 	printf("%22s       Physical              Virtual        Num\n", " ");
    829 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    830 
    831 	static const char mem_fmt[] =
    832 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    833 	static const char mem_fmt_nov[] =
    834 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    835 
    836 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    837 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    838 	    physmem);
    839 	printf(mem_fmt, "text section",
    840 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    841 	       text.pv_va, text.pv_va + text.pv_size - 1,
    842 	       (int)(text.pv_size / PAGE_SIZE));
    843 	printf(mem_fmt, "data section",
    844 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    845 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    846 	       (int)((round_page((vaddr_t)_edata)
    847 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    848 	printf(mem_fmt, "bss section",
    849 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    850 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    851 	       (int)((round_page((vaddr_t)__bss_end__)
    852 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    853 	printf(mem_fmt, "L1 page directory",
    854 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    855 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    856 	    L1_TABLE_SIZE / PAGE_SIZE);
    857 	printf(mem_fmt, "ABT stack (CPU 0)",
    858 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    859 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    860 	    ABT_STACK_SIZE);
    861 	printf(mem_fmt, "FIQ stack (CPU 0)",
    862 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    863 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    864 	    FIQ_STACK_SIZE);
    865 	printf(mem_fmt, "IRQ stack (CPU 0)",
    866 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    867 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    868 	    IRQ_STACK_SIZE);
    869 	printf(mem_fmt, "UND stack (CPU 0)",
    870 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    871 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    872 	    UND_STACK_SIZE);
    873 	printf(mem_fmt, "IDLE stack (CPU 0)",
    874 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    875 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    876 	    UPAGES);
    877 	printf(mem_fmt, "SVC stack",
    878 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    879 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    880 	    UPAGES);
    881 	printf(mem_fmt, "Message Buffer",
    882 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    883 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    884 	    (int)msgbuf_pgs);
    885 	if (map_vectors_p) {
    886 		printf(mem_fmt, "Exception Vectors",
    887 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    888 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    889 		    1);
    890 	}
    891 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    892 		pv = &bmi->bmi_freeblocks[i];
    893 
    894 		printf(mem_fmt_nov, "Free Memory",
    895 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    896 		    pv->pv_size / PAGE_SIZE);
    897 	}
    898 #endif
    899 	/*
    900 	 * Now we have the real page tables in place so we can switch to them.
    901 	 * Once this is done we will be running with the REAL kernel page
    902 	 * tables.
    903 	 */
    904 
    905 #if defined(VERBOSE_INIT_ARM)
    906 	printf("TTBR0=%#x", armreg_ttbr_read());
    907 #ifdef _ARM_ARCH_6
    908 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    909 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    910 	    armreg_contextidr_read());
    911 #endif
    912 	printf("\n");
    913 #endif
    914 
    915 	/* Switch tables */
    916 #ifdef VERBOSE_INIT_ARM
    917 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    918 #endif
    919 
    920 #ifdef ARM_MMU_EXTENDED
    921 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    922 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    923 #else
    924 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    925 #endif
    926 	cpu_idcache_wbinv_all();
    927 #ifdef VERBOSE_INIT_ARM
    928 	printf(" ttb");
    929 #endif
    930 #ifdef ARM_MMU_EXTENDED
    931 	/*
    932 	 * TTBCR should have been initialized by the MD start code.
    933 	 */
    934 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    935 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    936 	/*
    937 	 * Disable lookups via TTBR0 until there is an activated pmap.
    938 	 */
    939 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    940 	cpu_setttb(l1pt_pa, KERNEL_PID);
    941 	arm_isb();
    942 #else
    943 	cpu_setttb(l1pt_pa, true);
    944 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    945 #endif
    946 	cpu_tlb_flushID();
    947 
    948 #ifdef VERBOSE_INIT_ARM
    949 #ifdef ARM_MMU_EXTENDED
    950 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    951 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    952 #else
    953 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
    954 #endif
    955 #endif
    956 
    957 #ifdef MULTIPROCESSOR
    958 	/*
    959 	 * Kick the secondaries to load the TTB.  After which they'll go
    960 	 * back to sleep to wait for the final kick so they will hatch.
    961 	 */
    962 #ifdef VERBOSE_INIT_ARM
    963 	printf(" hatchlings");
    964 #endif
    965 	cpu_boot_secondary_processors();
    966 #endif
    967 
    968 #ifdef VERBOSE_INIT_ARM
    969 	printf(" OK\n");
    970 #endif
    971 }
    972