Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.27
      1 /*	$NetBSD: arm32_kvminit.c,v 1.27 2014/04/05 22:36:18 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include <sys/cdefs.h>
    125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.27 2014/04/05 22:36:18 matt Exp $");
    126 
    127 #include <sys/param.h>
    128 #include <sys/device.h>
    129 #include <sys/kernel.h>
    130 #include <sys/reboot.h>
    131 #include <sys/bus.h>
    132 
    133 #include <dev/cons.h>
    134 
    135 #include <uvm/uvm_extern.h>
    136 
    137 #include <arm/locore.h>
    138 #include <arm/db_machdep.h>
    139 #include <arm/undefined.h>
    140 #include <arm/bootconfig.h>
    141 #include <arm/arm32/machdep.h>
    142 
    143 #include "ksyms.h"
    144 
    145 struct bootmem_info bootmem_info;
    146 
    147 extern void *msgbufaddr;
    148 paddr_t msgbufphys;
    149 paddr_t physical_start;
    150 paddr_t physical_end;
    151 
    152 extern char etext[];
    153 extern char __data_start[], _edata[];
    154 extern char __bss_start[], __bss_end__[];
    155 extern char _end[];
    156 
    157 /* Page tables for mapping kernel VM */
    158 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    159 
    160 /*
    161  * Macros to translate between physical and virtual for a subset of the
    162  * kernel address space.  *Not* for general use.
    163  */
    164 #define KERN_VTOPHYS(bmi, va) \
    165 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    166 #define KERN_PHYSTOV(bmi, pa) \
    167 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    168 
    169 void
    170 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    171 {
    172 	struct bootmem_info * const bmi = &bootmem_info;
    173 	pv_addr_t *pv = bmi->bmi_freeblocks;
    174 
    175 #ifdef VERBOSE_INIT_ARM
    176 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    177 	    __func__, memstart, memsize, kernelstart);
    178 #endif
    179 
    180 	physical_start = bmi->bmi_start = memstart;
    181 	physical_end = bmi->bmi_end = memstart + memsize;
    182 	physmem = memsize / PAGE_SIZE;
    183 
    184 	/*
    185 	 * Let's record where the kernel lives.
    186 	 */
    187 	bmi->bmi_kernelstart = kernelstart;
    188 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    189 
    190 #ifdef VERBOSE_INIT_ARM
    191 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    192 #endif
    193 
    194 	/*
    195 	 * Now the rest of the free memory must be after the kernel.
    196 	 */
    197 	pv->pv_pa = bmi->bmi_kernelend;
    198 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    199 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    200 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    201 #ifdef VERBOSE_INIT_ARM
    202 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    203 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    204 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    205 #endif
    206 	pv++;
    207 
    208 	/*
    209 	 * Add a free block for any memory before the kernel.
    210 	 */
    211 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    212 		pv->pv_pa = bmi->bmi_start;
    213 		pv->pv_va = KERNEL_BASE;
    214 		pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
    215 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    216 #ifdef VERBOSE_INIT_ARM
    217 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    218 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    219 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    220 #endif
    221 		pv++;
    222 	}
    223 
    224 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    225 
    226 	SLIST_INIT(&bmi->bmi_freechunks);
    227 	SLIST_INIT(&bmi->bmi_chunks);
    228 }
    229 
    230 static bool
    231 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    232 {
    233 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    234 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    235 	    && acc_pv->pv_prot == pv->pv_prot
    236 	    && acc_pv->pv_cache == pv->pv_cache) {
    237 #ifdef VERBOSE_INIT_ARMX
    238 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    239 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    240 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    241 #endif
    242 		acc_pv->pv_size += pv->pv_size;
    243 		return true;
    244 	}
    245 
    246 	return false;
    247 }
    248 
    249 static void
    250 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    251 {
    252 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    253 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    254 		pv_addr_t * const pv0 = (*pvp);
    255 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    256 		if (concat_pvaddr(pv0, pv)) {
    257 #ifdef VERBOSE_INIT_ARM
    258 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    259 			    __func__, "appending", pv,
    260 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    261 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    262 #endif
    263 			pv = SLIST_NEXT(pv0, pv_list);
    264 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    265 #ifdef VERBOSE_INIT_ARM
    266 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    267 				    __func__, "merging", pv,
    268 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    269 				    pv0->pv_pa,
    270 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    271 #endif
    272 				SLIST_REMOVE_AFTER(pv0, pv_list);
    273 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    274 			}
    275 			return;
    276 		}
    277 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    278 		pvp = &SLIST_NEXT(*pvp, pv_list);
    279 	}
    280 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    281 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    282 	KASSERT(new_pv != NULL);
    283 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    284 	*new_pv = *pv;
    285 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    286 	(*pvp) = new_pv;
    287 #ifdef VERBOSE_INIT_ARM
    288 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    289 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    290 	    new_pv->pv_size / PAGE_SIZE);
    291 	if (SLIST_NEXT(new_pv, pv_list))
    292 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    293 	else
    294 		printf("at tail\n");
    295 #endif
    296 }
    297 
    298 static void
    299 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    300 	int prot, int cache, bool zero_p)
    301 {
    302 	size_t nbytes = npages * PAGE_SIZE;
    303 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    304 	size_t free_idx = 0;
    305 	static bool l1pt_found;
    306 
    307 	KASSERT(npages > 0);
    308 
    309 	/*
    310 	 * If we haven't allocated the kernel L1 page table and we are aligned
    311 	 * at a L1 table boundary, alloc the memory for it.
    312 	 */
    313 	if (!l1pt_found
    314 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    315 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    316 		l1pt_found = true;
    317 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    318 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    319 		add_pages(bmi, &kernel_l1pt);
    320 	}
    321 
    322 	while (nbytes > free_pv->pv_size) {
    323 		free_pv++;
    324 		free_idx++;
    325 		if (free_idx == bmi->bmi_nfreeblocks) {
    326 			panic("%s: could not allocate %zu bytes",
    327 			    __func__, nbytes);
    328 		}
    329 	}
    330 
    331 	/*
    332 	 * As we allocate the memory, make sure that we don't walk over
    333 	 * our current first level translation table.
    334 	 */
    335 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    336 
    337 	pv->pv_pa = free_pv->pv_pa;
    338 	pv->pv_va = free_pv->pv_va;
    339 	pv->pv_size = nbytes;
    340 	pv->pv_prot = prot;
    341 	pv->pv_cache = cache;
    342 
    343 	/*
    344 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    345 	 * just use PTE_CACHE.
    346 	 */
    347 	if (cache == PTE_PAGETABLE
    348 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    349 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    350 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    351 		pv->pv_cache = PTE_CACHE;
    352 
    353 	free_pv->pv_pa += nbytes;
    354 	free_pv->pv_va += nbytes;
    355 	free_pv->pv_size -= nbytes;
    356 	if (free_pv->pv_size == 0) {
    357 		--bmi->bmi_nfreeblocks;
    358 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    359 			free_pv[0] = free_pv[1];
    360 		}
    361 	}
    362 
    363 	bmi->bmi_freepages -= npages;
    364 
    365 	if (zero_p)
    366 		memset((void *)pv->pv_va, 0, nbytes);
    367 }
    368 
    369 void
    370 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    371 	const struct pmap_devmap *devmap, bool mapallmem_p)
    372 {
    373 	struct bootmem_info * const bmi = &bootmem_info;
    374 #ifdef MULTIPROCESSOR
    375 	const size_t cpu_num = arm_cpu_max;
    376 #else
    377 	const size_t cpu_num = 1;
    378 #endif
    379 #ifdef ARM_HAS_VBAR
    380 	const bool map_vectors_p = false;
    381 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    382 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    383 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    384 #else
    385 	const bool map_vectors_p = true;
    386 #endif
    387 
    388 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    389 	KASSERT(mapallmem_p);
    390 #endif
    391 
    392 	/*
    393 	 * Calculate the number of L2 pages needed for mapping the
    394 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    395 	 * and 1 for IO
    396 	 */
    397 	size_t kernel_size = bmi->bmi_kernelend;
    398 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    399 	kernel_size += L1_TABLE_SIZE_REAL;
    400 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    401 	if (map_vectors_p) {
    402 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    403 	}
    404 	if (iovbase) {
    405 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    406 	}
    407 	kernel_size +=
    408 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    409 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    410 	kernel_size += round_page(MSGBUFSIZE);
    411 	kernel_size += 0x10000;	/* slop */
    412 	if (!mapallmem_p) {
    413 		kernel_size += PAGE_SIZE
    414 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    415 	}
    416 	kernel_size = round_page(kernel_size);
    417 
    418 	/*
    419 	 * Now we know how many L2 pages it will take.  If we've mapped
    420 	 * all of memory, then it won't take any.
    421 	 */
    422 	const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
    423 	    ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    424 
    425 #ifdef VERBOSE_INIT_ARM
    426 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    427 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    428 #endif
    429 
    430 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    431 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    432 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    433 	pv_addr_t msgbuf;
    434 	pv_addr_t text;
    435 	pv_addr_t data;
    436 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    437 #if ARM_MMU_XSCALE == 1
    438 	pv_addr_t minidataclean;
    439 #endif
    440 
    441 	/*
    442 	 * We need to allocate some fixed page tables to get the kernel going.
    443 	 *
    444 	 * We are going to allocate our bootstrap pages from the beginning of
    445 	 * the free space that we just calculated.  We allocate one page
    446 	 * directory and a number of page tables and store the physical
    447 	 * addresses in the bmi_l2pts array in bootmem_info.
    448 	 *
    449 	 * The kernel page directory must be on a 16K boundary.  The page
    450 	 * tables must be on 4K boundaries.  What we do is allocate the
    451 	 * page directory on the first 16K boundary that we encounter, and
    452 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    453 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    454 	 * least one 16K aligned region.
    455 	 */
    456 
    457 #ifdef VERBOSE_INIT_ARM
    458 	printf("%s: allocating page tables for", __func__);
    459 #endif
    460 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    461 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    462 	}
    463 
    464 	kernel_l1pt.pv_pa = 0;
    465 	kernel_l1pt.pv_va = 0;
    466 
    467 	/*
    468 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    469 	 * an L1 page table, we will allocate the pages for it first and then
    470 	 * allocate the L2 page.
    471 	 */
    472 
    473 	if (map_vectors_p) {
    474 		/*
    475 		 * First allocate L2 page for the vectors.
    476 		 */
    477 #ifdef VERBOSE_INIT_ARM
    478 		printf(" vector");
    479 #endif
    480 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    481 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    482 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    483 	}
    484 
    485 	/*
    486 	 * Now allocate L2 pages for the kernel
    487 	 */
    488 #ifdef VERBOSE_INIT_ARM
    489 	printf(" kernel");
    490 #endif
    491 	KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
    492 	KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
    493 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    494 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    495 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    496 		add_pages(bmi, &kernel_l2pt[idx]);
    497 	}
    498 
    499 	/*
    500 	 * Now allocate L2 pages for the initial kernel VA space.
    501 	 */
    502 #ifdef VERBOSE_INIT_ARM
    503 	printf(" vm");
    504 #endif
    505 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    506 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    507 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    508 		add_pages(bmi, &vmdata_l2pt[idx]);
    509 	}
    510 
    511 	/*
    512 	 * If someone wanted a L2 page for I/O, allocate it now.
    513 	 */
    514 	if (iovbase) {
    515 #ifdef VERBOSE_INIT_ARM
    516 		printf(" io");
    517 #endif
    518 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    519 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    520 		add_pages(bmi, &bmi->bmi_io_l2pt);
    521 	}
    522 
    523 #ifdef VERBOSE_INIT_ARM
    524 	printf("%s: allocating stacks\n", __func__);
    525 #endif
    526 
    527 	/* Allocate stacks for all modes and CPUs */
    528 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    529 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    530 	add_pages(bmi, &abtstack);
    531 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    532 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    533 	add_pages(bmi, &fiqstack);
    534 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    535 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    536 	add_pages(bmi, &irqstack);
    537 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    538 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    539 	add_pages(bmi, &undstack);
    540 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    541 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    542 	add_pages(bmi, &idlestack);
    543 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    544 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    545 	add_pages(bmi, &kernelstack);
    546 
    547 	/* Allocate the message buffer from the end of memory. */
    548 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    549 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    550 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    551 	add_pages(bmi, &msgbuf);
    552 	msgbufphys = msgbuf.pv_pa;
    553 	msgbufaddr = (void *)msgbuf.pv_va;
    554 
    555 	if (map_vectors_p) {
    556 		/*
    557 		 * Allocate a page for the system vector page.
    558 		 * This page will just contain the system vectors and can be
    559 		 * shared by all processes.
    560 		 */
    561 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
    562 		    PTE_CACHE, true);
    563 	}
    564 	systempage.pv_va = vectors;
    565 
    566 	/*
    567 	 * If the caller needed a few extra pages for some reason, allocate
    568 	 * them now.
    569 	 */
    570 #if ARM_MMU_XSCALE == 1
    571 #if (ARM_NMMUS > 1)
    572 	if (xscale_use_minidata)
    573 #endif
    574 		valloc_pages(bmi, extrapv, nextrapages,
    575 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    576 #endif
    577 
    578 	/*
    579 	 * Ok we have allocated physical pages for the primary kernel
    580 	 * page tables and stacks.  Let's just confirm that.
    581 	 */
    582 	if (kernel_l1pt.pv_va == 0
    583 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    584 		panic("%s: Failed to allocate or align the kernel "
    585 		    "page directory", __func__);
    586 
    587 
    588 #ifdef VERBOSE_INIT_ARM
    589 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    590 #endif
    591 
    592 	/*
    593 	 * Now we start construction of the L1 page table
    594 	 * We start by mapping the L2 page tables into the L1.
    595 	 * This means that we can replace L1 mappings later on if necessary
    596 	 */
    597 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    598 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    599 
    600 	if (map_vectors_p) {
    601 		/* Map the L2 pages tables in the L1 page table */
    602 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    603 		    &bmi->bmi_vector_l2pt);
    604 #ifdef VERBOSE_INIT_ARM
    605 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    606 		    "for VA %#lx\n (vectors)",
    607 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    608 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    609 #endif
    610 	}
    611 
    612 	const vaddr_t kernel_base =
    613 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    614 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    615 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    616 		    &kernel_l2pt[idx]);
    617 #ifdef VERBOSE_INIT_ARM
    618 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    619 		    __func__, kernel_l2pt[idx].pv_va,
    620 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    621 #endif
    622 	}
    623 
    624 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    625 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    626 		    &vmdata_l2pt[idx]);
    627 #ifdef VERBOSE_INIT_ARM
    628 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    629 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    630 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    631 #endif
    632 	}
    633 	if (iovbase) {
    634 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    635 #ifdef VERBOSE_INIT_ARM
    636 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    637 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    638 		    iovbase & -L2_S_SEGSIZE);
    639 #endif
    640 	}
    641 
    642 	/* update the top of the kernel VM */
    643 	pmap_curmaxkvaddr =
    644 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    645 
    646 #ifdef VERBOSE_INIT_ARM
    647 	printf("Mapping kernel\n");
    648 #endif
    649 
    650 	extern char etext[], _end[];
    651 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    652 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    653 
    654 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    655 
    656 	/* start at offset of kernel in RAM */
    657 
    658 	text.pv_pa = bmi->bmi_kernelstart;
    659 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    660 	text.pv_size = textsize;
    661 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
    662 	text.pv_cache = PTE_CACHE;
    663 
    664 #ifdef VERBOSE_INIT_ARM
    665 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    666 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    667 #endif
    668 
    669 	add_pages(bmi, &text);
    670 
    671 	data.pv_pa = text.pv_pa + textsize;
    672 	data.pv_va = text.pv_va + textsize;
    673 	data.pv_size = totalsize - textsize;
    674 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    675 	data.pv_cache = PTE_CACHE;
    676 
    677 #ifdef VERBOSE_INIT_ARM
    678 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    679 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    680 #endif
    681 
    682 	add_pages(bmi, &data);
    683 
    684 #ifdef VERBOSE_INIT_ARM
    685 	printf("Listing Chunks\n");
    686 
    687 	pv_addr_t *lpv;
    688 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    689 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    690 		    "(PA %#lx, prot %d, cache %d)\n",
    691 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    692 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    693 	}
    694 	printf("\nMapping Chunks\n");
    695 #endif
    696 
    697 	pv_addr_t cur_pv;
    698 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    699 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    700 		cur_pv = *pv;
    701 		pv = SLIST_NEXT(pv, pv_list);
    702 	} else {
    703 		cur_pv.pv_va = KERNEL_BASE;
    704 		cur_pv.pv_pa = bmi->bmi_start;
    705 		cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
    706 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    707 		cur_pv.pv_cache = PTE_CACHE;
    708 	}
    709 	while (pv != NULL) {
    710 		if (mapallmem_p) {
    711 			if (concat_pvaddr(&cur_pv, pv)) {
    712 				pv = SLIST_NEXT(pv, pv_list);
    713 				continue;
    714 			}
    715 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    716 				/*
    717 				 * See if we can extend the current pv to emcompass the
    718 				 * hole, and if so do it and retry the concatenation.
    719 				 */
    720 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    721 				    && cur_pv.pv_cache == PTE_CACHE) {
    722 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    723 					continue;
    724 				}
    725 
    726 				/*
    727 				 * We couldn't so emit the current chunk and then
    728 				 */
    729 #ifdef VERBOSE_INIT_ARM
    730 				printf("%s: mapping chunk VA %#lx..%#lx "
    731 				    "(PA %#lx, prot %d, cache %d)\n",
    732 				    __func__,
    733 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    734 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    735 #endif
    736 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    737 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    738 
    739 				/*
    740 				 * set the current chunk to the hole and try again.
    741 				 */
    742 				cur_pv.pv_pa += cur_pv.pv_size;
    743 				cur_pv.pv_va += cur_pv.pv_size;
    744 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    745 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    746 				cur_pv.pv_cache = PTE_CACHE;
    747 				continue;
    748 			}
    749 		}
    750 
    751 		/*
    752 		 * The new pv didn't concatenate so emit the current one
    753 		 * and use the new pv as the current pv.
    754 		 */
    755 #ifdef VERBOSE_INIT_ARM
    756 		printf("%s: mapping chunk VA %#lx..%#lx "
    757 		    "(PA %#lx, prot %d, cache %d)\n",
    758 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    759 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    760 #endif
    761 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    762 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    763 		cur_pv = *pv;
    764 		pv = SLIST_NEXT(pv, pv_list);
    765 	}
    766 
    767 	/*
    768 	 * If we are mapping all of memory, let's map the rest of memory.
    769 	 */
    770 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    771 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    772 		    && cur_pv.pv_cache == PTE_CACHE) {
    773 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    774 		} else {
    775 #ifdef VERBOSE_INIT_ARM
    776 			printf("%s: mapping chunk VA %#lx..%#lx "
    777 			    "(PA %#lx, prot %d, cache %d)\n",
    778 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    779 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    780 #endif
    781 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    782 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    783 			cur_pv.pv_pa += cur_pv.pv_size;
    784 			cur_pv.pv_va += cur_pv.pv_size;
    785 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    786 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    787 			cur_pv.pv_cache = PTE_CACHE;
    788 		}
    789 	}
    790 
    791 	/*
    792 	 * Now we map the final chunk.
    793 	 */
    794 #ifdef VERBOSE_INIT_ARM
    795 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    796 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    797 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    798 #endif
    799 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    800 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    801 
    802 	/*
    803 	 * Now we map the stuff that isn't directly after the kernel
    804 	 */
    805 
    806 	if (map_vectors_p) {
    807 		/* Map the vector page. */
    808 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    809 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    810 	}
    811 
    812 	/* Map the Mini-Data cache clean area. */
    813 #if ARM_MMU_XSCALE == 1
    814 #if (ARM_NMMUS > 1)
    815 	if (xscale_use_minidata)
    816 #endif
    817 		xscale_setup_minidata(l1_va, minidataclean.pv_va,
    818 		    minidataclean.pv_pa);
    819 #endif
    820 
    821 	/*
    822 	 * Map integrated peripherals at same address in first level page
    823 	 * table so that we can continue to use console.
    824 	 */
    825 	if (devmap)
    826 		pmap_devmap_bootstrap(l1pt_va, devmap);
    827 
    828 #ifdef VERBOSE_INIT_ARM
    829 	/* Tell the user about where all the bits and pieces live. */
    830 	printf("%22s       Physical              Virtual        Num\n", " ");
    831 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    832 
    833 	static const char mem_fmt[] =
    834 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    835 	static const char mem_fmt_nov[] =
    836 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    837 
    838 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    839 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    840 	    physmem);
    841 	printf(mem_fmt, "text section",
    842 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    843 	       text.pv_va, text.pv_va + text.pv_size - 1,
    844 	       (int)(text.pv_size / PAGE_SIZE));
    845 	printf(mem_fmt, "data section",
    846 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    847 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    848 	       (int)((round_page((vaddr_t)_edata)
    849 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    850 	printf(mem_fmt, "bss section",
    851 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    852 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    853 	       (int)((round_page((vaddr_t)__bss_end__)
    854 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    855 	printf(mem_fmt, "L1 page directory",
    856 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    857 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    858 	    L1_TABLE_SIZE / PAGE_SIZE);
    859 	printf(mem_fmt, "ABT stack (CPU 0)",
    860 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    861 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    862 	    ABT_STACK_SIZE);
    863 	printf(mem_fmt, "FIQ stack (CPU 0)",
    864 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    865 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    866 	    FIQ_STACK_SIZE);
    867 	printf(mem_fmt, "IRQ stack (CPU 0)",
    868 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    869 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    870 	    IRQ_STACK_SIZE);
    871 	printf(mem_fmt, "UND stack (CPU 0)",
    872 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    873 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    874 	    UND_STACK_SIZE);
    875 	printf(mem_fmt, "IDLE stack (CPU 0)",
    876 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    877 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    878 	    UPAGES);
    879 	printf(mem_fmt, "SVC stack",
    880 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    881 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    882 	    UPAGES);
    883 	printf(mem_fmt, "Message Buffer",
    884 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    885 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    886 	    (int)msgbuf_pgs);
    887 	if (map_vectors_p) {
    888 		printf(mem_fmt, "Exception Vectors",
    889 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    890 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    891 		    1);
    892 	}
    893 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    894 		pv = &bmi->bmi_freeblocks[i];
    895 
    896 		printf(mem_fmt_nov, "Free Memory",
    897 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    898 		    pv->pv_size / PAGE_SIZE);
    899 	}
    900 #endif
    901 	/*
    902 	 * Now we have the real page tables in place so we can switch to them.
    903 	 * Once this is done we will be running with the REAL kernel page
    904 	 * tables.
    905 	 */
    906 
    907 #if defined(VERBOSE_INIT_ARM)
    908 	printf("TTBR0=%#x", armreg_ttbr_read());
    909 #ifdef _ARM_ARCH_6
    910 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    911 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    912 	    armreg_contextidr_read());
    913 #endif
    914 	printf("\n");
    915 #endif
    916 
    917 	/* Switch tables */
    918 #ifdef VERBOSE_INIT_ARM
    919 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    920 #endif
    921 
    922 #ifdef ARM_MMU_EXTENDED
    923 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    924 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    925 #else
    926 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    927 #endif
    928 	cpu_idcache_wbinv_all();
    929 #ifdef VERBOSE_INIT_ARM
    930 	printf(" ttb");
    931 #endif
    932 #ifdef ARM_MMU_EXTENDED
    933 	/*
    934 	 * TTBCR should have been initialized by the MD start code.
    935 	 */
    936 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    937 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    938 	/*
    939 	 * Disable lookups via TTBR0 until there is an activated pmap.
    940 	 */
    941 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    942 	cpu_setttb(l1pt_pa, KERNEL_PID);
    943 	arm_isb();
    944 #else
    945 	cpu_setttb(l1pt_pa, true);
    946 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    947 #endif
    948 	cpu_tlb_flushID();
    949 
    950 #ifdef VERBOSE_INIT_ARM
    951 #ifdef ARM_MMU_EXTENDED
    952 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    953 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    954 #else
    955 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
    956 #endif
    957 #endif
    958 
    959 #ifdef MULTIPROCESSOR
    960 	/*
    961 	 * Kick the secondaries to load the TTB.  After which they'll go
    962 	 * back to sleep to wait for the final kick so they will hatch.
    963 	 */
    964 #ifdef VERBOSE_INIT_ARM
    965 	printf(" hatchlings");
    966 #endif
    967 	cpu_boot_secondary_processors();
    968 #endif
    969 
    970 #ifdef VERBOSE_INIT_ARM
    971 	printf(" OK\n");
    972 #endif
    973 }
    974