arm32_kvminit.c revision 1.30 1 /* $NetBSD: arm32_kvminit.c,v 1.30 2014/05/23 13:24:15 kiyohara Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.30 2014/05/23 13:24:15 kiyohara Exp $");
126
127 #include <sys/param.h>
128 #include <sys/device.h>
129 #include <sys/kernel.h>
130 #include <sys/reboot.h>
131 #include <sys/bus.h>
132
133 #include <dev/cons.h>
134
135 #include <uvm/uvm_extern.h>
136
137 #include <arm/locore.h>
138 #include <arm/db_machdep.h>
139 #include <arm/undefined.h>
140 #include <arm/bootconfig.h>
141 #include <arm/arm32/machdep.h>
142
143 #include "ksyms.h"
144
145 struct bootmem_info bootmem_info;
146
147 extern void *msgbufaddr;
148 paddr_t msgbufphys;
149 paddr_t physical_start;
150 paddr_t physical_end;
151
152 extern char etext[];
153 extern char __data_start[], _edata[];
154 extern char __bss_start[], __bss_end__[];
155 extern char _end[];
156
157 /* Page tables for mapping kernel VM */
158 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
159
160 /*
161 * Macros to translate between physical and virtual for a subset of the
162 * kernel address space. *Not* for general use.
163 */
164 #if defined(KERNEL_BASE_VOFFSET)
165 #define KERN_VTOPHYS(bmi, va) \
166 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
167 #define KERN_PHYSTOV(bmi, pa) \
168 ((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
169 #elif defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
170 #define KERN_VTOPHYS(bmi, va) \
171 ((paddr_t)((vaddr_t)(va) - pmap_directbase + (bmi)->bmi_start))
172 #define KERN_PHYSTOV(bmi, pa) \
173 ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + pmap_directbase))
174 #else
175 #define KERN_VTOPHYS(bmi, va) \
176 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
177 #define KERN_PHYSTOV(bmi, pa) \
178 ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
179 #endif
180
181 void
182 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
183 {
184 struct bootmem_info * const bmi = &bootmem_info;
185 pv_addr_t *pv = bmi->bmi_freeblocks;
186
187 #ifdef VERBOSE_INIT_ARM
188 printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
189 __func__, memstart, memsize, kernelstart);
190 #endif
191
192 physical_start = bmi->bmi_start = memstart;
193 physical_end = bmi->bmi_end = memstart + memsize;
194 physmem = memsize / PAGE_SIZE;
195
196 /*
197 * Let's record where the kernel lives.
198 */
199 bmi->bmi_kernelstart = kernelstart;
200 bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
201
202 #ifdef VERBOSE_INIT_ARM
203 printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
204 #endif
205
206 /*
207 * Now the rest of the free memory must be after the kernel.
208 */
209 pv->pv_pa = bmi->bmi_kernelend;
210 pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
211 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
212 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
213 #ifdef VERBOSE_INIT_ARM
214 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
215 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
216 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
217 #endif
218 pv++;
219
220 /*
221 * Add a free block for any memory before the kernel.
222 */
223 if (bmi->bmi_start < bmi->bmi_kernelstart) {
224 pv->pv_pa = bmi->bmi_start;
225 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
226 pv->pv_va = pmap_directbase;
227 #else
228 pv->pv_va = KERNEL_BASE;
229 #endif
230 pv->pv_size = bmi->bmi_kernelstart - bmi->bmi_start;
231 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
232 #ifdef VERBOSE_INIT_ARM
233 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
234 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
235 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
236 #endif
237 pv++;
238 }
239
240 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
241
242 SLIST_INIT(&bmi->bmi_freechunks);
243 SLIST_INIT(&bmi->bmi_chunks);
244 }
245
246 static bool
247 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
248 {
249 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
250 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
251 && acc_pv->pv_prot == pv->pv_prot
252 && acc_pv->pv_cache == pv->pv_cache) {
253 #ifdef VERBOSE_INIT_ARMX
254 printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
255 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
256 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
257 #endif
258 acc_pv->pv_size += pv->pv_size;
259 return true;
260 }
261
262 return false;
263 }
264
265 static void
266 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
267 {
268 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
269 while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
270 pv_addr_t * const pv0 = (*pvp);
271 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
272 if (concat_pvaddr(pv0, pv)) {
273 #ifdef VERBOSE_INIT_ARM
274 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
275 __func__, "appending", pv,
276 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
277 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
278 #endif
279 pv = SLIST_NEXT(pv0, pv_list);
280 if (pv != NULL && concat_pvaddr(pv0, pv)) {
281 #ifdef VERBOSE_INIT_ARM
282 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
283 __func__, "merging", pv,
284 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
285 pv0->pv_pa,
286 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
287 #endif
288 SLIST_REMOVE_AFTER(pv0, pv_list);
289 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
290 }
291 return;
292 }
293 KASSERT(pv->pv_va != (*pvp)->pv_va);
294 pvp = &SLIST_NEXT(*pvp, pv_list);
295 }
296 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
297 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
298 KASSERT(new_pv != NULL);
299 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
300 *new_pv = *pv;
301 SLIST_NEXT(new_pv, pv_list) = *pvp;
302 (*pvp) = new_pv;
303 #ifdef VERBOSE_INIT_ARM
304 printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
305 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
306 new_pv->pv_size / PAGE_SIZE);
307 if (SLIST_NEXT(new_pv, pv_list))
308 printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
309 else
310 printf("at tail\n");
311 #endif
312 }
313
314 static void
315 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
316 int prot, int cache, bool zero_p)
317 {
318 size_t nbytes = npages * PAGE_SIZE;
319 pv_addr_t *free_pv = bmi->bmi_freeblocks;
320 size_t free_idx = 0;
321 static bool l1pt_found;
322
323 KASSERT(npages > 0);
324
325 /*
326 * If we haven't allocated the kernel L1 page table and we are aligned
327 * at a L1 table boundary, alloc the memory for it.
328 */
329 if (!l1pt_found
330 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
331 && free_pv->pv_size >= L1_TABLE_SIZE) {
332 l1pt_found = true;
333 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
334 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
335 add_pages(bmi, &kernel_l1pt);
336 }
337
338 while (nbytes > free_pv->pv_size) {
339 free_pv++;
340 free_idx++;
341 if (free_idx == bmi->bmi_nfreeblocks) {
342 panic("%s: could not allocate %zu bytes",
343 __func__, nbytes);
344 }
345 }
346
347 /*
348 * As we allocate the memory, make sure that we don't walk over
349 * our current first level translation table.
350 */
351 KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
352
353 pv->pv_pa = free_pv->pv_pa;
354 pv->pv_va = free_pv->pv_va;
355 pv->pv_size = nbytes;
356 pv->pv_prot = prot;
357 pv->pv_cache = cache;
358
359 /*
360 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
361 * just use PTE_CACHE.
362 */
363 if (cache == PTE_PAGETABLE
364 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
365 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
366 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
367 pv->pv_cache = PTE_CACHE;
368
369 free_pv->pv_pa += nbytes;
370 free_pv->pv_va += nbytes;
371 free_pv->pv_size -= nbytes;
372 if (free_pv->pv_size == 0) {
373 --bmi->bmi_nfreeblocks;
374 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
375 free_pv[0] = free_pv[1];
376 }
377 }
378
379 bmi->bmi_freepages -= npages;
380
381 if (zero_p)
382 memset((void *)pv->pv_va, 0, nbytes);
383 }
384
385 void
386 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
387 const struct pmap_devmap *devmap, bool mapallmem_p)
388 {
389 struct bootmem_info * const bmi = &bootmem_info;
390 #ifdef MULTIPROCESSOR
391 const size_t cpu_num = arm_cpu_max;
392 #else
393 const size_t cpu_num = 1;
394 #endif
395 #ifdef ARM_HAS_VBAR
396 const bool map_vectors_p = false;
397 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
398 const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
399 || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
400 #else
401 const bool map_vectors_p = true;
402 #endif
403
404 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
405 KASSERT(mapallmem_p);
406 #ifdef ARM_MMU_EXTENDED
407 /*
408 * We can only use address beneath kernel_vm_base to map physical
409 * memory.
410 */
411 const psize_t physical_size =
412 roundup(physical_end - physical_start, L1_SS_SIZE);
413 KASSERT(kernel_vm_base >= physical_size);
414 /*
415 * If we don't have enough memory via TTBR1, we have use addresses
416 * from TTBR0 to map some of the physical memory. But try to use as
417 * much high memory space as possible.
418 */
419 if (kernel_vm_base - KERNEL_BASE < physical_size) {
420 pmap_directbase = kernel_vm_base - physical_size;
421 printf("%s: changing pmap_directbase to %#lx\n", __func__,
422 pmap_directbase);
423 }
424 #else
425 KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
426 #endif /* ARM_MMU_EXTENDED */
427 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
428
429 /*
430 * Calculate the number of L2 pages needed for mapping the
431 * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
432 * and 1 for IO
433 */
434 size_t kernel_size = bmi->bmi_kernelend;
435 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
436 kernel_size += L1_TABLE_SIZE_REAL;
437 kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
438 if (map_vectors_p) {
439 kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
440 }
441 if (iovbase) {
442 kernel_size += PAGE_SIZE; /* L2PT for IO */
443 }
444 kernel_size +=
445 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
446 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
447 kernel_size += round_page(MSGBUFSIZE);
448 kernel_size += 0x10000; /* slop */
449 if (!mapallmem_p) {
450 kernel_size += PAGE_SIZE
451 * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
452 }
453 kernel_size = round_page(kernel_size);
454
455 /*
456 * Now we know how many L2 pages it will take. If we've mapped
457 * all of memory, then it won't take any.
458 */
459 const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
460 ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
461
462 #ifdef VERBOSE_INIT_ARM
463 printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
464 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
465 #endif
466
467 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
468 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
469 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
470 pv_addr_t msgbuf;
471 pv_addr_t text;
472 pv_addr_t data;
473 pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
474 #if ARM_MMU_XSCALE == 1
475 pv_addr_t minidataclean;
476 #endif
477
478 /*
479 * We need to allocate some fixed page tables to get the kernel going.
480 *
481 * We are going to allocate our bootstrap pages from the beginning of
482 * the free space that we just calculated. We allocate one page
483 * directory and a number of page tables and store the physical
484 * addresses in the bmi_l2pts array in bootmem_info.
485 *
486 * The kernel page directory must be on a 16K boundary. The page
487 * tables must be on 4K boundaries. What we do is allocate the
488 * page directory on the first 16K boundary that we encounter, and
489 * the page tables on 4K boundaries otherwise. Since we allocate
490 * at least 3 L2 page tables, we are guaranteed to encounter at
491 * least one 16K aligned region.
492 */
493
494 #ifdef VERBOSE_INIT_ARM
495 printf("%s: allocating page tables for", __func__);
496 #endif
497 for (size_t i = 0; i < __arraycount(chunks); i++) {
498 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
499 }
500
501 kernel_l1pt.pv_pa = 0;
502 kernel_l1pt.pv_va = 0;
503
504 /*
505 * Allocate the L2 pages, but if we get to a page that is aligned for
506 * an L1 page table, we will allocate the pages for it first and then
507 * allocate the L2 page.
508 */
509
510 if (map_vectors_p) {
511 /*
512 * First allocate L2 page for the vectors.
513 */
514 #ifdef VERBOSE_INIT_ARM
515 printf(" vector");
516 #endif
517 valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
518 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
519 add_pages(bmi, &bmi->bmi_vector_l2pt);
520 }
521
522 /*
523 * Now allocate L2 pages for the kernel
524 */
525 #ifdef VERBOSE_INIT_ARM
526 printf(" kernel");
527 #endif
528 KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
529 KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
530 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
531 valloc_pages(bmi, &kernel_l2pt[idx], 1,
532 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
533 add_pages(bmi, &kernel_l2pt[idx]);
534 }
535
536 /*
537 * Now allocate L2 pages for the initial kernel VA space.
538 */
539 #ifdef VERBOSE_INIT_ARM
540 printf(" vm");
541 #endif
542 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
543 valloc_pages(bmi, &vmdata_l2pt[idx], 1,
544 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
545 add_pages(bmi, &vmdata_l2pt[idx]);
546 }
547
548 /*
549 * If someone wanted a L2 page for I/O, allocate it now.
550 */
551 if (iovbase) {
552 #ifdef VERBOSE_INIT_ARM
553 printf(" io");
554 #endif
555 valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
556 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
557 add_pages(bmi, &bmi->bmi_io_l2pt);
558 }
559
560 #ifdef VERBOSE_INIT_ARM
561 printf("%s: allocating stacks\n", __func__);
562 #endif
563
564 /* Allocate stacks for all modes and CPUs */
565 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
566 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
567 add_pages(bmi, &abtstack);
568 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
569 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
570 add_pages(bmi, &fiqstack);
571 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
572 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
573 add_pages(bmi, &irqstack);
574 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
575 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
576 add_pages(bmi, &undstack);
577 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
578 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
579 add_pages(bmi, &idlestack);
580 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
581 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
582 add_pages(bmi, &kernelstack);
583
584 /* Allocate the message buffer from the end of memory. */
585 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
586 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
587 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
588 add_pages(bmi, &msgbuf);
589 msgbufphys = msgbuf.pv_pa;
590 msgbufaddr = (void *)msgbuf.pv_va;
591
592 if (map_vectors_p) {
593 /*
594 * Allocate a page for the system vector page.
595 * This page will just contain the system vectors and can be
596 * shared by all processes.
597 */
598 valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
599 PTE_CACHE, true);
600 }
601 systempage.pv_va = vectors;
602
603 /*
604 * If the caller needed a few extra pages for some reason, allocate
605 * them now.
606 */
607 #if ARM_MMU_XSCALE == 1
608 #if (ARM_NMMUS > 1)
609 if (xscale_use_minidata)
610 #endif
611 valloc_pages(bmi, &minidataclean, 1,
612 VM_PROT_READ|VM_PROT_WRITE, 0, true);
613 #endif
614
615 /*
616 * Ok we have allocated physical pages for the primary kernel
617 * page tables and stacks. Let's just confirm that.
618 */
619 if (kernel_l1pt.pv_va == 0
620 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
621 panic("%s: Failed to allocate or align the kernel "
622 "page directory", __func__);
623
624
625 #ifdef VERBOSE_INIT_ARM
626 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
627 #endif
628
629 /*
630 * Now we start construction of the L1 page table
631 * We start by mapping the L2 page tables into the L1.
632 * This means that we can replace L1 mappings later on if necessary
633 */
634 vaddr_t l1pt_va = kernel_l1pt.pv_va;
635 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
636
637 if (map_vectors_p) {
638 /* Map the L2 pages tables in the L1 page table */
639 pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
640 &bmi->bmi_vector_l2pt);
641 #ifdef VERBOSE_INIT_ARM
642 printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
643 "for VA %#lx\n (vectors)",
644 __func__, bmi->bmi_vector_l2pt.pv_va,
645 bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
646 #endif
647 }
648
649 const vaddr_t kernel_base =
650 KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
651 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
652 pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
653 &kernel_l2pt[idx]);
654 #ifdef VERBOSE_INIT_ARM
655 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
656 __func__, kernel_l2pt[idx].pv_va,
657 kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
658 #endif
659 }
660
661 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
662 pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
663 &vmdata_l2pt[idx]);
664 #ifdef VERBOSE_INIT_ARM
665 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
666 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
667 kernel_vm_base + idx * L2_S_SEGSIZE);
668 #endif
669 }
670 if (iovbase) {
671 pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
672 #ifdef VERBOSE_INIT_ARM
673 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
674 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
675 iovbase & -L2_S_SEGSIZE);
676 #endif
677 }
678
679 /* update the top of the kernel VM */
680 pmap_curmaxkvaddr =
681 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
682
683 #ifdef VERBOSE_INIT_ARM
684 printf("Mapping kernel\n");
685 #endif
686
687 extern char etext[], _end[];
688 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
689 size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
690
691 textsize = (textsize + PGOFSET) & ~PGOFSET;
692
693 /* start at offset of kernel in RAM */
694
695 text.pv_pa = bmi->bmi_kernelstart;
696 text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
697 text.pv_size = textsize;
698 text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
699 text.pv_cache = PTE_CACHE;
700
701 #ifdef VERBOSE_INIT_ARM
702 printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
703 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
704 #endif
705
706 add_pages(bmi, &text);
707
708 data.pv_pa = text.pv_pa + textsize;
709 data.pv_va = text.pv_va + textsize;
710 data.pv_size = totalsize - textsize;
711 data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
712 data.pv_cache = PTE_CACHE;
713
714 #ifdef VERBOSE_INIT_ARM
715 printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
716 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
717 #endif
718
719 add_pages(bmi, &data);
720
721 #ifdef VERBOSE_INIT_ARM
722 printf("Listing Chunks\n");
723
724 pv_addr_t *lpv;
725 SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
726 printf("%s: pv %p: chunk VA %#lx..%#lx "
727 "(PA %#lx, prot %d, cache %d)\n",
728 __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
729 lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
730 }
731 printf("\nMapping Chunks\n");
732 #endif
733
734 pv_addr_t cur_pv;
735 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
736 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
737 cur_pv = *pv;
738 pv = SLIST_NEXT(pv, pv_list);
739 } else {
740 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
741 cur_pv.pv_va = pmap_directbase;
742 #else
743 cur_pv.pv_va = KERNEL_BASE;
744 #endif
745 cur_pv.pv_pa = bmi->bmi_start;
746 cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
747 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
748 cur_pv.pv_cache = PTE_CACHE;
749 }
750 while (pv != NULL) {
751 if (mapallmem_p) {
752 if (concat_pvaddr(&cur_pv, pv)) {
753 pv = SLIST_NEXT(pv, pv_list);
754 continue;
755 }
756 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
757 /*
758 * See if we can extend the current pv to emcompass the
759 * hole, and if so do it and retry the concatenation.
760 */
761 if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
762 && cur_pv.pv_cache == PTE_CACHE) {
763 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
764 continue;
765 }
766
767 /*
768 * We couldn't so emit the current chunk and then
769 */
770 #ifdef VERBOSE_INIT_ARM
771 printf("%s: mapping chunk VA %#lx..%#lx "
772 "(PA %#lx, prot %d, cache %d)\n",
773 __func__,
774 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
775 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
776 #endif
777 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
778 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
779
780 /*
781 * set the current chunk to the hole and try again.
782 */
783 cur_pv.pv_pa += cur_pv.pv_size;
784 cur_pv.pv_va += cur_pv.pv_size;
785 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
786 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
787 cur_pv.pv_cache = PTE_CACHE;
788 continue;
789 }
790 }
791
792 /*
793 * The new pv didn't concatenate so emit the current one
794 * and use the new pv as the current pv.
795 */
796 #ifdef VERBOSE_INIT_ARM
797 printf("%s: mapping chunk VA %#lx..%#lx "
798 "(PA %#lx, prot %d, cache %d)\n",
799 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
800 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
801 #endif
802 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
803 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
804 cur_pv = *pv;
805 pv = SLIST_NEXT(pv, pv_list);
806 }
807
808 /*
809 * If we are mapping all of memory, let's map the rest of memory.
810 */
811 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
812 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
813 && cur_pv.pv_cache == PTE_CACHE) {
814 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
815 } else {
816 #ifdef VERBOSE_INIT_ARM
817 printf("%s: mapping chunk VA %#lx..%#lx "
818 "(PA %#lx, prot %d, cache %d)\n",
819 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
820 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
821 #endif
822 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
823 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
824 cur_pv.pv_pa += cur_pv.pv_size;
825 cur_pv.pv_va += cur_pv.pv_size;
826 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
827 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
828 cur_pv.pv_cache = PTE_CACHE;
829 }
830 }
831
832 /*
833 * Now we map the final chunk.
834 */
835 #ifdef VERBOSE_INIT_ARM
836 printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
837 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
838 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
839 #endif
840 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
841 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
842
843 /*
844 * Now we map the stuff that isn't directly after the kernel
845 */
846
847 if (map_vectors_p) {
848 /* Map the vector page. */
849 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
850 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
851 }
852
853 /* Map the Mini-Data cache clean area. */
854 #if ARM_MMU_XSCALE == 1
855 #if (ARM_NMMUS > 1)
856 if (xscale_use_minidata)
857 #endif
858 xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
859 minidataclean.pv_pa);
860 #endif
861
862 /*
863 * Map integrated peripherals at same address in first level page
864 * table so that we can continue to use console.
865 */
866 if (devmap)
867 pmap_devmap_bootstrap(l1pt_va, devmap);
868
869 #ifdef VERBOSE_INIT_ARM
870 /* Tell the user about where all the bits and pieces live. */
871 printf("%22s Physical Virtual Num\n", " ");
872 printf("%22s Starting Ending Starting Ending Pages\n", " ");
873
874 static const char mem_fmt[] =
875 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
876 static const char mem_fmt_nov[] =
877 "%20s: 0x%08lx 0x%08lx %zu\n";
878
879 printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
880 KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
881 physmem);
882 printf(mem_fmt, "text section",
883 text.pv_pa, text.pv_pa + text.pv_size - 1,
884 text.pv_va, text.pv_va + text.pv_size - 1,
885 (int)(text.pv_size / PAGE_SIZE));
886 printf(mem_fmt, "data section",
887 KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
888 (vaddr_t)__data_start, (vaddr_t)_edata,
889 (int)((round_page((vaddr_t)_edata)
890 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
891 printf(mem_fmt, "bss section",
892 KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
893 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
894 (int)((round_page((vaddr_t)__bss_end__)
895 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
896 printf(mem_fmt, "L1 page directory",
897 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
898 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
899 L1_TABLE_SIZE / PAGE_SIZE);
900 printf(mem_fmt, "ABT stack (CPU 0)",
901 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
902 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
903 ABT_STACK_SIZE);
904 printf(mem_fmt, "FIQ stack (CPU 0)",
905 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
906 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
907 FIQ_STACK_SIZE);
908 printf(mem_fmt, "IRQ stack (CPU 0)",
909 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
910 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
911 IRQ_STACK_SIZE);
912 printf(mem_fmt, "UND stack (CPU 0)",
913 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
914 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
915 UND_STACK_SIZE);
916 printf(mem_fmt, "IDLE stack (CPU 0)",
917 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
918 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
919 UPAGES);
920 printf(mem_fmt, "SVC stack",
921 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
922 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
923 UPAGES);
924 printf(mem_fmt, "Message Buffer",
925 msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
926 msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
927 (int)msgbuf_pgs);
928 if (map_vectors_p) {
929 printf(mem_fmt, "Exception Vectors",
930 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
931 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
932 1);
933 }
934 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
935 pv = &bmi->bmi_freeblocks[i];
936
937 printf(mem_fmt_nov, "Free Memory",
938 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
939 pv->pv_size / PAGE_SIZE);
940 }
941 #endif
942 /*
943 * Now we have the real page tables in place so we can switch to them.
944 * Once this is done we will be running with the REAL kernel page
945 * tables.
946 */
947
948 #if defined(VERBOSE_INIT_ARM)
949 printf("TTBR0=%#x", armreg_ttbr_read());
950 #ifdef _ARM_ARCH_6
951 printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
952 armreg_ttbr1_read(), armreg_ttbcr_read(),
953 armreg_contextidr_read());
954 #endif
955 printf("\n");
956 #endif
957
958 /* Switch tables */
959 #ifdef VERBOSE_INIT_ARM
960 printf("switching to new L1 page table @%#lx...", l1pt_pa);
961 #endif
962
963 #ifdef ARM_MMU_EXTENDED
964 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
965 | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
966 #else
967 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
968 #endif
969 cpu_idcache_wbinv_all();
970 #ifdef VERBOSE_INIT_ARM
971 printf(" ttb");
972 #endif
973 #ifdef ARM_MMU_EXTENDED
974 /*
975 * TTBCR should have been initialized by the MD start code.
976 */
977 KASSERT((armreg_contextidr_read() & 0xff) == 0);
978 KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
979 /*
980 * Disable lookups via TTBR0 until there is an activated pmap.
981 */
982 armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
983 cpu_setttb(l1pt_pa, KERNEL_PID);
984 arm_isb();
985 #else
986 cpu_setttb(l1pt_pa, true);
987 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
988 #endif
989 cpu_tlb_flushID();
990
991 #ifdef VERBOSE_INIT_ARM
992 #ifdef ARM_MMU_EXTENDED
993 printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
994 armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
995 #else
996 printf(" (TTBR0=%#x)", armreg_ttbr_read());
997 #endif
998 #endif
999
1000 #ifdef MULTIPROCESSOR
1001 /*
1002 * Kick the secondaries to load the TTB. After which they'll go
1003 * back to sleep to wait for the final kick so they will hatch.
1004 */
1005 #ifdef VERBOSE_INIT_ARM
1006 printf(" hatchlings");
1007 #endif
1008 cpu_boot_secondary_processors();
1009 #endif
1010
1011 #ifdef VERBOSE_INIT_ARM
1012 printf(" OK\n");
1013 #endif
1014 }
1015