Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.33
      1 /*	$NetBSD: arm32_kvminit.c,v 1.33 2015/05/04 00:44:12 matt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include "opt_multiprocessor.h"
    125 
    126 #include <sys/cdefs.h>
    127 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.33 2015/05/04 00:44:12 matt Exp $");
    128 
    129 #include <sys/param.h>
    130 #include <sys/device.h>
    131 #include <sys/kernel.h>
    132 #include <sys/reboot.h>
    133 #include <sys/bus.h>
    134 
    135 #include <dev/cons.h>
    136 
    137 #include <uvm/uvm_extern.h>
    138 
    139 #include <arm/locore.h>
    140 #include <arm/db_machdep.h>
    141 #include <arm/undefined.h>
    142 #include <arm/bootconfig.h>
    143 #include <arm/arm32/machdep.h>
    144 
    145 struct bootmem_info bootmem_info;
    146 
    147 extern void *msgbufaddr;
    148 paddr_t msgbufphys;
    149 paddr_t physical_start;
    150 paddr_t physical_end;
    151 
    152 extern char etext[];
    153 extern char __data_start[], _edata[];
    154 extern char __bss_start[], __bss_end__[];
    155 extern char _end[];
    156 
    157 /* Page tables for mapping kernel VM */
    158 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    159 
    160 /*
    161  * Macros to translate between physical and virtual for a subset of the
    162  * kernel address space.  *Not* for general use.
    163  */
    164 #if defined(KERNEL_BASE_VOFFSET)
    165 #define KERN_VTOPHYS(bmi, va) \
    166 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
    167 #define KERN_PHYSTOV(bmi, pa) \
    168 	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
    169 #elif defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    170 #define KERN_VTOPHYS(bmi, va) \
    171 	((paddr_t)((vaddr_t)(va) - pmap_directbase + (bmi)->bmi_start))
    172 #define KERN_PHYSTOV(bmi, pa) \
    173 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + pmap_directbase))
    174 #else
    175 #define KERN_VTOPHYS(bmi, va) \
    176 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    177 #define KERN_PHYSTOV(bmi, pa) \
    178 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    179 #endif
    180 
    181 void
    182 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    183 {
    184 	struct bootmem_info * const bmi = &bootmem_info;
    185 	pv_addr_t *pv = bmi->bmi_freeblocks;
    186 
    187 #ifdef VERBOSE_INIT_ARM
    188 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    189 	    __func__, memstart, memsize, kernelstart);
    190 #endif
    191 
    192 	physical_start = bmi->bmi_start = memstart;
    193 	physical_end = bmi->bmi_end = memstart + memsize;
    194 #ifndef ARM_HAS_LPAE
    195 	if (physical_end == 0) {
    196 		physical_end = -PAGE_SIZE;
    197 		memsize -= PAGE_SIZE;
    198 #ifdef VERBOSE_INIT_ARM
    199 		printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    200 		    __func__);
    201 #endif
    202 	}
    203 #endif
    204 	physmem = memsize / PAGE_SIZE;
    205 
    206 	/*
    207 	 * Let's record where the kernel lives.
    208 	 */
    209 	bmi->bmi_kernelstart = kernelstart;
    210 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    211 
    212 #ifdef VERBOSE_INIT_ARM
    213 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    214 #endif
    215 
    216 	/*
    217 	 * Now the rest of the free memory must be after the kernel.
    218 	 */
    219 	pv->pv_pa = bmi->bmi_kernelend;
    220 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    221 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    222 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    223 #ifdef VERBOSE_INIT_ARM
    224 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    225 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    226 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    227 #endif
    228 	pv++;
    229 
    230 	/*
    231 	 * Add a free block for any memory before the kernel.
    232 	 */
    233 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    234 		pv->pv_pa = bmi->bmi_start;
    235 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    236 		pv->pv_va = pmap_directbase;
    237 #else
    238 		/*
    239 		 * If there's lots of memory the kernel could be placed far
    240 		 * from the start of RAM.  If that's the case, don't map the
    241 		 * RAM that would have virtual addresses below KERNEL_BASE.
    242 		 */
    243 		if (pv->pv_pa < KERN_VTOPHYS(bmi, KERNEL_BASE)) {
    244 			psize_t size = KERN_VTOPHYS(bmi, KERNEL_BASE) - pv->pv_pa;
    245 			bmi->bmi_freepages += size / PAGE_SIZE;
    246 #ifdef VERBOSE_INIT_ARM
    247 			printf("%s: adding %lu free pages: [%#lx..%#lx]\n",
    248 			    __func__, size / PAGE_SIZE, pv->pv_va,
    249 			    pv->pv_pa + size - 1);
    250 #endif
    251 			pv->pv_pa = KERN_VTOPHYS(bmi, KERNEL_BASE);
    252 		}
    253 		pv->pv_va = KERNEL_BASE;
    254 #endif
    255 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    256 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    257 #ifdef VERBOSE_INIT_ARM
    258 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    259 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    260 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    261 #endif
    262 		pv++;
    263 	}
    264 
    265 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    266 
    267 	SLIST_INIT(&bmi->bmi_freechunks);
    268 	SLIST_INIT(&bmi->bmi_chunks);
    269 }
    270 
    271 static bool
    272 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    273 {
    274 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    275 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    276 	    && acc_pv->pv_prot == pv->pv_prot
    277 	    && acc_pv->pv_cache == pv->pv_cache) {
    278 #ifdef VERBOSE_INIT_ARMX
    279 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    280 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    281 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    282 #endif
    283 		acc_pv->pv_size += pv->pv_size;
    284 		return true;
    285 	}
    286 
    287 	return false;
    288 }
    289 
    290 static void
    291 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    292 {
    293 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    294 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    295 		pv_addr_t * const pv0 = (*pvp);
    296 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    297 		if (concat_pvaddr(pv0, pv)) {
    298 #ifdef VERBOSE_INIT_ARM
    299 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    300 			    __func__, "appending", pv,
    301 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    302 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    303 #endif
    304 			pv = SLIST_NEXT(pv0, pv_list);
    305 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    306 #ifdef VERBOSE_INIT_ARM
    307 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    308 				    __func__, "merging", pv,
    309 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    310 				    pv0->pv_pa,
    311 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    312 #endif
    313 				SLIST_REMOVE_AFTER(pv0, pv_list);
    314 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    315 			}
    316 			return;
    317 		}
    318 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    319 		pvp = &SLIST_NEXT(*pvp, pv_list);
    320 	}
    321 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    322 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    323 	KASSERT(new_pv != NULL);
    324 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    325 	*new_pv = *pv;
    326 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    327 	(*pvp) = new_pv;
    328 #ifdef VERBOSE_INIT_ARM
    329 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    330 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    331 	    new_pv->pv_size / PAGE_SIZE);
    332 	if (SLIST_NEXT(new_pv, pv_list))
    333 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    334 	else
    335 		printf("at tail\n");
    336 #endif
    337 }
    338 
    339 static void
    340 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    341 	int prot, int cache, bool zero_p)
    342 {
    343 	size_t nbytes = npages * PAGE_SIZE;
    344 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    345 	size_t free_idx = 0;
    346 	static bool l1pt_found;
    347 
    348 	KASSERT(npages > 0);
    349 
    350 	/*
    351 	 * If we haven't allocated the kernel L1 page table and we are aligned
    352 	 * at a L1 table boundary, alloc the memory for it.
    353 	 */
    354 	if (!l1pt_found
    355 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    356 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    357 		l1pt_found = true;
    358 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    359 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    360 		add_pages(bmi, &kernel_l1pt);
    361 	}
    362 
    363 	while (nbytes > free_pv->pv_size) {
    364 		free_pv++;
    365 		free_idx++;
    366 		if (free_idx == bmi->bmi_nfreeblocks) {
    367 			panic("%s: could not allocate %zu bytes",
    368 			    __func__, nbytes);
    369 		}
    370 	}
    371 
    372 	/*
    373 	 * As we allocate the memory, make sure that we don't walk over
    374 	 * our current first level translation table.
    375 	 */
    376 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    377 
    378 	pv->pv_pa = free_pv->pv_pa;
    379 	pv->pv_va = free_pv->pv_va;
    380 	pv->pv_size = nbytes;
    381 	pv->pv_prot = prot;
    382 	pv->pv_cache = cache;
    383 
    384 	/*
    385 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    386 	 * just use PTE_CACHE.
    387 	 */
    388 	if (cache == PTE_PAGETABLE
    389 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    390 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    391 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    392 		pv->pv_cache = PTE_CACHE;
    393 
    394 	free_pv->pv_pa += nbytes;
    395 	free_pv->pv_va += nbytes;
    396 	free_pv->pv_size -= nbytes;
    397 	if (free_pv->pv_size == 0) {
    398 		--bmi->bmi_nfreeblocks;
    399 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    400 			free_pv[0] = free_pv[1];
    401 		}
    402 	}
    403 
    404 	bmi->bmi_freepages -= npages;
    405 
    406 	if (zero_p)
    407 		memset((void *)pv->pv_va, 0, nbytes);
    408 }
    409 
    410 void
    411 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    412 	const struct pmap_devmap *devmap, bool mapallmem_p)
    413 {
    414 	struct bootmem_info * const bmi = &bootmem_info;
    415 #ifdef MULTIPROCESSOR
    416 	const size_t cpu_num = arm_cpu_max;
    417 #else
    418 	const size_t cpu_num = 1;
    419 #endif
    420 #ifdef ARM_HAS_VBAR
    421 	const bool map_vectors_p = false;
    422 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    423 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    424 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    425 #else
    426 	const bool map_vectors_p = true;
    427 #endif
    428 
    429 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    430 	KASSERT(mapallmem_p);
    431 #ifdef ARM_MMU_EXTENDED
    432 	/*
    433 	 * We can only use address beneath kernel_vm_base to map physical
    434 	 * memory.
    435 	 */
    436 	const psize_t physical_size =
    437 	    roundup(physical_end - physical_start, L1_SS_SIZE);
    438 	KASSERT(kernel_vm_base >= physical_size);
    439 	/*
    440 	 * If we don't have enough memory via TTBR1, we have use addresses
    441 	 * from TTBR0 to map some of the physical memory.  But try to use as
    442 	 * much high memory space as possible.
    443 	 */
    444 	if (kernel_vm_base - KERNEL_BASE < physical_size) {
    445 		pmap_directbase = kernel_vm_base - physical_size;
    446 		printf("%s: changing pmap_directbase to %#lx\n", __func__,
    447 		    pmap_directbase);
    448 	}
    449 #else
    450 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    451 #endif /* ARM_MMU_EXTENDED */
    452 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    453 
    454 	/*
    455 	 * Calculate the number of L2 pages needed for mapping the
    456 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    457 	 * and 1 for IO
    458 	 */
    459 	size_t kernel_size = bmi->bmi_kernelend;
    460 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    461 	kernel_size += L1_TABLE_SIZE_REAL;
    462 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    463 	if (map_vectors_p) {
    464 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    465 	}
    466 	if (iovbase) {
    467 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    468 	}
    469 	kernel_size +=
    470 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    471 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    472 	kernel_size += round_page(MSGBUFSIZE);
    473 	kernel_size += 0x10000;	/* slop */
    474 	if (!mapallmem_p) {
    475 		kernel_size += PAGE_SIZE
    476 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    477 	}
    478 	kernel_size = round_page(kernel_size);
    479 
    480 	/*
    481 	 * Now we know how many L2 pages it will take.  If we've mapped
    482 	 * all of memory, then it won't take any.
    483 	 */
    484 	const size_t KERNEL_L2PT_KERNEL_NUM = mapallmem_p
    485 	    ? 0 : round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    486 
    487 #ifdef VERBOSE_INIT_ARM
    488 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    489 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    490 #endif
    491 
    492 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    493 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    494 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    495 	pv_addr_t msgbuf;
    496 	pv_addr_t text;
    497 	pv_addr_t data;
    498 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    499 #if ARM_MMU_XSCALE == 1
    500 	pv_addr_t minidataclean;
    501 #endif
    502 
    503 	/*
    504 	 * We need to allocate some fixed page tables to get the kernel going.
    505 	 *
    506 	 * We are going to allocate our bootstrap pages from the beginning of
    507 	 * the free space that we just calculated.  We allocate one page
    508 	 * directory and a number of page tables and store the physical
    509 	 * addresses in the bmi_l2pts array in bootmem_info.
    510 	 *
    511 	 * The kernel page directory must be on a 16K boundary.  The page
    512 	 * tables must be on 4K boundaries.  What we do is allocate the
    513 	 * page directory on the first 16K boundary that we encounter, and
    514 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    515 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    516 	 * least one 16K aligned region.
    517 	 */
    518 
    519 #ifdef VERBOSE_INIT_ARM
    520 	printf("%s: allocating page tables for", __func__);
    521 #endif
    522 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    523 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    524 	}
    525 
    526 	kernel_l1pt.pv_pa = 0;
    527 	kernel_l1pt.pv_va = 0;
    528 
    529 	/*
    530 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    531 	 * an L1 page table, we will allocate the pages for it first and then
    532 	 * allocate the L2 page.
    533 	 */
    534 
    535 	if (map_vectors_p) {
    536 		/*
    537 		 * First allocate L2 page for the vectors.
    538 		 */
    539 #ifdef VERBOSE_INIT_ARM
    540 		printf(" vector");
    541 #endif
    542 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    543 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    544 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    545 	}
    546 
    547 	/*
    548 	 * Now allocate L2 pages for the kernel
    549 	 */
    550 #ifdef VERBOSE_INIT_ARM
    551 	printf(" kernel");
    552 #endif
    553 	KASSERT(mapallmem_p || KERNEL_L2PT_KERNEL_NUM > 0);
    554 	KASSERT(!mapallmem_p || KERNEL_L2PT_KERNEL_NUM == 0);
    555 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    556 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    557 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    558 		add_pages(bmi, &kernel_l2pt[idx]);
    559 	}
    560 
    561 	/*
    562 	 * Now allocate L2 pages for the initial kernel VA space.
    563 	 */
    564 #ifdef VERBOSE_INIT_ARM
    565 	printf(" vm");
    566 #endif
    567 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    568 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    569 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    570 		add_pages(bmi, &vmdata_l2pt[idx]);
    571 	}
    572 
    573 	/*
    574 	 * If someone wanted a L2 page for I/O, allocate it now.
    575 	 */
    576 	if (iovbase) {
    577 #ifdef VERBOSE_INIT_ARM
    578 		printf(" io");
    579 #endif
    580 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    581 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    582 		add_pages(bmi, &bmi->bmi_io_l2pt);
    583 	}
    584 
    585 #ifdef VERBOSE_INIT_ARM
    586 	printf("%s: allocating stacks\n", __func__);
    587 #endif
    588 
    589 	/* Allocate stacks for all modes and CPUs */
    590 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    591 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    592 	add_pages(bmi, &abtstack);
    593 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    594 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    595 	add_pages(bmi, &fiqstack);
    596 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    597 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    598 	add_pages(bmi, &irqstack);
    599 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    600 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    601 	add_pages(bmi, &undstack);
    602 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    603 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    604 	add_pages(bmi, &idlestack);
    605 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    606 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    607 	add_pages(bmi, &kernelstack);
    608 
    609 	/* Allocate the message buffer from the end of memory. */
    610 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    611 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    612 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    613 	add_pages(bmi, &msgbuf);
    614 	msgbufphys = msgbuf.pv_pa;
    615 	msgbufaddr = (void *)msgbuf.pv_va;
    616 
    617 	if (map_vectors_p) {
    618 		/*
    619 		 * Allocate a page for the system vector page.
    620 		 * This page will just contain the system vectors and can be
    621 		 * shared by all processes.
    622 		 */
    623 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE,
    624 		    PTE_CACHE, true);
    625 	}
    626 	systempage.pv_va = vectors;
    627 
    628 	/*
    629 	 * If the caller needed a few extra pages for some reason, allocate
    630 	 * them now.
    631 	 */
    632 #if ARM_MMU_XSCALE == 1
    633 #if (ARM_NMMUS > 1)
    634 	if (xscale_use_minidata)
    635 #endif
    636 		valloc_pages(bmi, &minidataclean, 1,
    637 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    638 #endif
    639 
    640 	/*
    641 	 * Ok we have allocated physical pages for the primary kernel
    642 	 * page tables and stacks.  Let's just confirm that.
    643 	 */
    644 	if (kernel_l1pt.pv_va == 0
    645 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    646 		panic("%s: Failed to allocate or align the kernel "
    647 		    "page directory", __func__);
    648 
    649 
    650 #ifdef VERBOSE_INIT_ARM
    651 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    652 #endif
    653 
    654 	/*
    655 	 * Now we start construction of the L1 page table
    656 	 * We start by mapping the L2 page tables into the L1.
    657 	 * This means that we can replace L1 mappings later on if necessary
    658 	 */
    659 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    660 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    661 
    662 	if (map_vectors_p) {
    663 		/* Map the L2 pages tables in the L1 page table */
    664 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    665 		    &bmi->bmi_vector_l2pt);
    666 #ifdef VERBOSE_INIT_ARM
    667 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    668 		    "for VA %#lx\n (vectors)",
    669 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    670 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    671 #endif
    672 	}
    673 
    674 	const vaddr_t kernel_base =
    675 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    676 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    677 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    678 		    &kernel_l2pt[idx]);
    679 #ifdef VERBOSE_INIT_ARM
    680 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    681 		    __func__, kernel_l2pt[idx].pv_va,
    682 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    683 #endif
    684 	}
    685 
    686 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    687 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    688 		    &vmdata_l2pt[idx]);
    689 #ifdef VERBOSE_INIT_ARM
    690 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    691 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    692 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    693 #endif
    694 	}
    695 	if (iovbase) {
    696 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    697 #ifdef VERBOSE_INIT_ARM
    698 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    699 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    700 		    iovbase & -L2_S_SEGSIZE);
    701 #endif
    702 	}
    703 
    704 	/* update the top of the kernel VM */
    705 	pmap_curmaxkvaddr =
    706 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    707 
    708 #ifdef VERBOSE_INIT_ARM
    709 	printf("Mapping kernel\n");
    710 #endif
    711 
    712 	extern char etext[], _end[];
    713 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    714 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    715 
    716 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    717 
    718 	/* start at offset of kernel in RAM */
    719 
    720 	text.pv_pa = bmi->bmi_kernelstart;
    721 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    722 	text.pv_size = textsize;
    723 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE; /* XXX VM_PROT_EXECUTE */
    724 	text.pv_cache = PTE_CACHE;
    725 
    726 #ifdef VERBOSE_INIT_ARM
    727 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    728 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    729 #endif
    730 
    731 	add_pages(bmi, &text);
    732 
    733 	data.pv_pa = text.pv_pa + textsize;
    734 	data.pv_va = text.pv_va + textsize;
    735 	data.pv_size = totalsize - textsize;
    736 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    737 	data.pv_cache = PTE_CACHE;
    738 
    739 #ifdef VERBOSE_INIT_ARM
    740 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    741 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    742 #endif
    743 
    744 	add_pages(bmi, &data);
    745 
    746 #ifdef VERBOSE_INIT_ARM
    747 	printf("Listing Chunks\n");
    748 
    749 	pv_addr_t *lpv;
    750 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    751 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    752 		    "(PA %#lx, prot %d, cache %d)\n",
    753 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    754 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    755 	}
    756 	printf("\nMapping Chunks\n");
    757 #endif
    758 
    759 	pv_addr_t cur_pv;
    760 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    761 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    762 		cur_pv = *pv;
    763 		pv = SLIST_NEXT(pv, pv_list);
    764 	} else {
    765 #if defined(ARM_MMU_EXTENDED) && defined(__HAVE_MM_MD_DIRECT_MAPPED_PHYS)
    766 		cur_pv.pv_va = pmap_directbase;
    767 #else
    768 		cur_pv.pv_va = KERNEL_BASE;
    769 #endif
    770 		cur_pv.pv_pa = bmi->bmi_start;
    771 		cur_pv.pv_size = pv->pv_pa - bmi->bmi_start;
    772 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    773 		cur_pv.pv_cache = PTE_CACHE;
    774 	}
    775 	while (pv != NULL) {
    776 		if (mapallmem_p) {
    777 			if (concat_pvaddr(&cur_pv, pv)) {
    778 				pv = SLIST_NEXT(pv, pv_list);
    779 				continue;
    780 			}
    781 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    782 				/*
    783 				 * See if we can extend the current pv to emcompass the
    784 				 * hole, and if so do it and retry the concatenation.
    785 				 */
    786 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    787 				    && cur_pv.pv_cache == PTE_CACHE) {
    788 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    789 					continue;
    790 				}
    791 
    792 				/*
    793 				 * We couldn't so emit the current chunk and then
    794 				 */
    795 #ifdef VERBOSE_INIT_ARM
    796 				printf("%s: mapping chunk VA %#lx..%#lx "
    797 				    "(PA %#lx, prot %d, cache %d)\n",
    798 				    __func__,
    799 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    800 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    801 #endif
    802 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    803 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    804 
    805 				/*
    806 				 * set the current chunk to the hole and try again.
    807 				 */
    808 				cur_pv.pv_pa += cur_pv.pv_size;
    809 				cur_pv.pv_va += cur_pv.pv_size;
    810 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    811 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    812 				cur_pv.pv_cache = PTE_CACHE;
    813 				continue;
    814 			}
    815 		}
    816 
    817 		/*
    818 		 * The new pv didn't concatenate so emit the current one
    819 		 * and use the new pv as the current pv.
    820 		 */
    821 #ifdef VERBOSE_INIT_ARM
    822 		printf("%s: mapping chunk VA %#lx..%#lx "
    823 		    "(PA %#lx, prot %d, cache %d)\n",
    824 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    825 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    826 #endif
    827 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    828 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    829 		cur_pv = *pv;
    830 		pv = SLIST_NEXT(pv, pv_list);
    831 	}
    832 
    833 	/*
    834 	 * If we are mapping all of memory, let's map the rest of memory.
    835 	 */
    836 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    837 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    838 		    && cur_pv.pv_cache == PTE_CACHE) {
    839 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    840 		} else {
    841 #ifdef VERBOSE_INIT_ARM
    842 			printf("%s: mapping chunk VA %#lx..%#lx "
    843 			    "(PA %#lx, prot %d, cache %d)\n",
    844 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    845 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    846 #endif
    847 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    848 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    849 			cur_pv.pv_pa += cur_pv.pv_size;
    850 			cur_pv.pv_va += cur_pv.pv_size;
    851 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    852 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    853 			cur_pv.pv_cache = PTE_CACHE;
    854 		}
    855 	}
    856 
    857 	/*
    858 	 * Now we map the final chunk.
    859 	 */
    860 #ifdef VERBOSE_INIT_ARM
    861 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    862 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    863 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    864 #endif
    865 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    866 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    867 
    868 	/*
    869 	 * Now we map the stuff that isn't directly after the kernel
    870 	 */
    871 
    872 	if (map_vectors_p) {
    873 		/* Map the vector page. */
    874 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    875 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
    876 	}
    877 
    878 	/* Map the Mini-Data cache clean area. */
    879 #if ARM_MMU_XSCALE == 1
    880 #if (ARM_NMMUS > 1)
    881 	if (xscale_use_minidata)
    882 #endif
    883 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    884 		    minidataclean.pv_pa);
    885 #endif
    886 
    887 	/*
    888 	 * Map integrated peripherals at same address in first level page
    889 	 * table so that we can continue to use console.
    890 	 */
    891 	if (devmap)
    892 		pmap_devmap_bootstrap(l1pt_va, devmap);
    893 
    894 #ifdef VERBOSE_INIT_ARM
    895 	/* Tell the user about where all the bits and pieces live. */
    896 	printf("%22s       Physical              Virtual        Num\n", " ");
    897 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    898 
    899 	static const char mem_fmt[] =
    900 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    901 	static const char mem_fmt_nov[] =
    902 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    903 
    904 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    905 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    906 	    physmem);
    907 	printf(mem_fmt, "text section",
    908 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    909 	       text.pv_va, text.pv_va + text.pv_size - 1,
    910 	       (int)(text.pv_size / PAGE_SIZE));
    911 	printf(mem_fmt, "data section",
    912 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    913 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    914 	       (int)((round_page((vaddr_t)_edata)
    915 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    916 	printf(mem_fmt, "bss section",
    917 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    918 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    919 	       (int)((round_page((vaddr_t)__bss_end__)
    920 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    921 	printf(mem_fmt, "L1 page directory",
    922 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    923 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    924 	    L1_TABLE_SIZE / PAGE_SIZE);
    925 	printf(mem_fmt, "ABT stack (CPU 0)",
    926 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    927 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    928 	    ABT_STACK_SIZE);
    929 	printf(mem_fmt, "FIQ stack (CPU 0)",
    930 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    931 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    932 	    FIQ_STACK_SIZE);
    933 	printf(mem_fmt, "IRQ stack (CPU 0)",
    934 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    935 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    936 	    IRQ_STACK_SIZE);
    937 	printf(mem_fmt, "UND stack (CPU 0)",
    938 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    939 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    940 	    UND_STACK_SIZE);
    941 	printf(mem_fmt, "IDLE stack (CPU 0)",
    942 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    943 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    944 	    UPAGES);
    945 	printf(mem_fmt, "SVC stack",
    946 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    947 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    948 	    UPAGES);
    949 	printf(mem_fmt, "Message Buffer",
    950 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    951 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    952 	    (int)msgbuf_pgs);
    953 	if (map_vectors_p) {
    954 		printf(mem_fmt, "Exception Vectors",
    955 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    956 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    957 		    1);
    958 	}
    959 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    960 		pv = &bmi->bmi_freeblocks[i];
    961 
    962 		printf(mem_fmt_nov, "Free Memory",
    963 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    964 		    pv->pv_size / PAGE_SIZE);
    965 	}
    966 #endif
    967 	/*
    968 	 * Now we have the real page tables in place so we can switch to them.
    969 	 * Once this is done we will be running with the REAL kernel page
    970 	 * tables.
    971 	 */
    972 
    973 #if defined(VERBOSE_INIT_ARM)
    974 	printf("TTBR0=%#x", armreg_ttbr_read());
    975 #ifdef _ARM_ARCH_6
    976 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    977 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    978 	    armreg_contextidr_read());
    979 #endif
    980 	printf("\n");
    981 #endif
    982 
    983 	/* Switch tables */
    984 #ifdef VERBOSE_INIT_ARM
    985 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    986 #endif
    987 
    988 #ifdef ARM_MMU_EXTENDED
    989 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    990 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    991 #else
    992 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    993 #endif
    994 	cpu_idcache_wbinv_all();
    995 #ifdef VERBOSE_INIT_ARM
    996 	printf(" ttb");
    997 #endif
    998 #ifdef ARM_MMU_EXTENDED
    999 	/*
   1000 	 * TTBCR should have been initialized by the MD start code.
   1001 	 */
   1002 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
   1003 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
   1004 	/*
   1005 	 * Disable lookups via TTBR0 until there is an activated pmap.
   1006 	 */
   1007 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
   1008 	cpu_setttb(l1pt_pa, KERNEL_PID);
   1009 	arm_isb();
   1010 #else
   1011 	cpu_setttb(l1pt_pa, true);
   1012 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
   1013 #endif
   1014 	cpu_tlb_flushID();
   1015 
   1016 #ifdef VERBOSE_INIT_ARM
   1017 #ifdef ARM_MMU_EXTENDED
   1018 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
   1019 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
   1020 #else
   1021 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
   1022 #endif
   1023 #endif
   1024 
   1025 #ifdef MULTIPROCESSOR
   1026 	/*
   1027 	 * Kick the secondaries to load the TTB.  After which they'll go
   1028 	 * back to sleep to wait for the final kick so they will hatch.
   1029 	 */
   1030 #ifdef VERBOSE_INIT_ARM
   1031 	printf(" hatchlings");
   1032 #endif
   1033 	cpu_boot_secondary_processors();
   1034 #endif
   1035 
   1036 #ifdef VERBOSE_INIT_ARM
   1037 	printf(" OK\n");
   1038 #endif
   1039 }
   1040