Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.37
      1 /*	$NetBSD: arm32_kvminit.c,v 1.37 2015/11/25 08:36:50 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include "opt_multiprocessor.h"
    125 
    126 #include <sys/cdefs.h>
    127 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.37 2015/11/25 08:36:50 skrll Exp $");
    128 
    129 #include <sys/param.h>
    130 #include <sys/device.h>
    131 #include <sys/kernel.h>
    132 #include <sys/reboot.h>
    133 #include <sys/bus.h>
    134 
    135 #include <dev/cons.h>
    136 
    137 #include <uvm/uvm_extern.h>
    138 
    139 #include <arm/locore.h>
    140 #include <arm/db_machdep.h>
    141 #include <arm/undefined.h>
    142 #include <arm/bootconfig.h>
    143 #include <arm/arm32/machdep.h>
    144 
    145 struct bootmem_info bootmem_info;
    146 
    147 extern void *msgbufaddr;
    148 paddr_t msgbufphys;
    149 paddr_t physical_start;
    150 paddr_t physical_end;
    151 
    152 extern char etext[];
    153 extern char __data_start[], _edata[];
    154 extern char __bss_start[], __bss_end__[];
    155 extern char _end[];
    156 
    157 /* Page tables for mapping kernel VM */
    158 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    159 
    160 /*
    161  * Macros to translate between physical and virtual for a subset of the
    162  * kernel address space.  *Not* for general use.
    163  */
    164 #if defined(KERNEL_BASE_VOFFSET)
    165 #define KERN_VTOPHYS(bmi, va) \
    166 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
    167 #define KERN_PHYSTOV(bmi, pa) \
    168 	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
    169 #else
    170 #define KERN_VTOPHYS(bmi, va) \
    171 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    172 #define KERN_PHYSTOV(bmi, pa) \
    173 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    174 #endif
    175 
    176 void
    177 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    178 {
    179 	struct bootmem_info * const bmi = &bootmem_info;
    180 	pv_addr_t *pv = bmi->bmi_freeblocks;
    181 
    182 #ifdef VERBOSE_INIT_ARM
    183 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    184 	    __func__, memstart, memsize, kernelstart);
    185 #endif
    186 
    187 	physical_start = bmi->bmi_start = memstart;
    188 	physical_end = bmi->bmi_end = memstart + memsize;
    189 #ifndef ARM_HAS_LPAE
    190 	if (physical_end == 0) {
    191 		physical_end = -PAGE_SIZE;
    192 		memsize -= PAGE_SIZE;
    193 		bmi->bmi_end -= PAGE_SIZE;
    194 #ifdef VERBOSE_INIT_ARM
    195 		printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    196 		    __func__);
    197 #endif
    198 	}
    199 #endif
    200 	physmem = memsize / PAGE_SIZE;
    201 
    202 	/*
    203 	 * Let's record where the kernel lives.
    204 	 */
    205 	bmi->bmi_kernelstart = kernelstart;
    206 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    207 
    208 #ifdef VERBOSE_INIT_ARM
    209 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    210 #endif
    211 
    212 	/*
    213 	 * Now the rest of the free memory must be after the kernel.
    214 	 */
    215 	pv->pv_pa = bmi->bmi_kernelend;
    216 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    217 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    218 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    219 #ifdef VERBOSE_INIT_ARM
    220 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    221 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    222 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    223 #endif
    224 	pv++;
    225 
    226 	/*
    227 	 * Add a free block for any memory before the kernel.
    228 	 */
    229 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    230 		pv->pv_pa = bmi->bmi_start;
    231 		pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    232 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    233 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    234 #ifdef VERBOSE_INIT_ARM
    235 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    236 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    237 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    238 #endif
    239 		pv++;
    240 	}
    241 
    242 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    243 
    244 	SLIST_INIT(&bmi->bmi_freechunks);
    245 	SLIST_INIT(&bmi->bmi_chunks);
    246 }
    247 
    248 static bool
    249 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    250 {
    251 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    252 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    253 	    && acc_pv->pv_prot == pv->pv_prot
    254 	    && acc_pv->pv_cache == pv->pv_cache) {
    255 #ifdef VERBOSE_INIT_ARMX
    256 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    257 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    258 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    259 #endif
    260 		acc_pv->pv_size += pv->pv_size;
    261 		return true;
    262 	}
    263 
    264 	return false;
    265 }
    266 
    267 static void
    268 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    269 {
    270 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    271 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    272 		pv_addr_t * const pv0 = (*pvp);
    273 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    274 		if (concat_pvaddr(pv0, pv)) {
    275 #ifdef VERBOSE_INIT_ARM
    276 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    277 			    __func__, "appending", pv,
    278 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    279 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    280 #endif
    281 			pv = SLIST_NEXT(pv0, pv_list);
    282 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    283 #ifdef VERBOSE_INIT_ARM
    284 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    285 				    __func__, "merging", pv,
    286 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    287 				    pv0->pv_pa,
    288 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    289 #endif
    290 				SLIST_REMOVE_AFTER(pv0, pv_list);
    291 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    292 			}
    293 			return;
    294 		}
    295 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    296 		pvp = &SLIST_NEXT(*pvp, pv_list);
    297 	}
    298 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    299 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    300 	KASSERT(new_pv != NULL);
    301 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    302 	*new_pv = *pv;
    303 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    304 	(*pvp) = new_pv;
    305 #ifdef VERBOSE_INIT_ARM
    306 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    307 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    308 	    new_pv->pv_size / PAGE_SIZE);
    309 	if (SLIST_NEXT(new_pv, pv_list))
    310 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    311 	else
    312 		printf("at tail\n");
    313 #endif
    314 }
    315 
    316 static void
    317 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    318 	int prot, int cache, bool zero_p)
    319 {
    320 	size_t nbytes = npages * PAGE_SIZE;
    321 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    322 	size_t free_idx = 0;
    323 	static bool l1pt_found;
    324 
    325 	KASSERT(npages > 0);
    326 
    327 	/*
    328 	 * If we haven't allocated the kernel L1 page table and we are aligned
    329 	 * at a L1 table boundary, alloc the memory for it.
    330 	 */
    331 	if (!l1pt_found
    332 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    333 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    334 		l1pt_found = true;
    335 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    336 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    337 		add_pages(bmi, &kernel_l1pt);
    338 	}
    339 
    340 	while (nbytes > free_pv->pv_size) {
    341 		free_pv++;
    342 		free_idx++;
    343 		if (free_idx == bmi->bmi_nfreeblocks) {
    344 			panic("%s: could not allocate %zu bytes",
    345 			    __func__, nbytes);
    346 		}
    347 	}
    348 
    349 	/*
    350 	 * As we allocate the memory, make sure that we don't walk over
    351 	 * our current first level translation table.
    352 	 */
    353 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    354 
    355 	pv->pv_pa = free_pv->pv_pa;
    356 	pv->pv_va = free_pv->pv_va;
    357 	pv->pv_size = nbytes;
    358 	pv->pv_prot = prot;
    359 	pv->pv_cache = cache;
    360 
    361 	/*
    362 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    363 	 * just use PTE_CACHE.
    364 	 */
    365 	if (cache == PTE_PAGETABLE
    366 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    367 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    368 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    369 		pv->pv_cache = PTE_CACHE;
    370 
    371 	free_pv->pv_pa += nbytes;
    372 	free_pv->pv_va += nbytes;
    373 	free_pv->pv_size -= nbytes;
    374 	if (free_pv->pv_size == 0) {
    375 		--bmi->bmi_nfreeblocks;
    376 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    377 			free_pv[0] = free_pv[1];
    378 		}
    379 	}
    380 
    381 	bmi->bmi_freepages -= npages;
    382 
    383 	if (zero_p)
    384 		memset((void *)pv->pv_va, 0, nbytes);
    385 }
    386 
    387 void
    388 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    389 	const struct pmap_devmap *devmap, bool mapallmem_p)
    390 {
    391 	struct bootmem_info * const bmi = &bootmem_info;
    392 #ifdef MULTIPROCESSOR
    393 	const size_t cpu_num = arm_cpu_max;
    394 #else
    395 	const size_t cpu_num = 1;
    396 #endif
    397 #ifdef ARM_HAS_VBAR
    398 	const bool map_vectors_p = false;
    399 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    400 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    401 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    402 #else
    403 	const bool map_vectors_p = true;
    404 #endif
    405 
    406 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    407 	KASSERT(mapallmem_p);
    408 #ifdef ARM_MMU_EXTENDED
    409 	/*
    410 	 * The direct map VA space ends at the start of the kernel VM space.
    411 	 */
    412 	pmap_directlimit = kernel_vm_base;
    413 #else
    414 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    415 #endif /* ARM_MMU_EXTENDED */
    416 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    417 
    418 	/*
    419 	 * Calculate the number of L2 pages needed for mapping the
    420 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    421 	 * and 1 for IO
    422 	 */
    423 	size_t kernel_size = bmi->bmi_kernelend;
    424 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    425 	kernel_size += L1_TABLE_SIZE_REAL;
    426 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    427 	if (map_vectors_p) {
    428 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    429 	}
    430 	if (iovbase) {
    431 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    432 	}
    433 	kernel_size +=
    434 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    435 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    436 	kernel_size += round_page(MSGBUFSIZE);
    437 	kernel_size += 0x10000;	/* slop */
    438 	if (!mapallmem_p) {
    439 		kernel_size += PAGE_SIZE
    440 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    441 	}
    442 	kernel_size = round_page(kernel_size);
    443 
    444 	/*
    445 	 * Now we know how many L2 pages it will take.
    446 	 */
    447 	const size_t KERNEL_L2PT_KERNEL_NUM =
    448 	    round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    449 
    450 #ifdef VERBOSE_INIT_ARM
    451 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    452 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    453 #endif
    454 
    455 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    456 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    457 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    458 	pv_addr_t msgbuf;
    459 	pv_addr_t text;
    460 	pv_addr_t data;
    461 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    462 #if ARM_MMU_XSCALE == 1
    463 	pv_addr_t minidataclean;
    464 #endif
    465 
    466 	/*
    467 	 * We need to allocate some fixed page tables to get the kernel going.
    468 	 *
    469 	 * We are going to allocate our bootstrap pages from the beginning of
    470 	 * the free space that we just calculated.  We allocate one page
    471 	 * directory and a number of page tables and store the physical
    472 	 * addresses in the bmi_l2pts array in bootmem_info.
    473 	 *
    474 	 * The kernel page directory must be on a 16K boundary.  The page
    475 	 * tables must be on 4K boundaries.  What we do is allocate the
    476 	 * page directory on the first 16K boundary that we encounter, and
    477 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    478 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    479 	 * least one 16K aligned region.
    480 	 */
    481 
    482 #ifdef VERBOSE_INIT_ARM
    483 	printf("%s: allocating page tables for", __func__);
    484 #endif
    485 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    486 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    487 	}
    488 
    489 	kernel_l1pt.pv_pa = 0;
    490 	kernel_l1pt.pv_va = 0;
    491 
    492 	/*
    493 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    494 	 * an L1 page table, we will allocate the pages for it first and then
    495 	 * allocate the L2 page.
    496 	 */
    497 
    498 	if (map_vectors_p) {
    499 		/*
    500 		 * First allocate L2 page for the vectors.
    501 		 */
    502 #ifdef VERBOSE_INIT_ARM
    503 		printf(" vector");
    504 #endif
    505 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    506 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    507 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    508 	}
    509 
    510 	/*
    511 	 * Now allocate L2 pages for the kernel
    512 	 */
    513 #ifdef VERBOSE_INIT_ARM
    514 	printf(" kernel");
    515 #endif
    516 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    517 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    518 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    519 		add_pages(bmi, &kernel_l2pt[idx]);
    520 	}
    521 
    522 	/*
    523 	 * Now allocate L2 pages for the initial kernel VA space.
    524 	 */
    525 #ifdef VERBOSE_INIT_ARM
    526 	printf(" vm");
    527 #endif
    528 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    529 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    530 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    531 		add_pages(bmi, &vmdata_l2pt[idx]);
    532 	}
    533 
    534 	/*
    535 	 * If someone wanted a L2 page for I/O, allocate it now.
    536 	 */
    537 	if (iovbase) {
    538 #ifdef VERBOSE_INIT_ARM
    539 		printf(" io");
    540 #endif
    541 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    542 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    543 		add_pages(bmi, &bmi->bmi_io_l2pt);
    544 	}
    545 
    546 #ifdef VERBOSE_INIT_ARM
    547 	printf("%s: allocating stacks\n", __func__);
    548 #endif
    549 
    550 	/* Allocate stacks for all modes and CPUs */
    551 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    552 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    553 	add_pages(bmi, &abtstack);
    554 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    555 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    556 	add_pages(bmi, &fiqstack);
    557 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    558 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    559 	add_pages(bmi, &irqstack);
    560 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    561 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    562 	add_pages(bmi, &undstack);
    563 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    564 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    565 	add_pages(bmi, &idlestack);
    566 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    567 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    568 	add_pages(bmi, &kernelstack);
    569 
    570 	/* Allocate the message buffer from the end of memory. */
    571 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    572 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    573 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    574 	add_pages(bmi, &msgbuf);
    575 	msgbufphys = msgbuf.pv_pa;
    576 	msgbufaddr = (void *)msgbuf.pv_va;
    577 
    578 	if (map_vectors_p) {
    579 		/*
    580 		 * Allocate a page for the system vector page.
    581 		 * This page will just contain the system vectors and can be
    582 		 * shared by all processes.
    583 		 */
    584 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
    585 		    PTE_CACHE, true);
    586 	}
    587 	systempage.pv_va = vectors;
    588 
    589 	/*
    590 	 * If the caller needed a few extra pages for some reason, allocate
    591 	 * them now.
    592 	 */
    593 #if ARM_MMU_XSCALE == 1
    594 #if (ARM_NMMUS > 1)
    595 	if (xscale_use_minidata)
    596 #endif
    597 		valloc_pages(bmi, &minidataclean, 1,
    598 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    599 #endif
    600 
    601 	/*
    602 	 * Ok we have allocated physical pages for the primary kernel
    603 	 * page tables and stacks.  Let's just confirm that.
    604 	 */
    605 	if (kernel_l1pt.pv_va == 0
    606 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    607 		panic("%s: Failed to allocate or align the kernel "
    608 		    "page directory", __func__);
    609 
    610 
    611 #ifdef VERBOSE_INIT_ARM
    612 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    613 #endif
    614 
    615 	/*
    616 	 * Now we start construction of the L1 page table
    617 	 * We start by mapping the L2 page tables into the L1.
    618 	 * This means that we can replace L1 mappings later on if necessary
    619 	 */
    620 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    621 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    622 
    623 	if (map_vectors_p) {
    624 		/* Map the L2 pages tables in the L1 page table */
    625 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    626 		    &bmi->bmi_vector_l2pt);
    627 #ifdef VERBOSE_INIT_ARM
    628 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    629 		    "for VA %#lx\n (vectors)",
    630 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    631 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    632 #endif
    633 	}
    634 
    635 	const vaddr_t kernel_base =
    636 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    637 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    638 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    639 		    &kernel_l2pt[idx]);
    640 #ifdef VERBOSE_INIT_ARM
    641 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    642 		    __func__, kernel_l2pt[idx].pv_va,
    643 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    644 #endif
    645 	}
    646 
    647 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    648 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    649 		    &vmdata_l2pt[idx]);
    650 #ifdef VERBOSE_INIT_ARM
    651 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    652 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    653 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    654 #endif
    655 	}
    656 	if (iovbase) {
    657 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    658 #ifdef VERBOSE_INIT_ARM
    659 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    660 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    661 		    iovbase & -L2_S_SEGSIZE);
    662 #endif
    663 	}
    664 
    665 	/* update the top of the kernel VM */
    666 	pmap_curmaxkvaddr =
    667 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    668 
    669 #ifdef VERBOSE_INIT_ARM
    670 	printf("Mapping kernel\n");
    671 #endif
    672 
    673 	extern char etext[], _end[];
    674 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    675 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    676 
    677 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    678 
    679 	/* start at offset of kernel in RAM */
    680 
    681 	text.pv_pa = bmi->bmi_kernelstart;
    682 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    683 	text.pv_size = textsize;
    684 	text.pv_prot = VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE;
    685 	text.pv_cache = PTE_CACHE;
    686 
    687 #ifdef VERBOSE_INIT_ARM
    688 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    689 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    690 #endif
    691 
    692 	add_pages(bmi, &text);
    693 
    694 	data.pv_pa = text.pv_pa + textsize;
    695 	data.pv_va = text.pv_va + textsize;
    696 	data.pv_size = totalsize - textsize;
    697 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    698 	data.pv_cache = PTE_CACHE;
    699 
    700 #ifdef VERBOSE_INIT_ARM
    701 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    702 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    703 #endif
    704 
    705 	add_pages(bmi, &data);
    706 
    707 #ifdef VERBOSE_INIT_ARM
    708 	printf("Listing Chunks\n");
    709 
    710 	pv_addr_t *lpv;
    711 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    712 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    713 		    "(PA %#lx, prot %d, cache %d)\n",
    714 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    715 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    716 	}
    717 	printf("\nMapping Chunks\n");
    718 #endif
    719 
    720 	pv_addr_t cur_pv;
    721 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    722 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    723 		cur_pv = *pv;
    724 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    725 		pv = SLIST_NEXT(pv, pv_list);
    726 	} else {
    727 		cur_pv.pv_va = KERNEL_BASE;
    728 		cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
    729 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    730 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    731 		cur_pv.pv_cache = PTE_CACHE;
    732 	}
    733 	while (pv != NULL) {
    734 		if (mapallmem_p) {
    735 			if (concat_pvaddr(&cur_pv, pv)) {
    736 				pv = SLIST_NEXT(pv, pv_list);
    737 				continue;
    738 			}
    739 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    740 				/*
    741 				 * See if we can extend the current pv to emcompass the
    742 				 * hole, and if so do it and retry the concatenation.
    743 				 */
    744 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    745 				    && cur_pv.pv_cache == PTE_CACHE) {
    746 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    747 					continue;
    748 				}
    749 
    750 				/*
    751 				 * We couldn't so emit the current chunk and then
    752 				 */
    753 #ifdef VERBOSE_INIT_ARM
    754 				printf("%s: mapping chunk VA %#lx..%#lx "
    755 				    "(PA %#lx, prot %d, cache %d)\n",
    756 				    __func__,
    757 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    758 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    759 #endif
    760 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    761 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    762 
    763 				/*
    764 				 * set the current chunk to the hole and try again.
    765 				 */
    766 				cur_pv.pv_pa += cur_pv.pv_size;
    767 				cur_pv.pv_va += cur_pv.pv_size;
    768 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    769 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    770 				cur_pv.pv_cache = PTE_CACHE;
    771 				continue;
    772 			}
    773 		}
    774 
    775 		/*
    776 		 * The new pv didn't concatenate so emit the current one
    777 		 * and use the new pv as the current pv.
    778 		 */
    779 #ifdef VERBOSE_INIT_ARM
    780 		printf("%s: mapping chunk VA %#lx..%#lx "
    781 		    "(PA %#lx, prot %d, cache %d)\n",
    782 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    783 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    784 #endif
    785 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    786 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    787 		cur_pv = *pv;
    788 		pv = SLIST_NEXT(pv, pv_list);
    789 	}
    790 
    791 	/*
    792 	 * If we are mapping all of memory, let's map the rest of memory.
    793 	 */
    794 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    795 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    796 		    && cur_pv.pv_cache == PTE_CACHE) {
    797 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    798 		} else {
    799 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    800 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    801 			    kernel_vm_base);
    802 #ifdef VERBOSE_INIT_ARM
    803 			printf("%s: mapping chunk VA %#lx..%#lx "
    804 			    "(PA %#lx, prot %d, cache %d)\n",
    805 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    806 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    807 #endif
    808 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    809 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    810 			cur_pv.pv_pa += cur_pv.pv_size;
    811 			cur_pv.pv_va += cur_pv.pv_size;
    812 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    813 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    814 			cur_pv.pv_cache = PTE_CACHE;
    815 		}
    816 	}
    817 
    818 	// The amount we can direct is limited by the start of the
    819 	// virtual part of the kernel address space.  Don't overrun
    820 	// into it.
    821 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    822 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    823 	}
    824 
    825 	/*
    826 	 * Now we map the final chunk.
    827 	 */
    828 #ifdef VERBOSE_INIT_ARM
    829 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    830 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    831 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    832 #endif
    833 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    834 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    835 
    836 	/*
    837 	 * Now we map the stuff that isn't directly after the kernel
    838 	 */
    839 	if (map_vectors_p) {
    840 		/* Map the vector page. */
    841 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    842 		    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
    843 	}
    844 
    845 	/* Map the Mini-Data cache clean area. */
    846 #if ARM_MMU_XSCALE == 1
    847 #if (ARM_NMMUS > 1)
    848 	if (xscale_use_minidata)
    849 #endif
    850 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    851 		    minidataclean.pv_pa);
    852 #endif
    853 
    854 	/*
    855 	 * Map integrated peripherals at same address in first level page
    856 	 * table so that we can continue to use console.
    857 	 */
    858 	if (devmap)
    859 		pmap_devmap_bootstrap(l1pt_va, devmap);
    860 
    861 #ifdef VERBOSE_INIT_ARM
    862 	/* Tell the user about where all the bits and pieces live. */
    863 	printf("%22s       Physical              Virtual        Num\n", " ");
    864 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    865 
    866 	static const char mem_fmt[] =
    867 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    868 	static const char mem_fmt_nov[] =
    869 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    870 
    871 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    872 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    873 	    physmem);
    874 	printf(mem_fmt, "text section",
    875 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    876 	       text.pv_va, text.pv_va + text.pv_size - 1,
    877 	       (int)(text.pv_size / PAGE_SIZE));
    878 	printf(mem_fmt, "data section",
    879 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    880 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    881 	       (int)((round_page((vaddr_t)_edata)
    882 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    883 	printf(mem_fmt, "bss section",
    884 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    885 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    886 	       (int)((round_page((vaddr_t)__bss_end__)
    887 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    888 	printf(mem_fmt, "L1 page directory",
    889 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    890 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    891 	    L1_TABLE_SIZE / PAGE_SIZE);
    892 	printf(mem_fmt, "ABT stack (CPU 0)",
    893 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    894 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    895 	    ABT_STACK_SIZE);
    896 	printf(mem_fmt, "FIQ stack (CPU 0)",
    897 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    898 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    899 	    FIQ_STACK_SIZE);
    900 	printf(mem_fmt, "IRQ stack (CPU 0)",
    901 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    902 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    903 	    IRQ_STACK_SIZE);
    904 	printf(mem_fmt, "UND stack (CPU 0)",
    905 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    906 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    907 	    UND_STACK_SIZE);
    908 	printf(mem_fmt, "IDLE stack (CPU 0)",
    909 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    910 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    911 	    UPAGES);
    912 	printf(mem_fmt, "SVC stack",
    913 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    914 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    915 	    UPAGES);
    916 	printf(mem_fmt, "Message Buffer",
    917 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    918 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    919 	    (int)msgbuf_pgs);
    920 	if (map_vectors_p) {
    921 		printf(mem_fmt, "Exception Vectors",
    922 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    923 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    924 		    1);
    925 	}
    926 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    927 		pv = &bmi->bmi_freeblocks[i];
    928 
    929 		printf(mem_fmt_nov, "Free Memory",
    930 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    931 		    pv->pv_size / PAGE_SIZE);
    932 	}
    933 #endif
    934 	/*
    935 	 * Now we have the real page tables in place so we can switch to them.
    936 	 * Once this is done we will be running with the REAL kernel page
    937 	 * tables.
    938 	 */
    939 
    940 #if defined(VERBOSE_INIT_ARM)
    941 	printf("TTBR0=%#x", armreg_ttbr_read());
    942 #ifdef _ARM_ARCH_6
    943 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    944 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    945 	    armreg_contextidr_read());
    946 #endif
    947 	printf("\n");
    948 #endif
    949 
    950 	/* Switch tables */
    951 #ifdef VERBOSE_INIT_ARM
    952 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    953 #endif
    954 
    955 #ifdef ARM_MMU_EXTENDED
    956 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    957 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    958 #else
    959 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    960 #endif
    961 	cpu_idcache_wbinv_all();
    962 #ifdef VERBOSE_INIT_ARM
    963 	printf(" ttb");
    964 #endif
    965 #ifdef ARM_MMU_EXTENDED
    966 	/*
    967 	 * TTBCR should have been initialized by the MD start code.
    968 	 */
    969 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    970 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    971 	/*
    972 	 * Disable lookups via TTBR0 until there is an activated pmap.
    973 	 */
    974 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    975 	cpu_setttb(l1pt_pa, KERNEL_PID);
    976 	arm_isb();
    977 #else
    978 	cpu_setttb(l1pt_pa, true);
    979 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    980 #endif
    981 	cpu_tlb_flushID();
    982 
    983 #ifdef VERBOSE_INIT_ARM
    984 #ifdef ARM_MMU_EXTENDED
    985 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    986 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    987 #else
    988 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
    989 #endif
    990 #endif
    991 
    992 #ifdef MULTIPROCESSOR
    993 	/*
    994 	 * Kick the secondaries to load the TTB.  After which they'll go
    995 	 * back to sleep to wait for the final kick so they will hatch.
    996 	 */
    997 #ifdef VERBOSE_INIT_ARM
    998 	printf(" hatchlings");
    999 #endif
   1000 	cpu_boot_secondary_processors();
   1001 #endif
   1002 
   1003 #ifdef VERBOSE_INIT_ARM
   1004 	printf(" OK\n");
   1005 #endif
   1006 }
   1007