Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.40
      1 /*	$NetBSD: arm32_kvminit.c,v 1.40 2017/07/06 15:09:17 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include "opt_multiprocessor.h"
    125 
    126 #include <sys/cdefs.h>
    127 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.40 2017/07/06 15:09:17 skrll Exp $");
    128 
    129 #include <sys/param.h>
    130 #include <sys/device.h>
    131 #include <sys/kernel.h>
    132 #include <sys/reboot.h>
    133 #include <sys/bus.h>
    134 
    135 #include <dev/cons.h>
    136 
    137 #include <uvm/uvm_extern.h>
    138 
    139 #include <arm/locore.h>
    140 #include <arm/db_machdep.h>
    141 #include <arm/undefined.h>
    142 #include <arm/bootconfig.h>
    143 #include <arm/arm32/machdep.h>
    144 
    145 #ifdef MULTIPROCESSOR
    146 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    147 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
    148 #endif
    149 #endif
    150 
    151 struct bootmem_info bootmem_info;
    152 
    153 extern void *msgbufaddr;
    154 paddr_t msgbufphys;
    155 paddr_t physical_start;
    156 paddr_t physical_end;
    157 
    158 extern char etext[];
    159 extern char __data_start[], _edata[];
    160 extern char __bss_start[], __bss_end__[];
    161 extern char _end[];
    162 
    163 /* Page tables for mapping kernel VM */
    164 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    165 
    166 /*
    167  * Macros to translate between physical and virtual for a subset of the
    168  * kernel address space.  *Not* for general use.
    169  */
    170 #if defined(KERNEL_BASE_VOFFSET)
    171 #define KERN_VTOPHYS(bmi, va) \
    172 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
    173 #define KERN_PHYSTOV(bmi, pa) \
    174 	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
    175 #else
    176 #define KERN_VTOPHYS(bmi, va) \
    177 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    178 #define KERN_PHYSTOV(bmi, pa) \
    179 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    180 #endif
    181 
    182 void
    183 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    184 {
    185 	struct bootmem_info * const bmi = &bootmem_info;
    186 	pv_addr_t *pv = bmi->bmi_freeblocks;
    187 
    188 #ifdef VERBOSE_INIT_ARM
    189 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    190 	    __func__, memstart, memsize, kernelstart);
    191 #endif
    192 
    193 	physical_start = bmi->bmi_start = memstart;
    194 	physical_end = bmi->bmi_end = memstart + memsize;
    195 #ifndef ARM_HAS_LPAE
    196 	if (physical_end == 0) {
    197 		physical_end = -PAGE_SIZE;
    198 		memsize -= PAGE_SIZE;
    199 		bmi->bmi_end -= PAGE_SIZE;
    200 #ifdef VERBOSE_INIT_ARM
    201 		printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    202 		    __func__);
    203 #endif
    204 	}
    205 #endif
    206 	physmem = memsize / PAGE_SIZE;
    207 
    208 	/*
    209 	 * Let's record where the kernel lives.
    210 	 */
    211 	bmi->bmi_kernelstart = kernelstart;
    212 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    213 
    214 #ifdef VERBOSE_INIT_ARM
    215 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    216 #endif
    217 
    218 	/*
    219 	 * Now the rest of the free memory must be after the kernel.
    220 	 */
    221 	pv->pv_pa = bmi->bmi_kernelend;
    222 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    223 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    224 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    225 #ifdef VERBOSE_INIT_ARM
    226 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    227 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    228 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    229 #endif
    230 	pv++;
    231 
    232 	/*
    233 	 * Add a free block for any memory before the kernel.
    234 	 */
    235 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    236 		pv->pv_pa = bmi->bmi_start;
    237 		pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    238 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    239 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    240 #ifdef VERBOSE_INIT_ARM
    241 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    242 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    243 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    244 #endif
    245 		pv++;
    246 	}
    247 
    248 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    249 
    250 	SLIST_INIT(&bmi->bmi_freechunks);
    251 	SLIST_INIT(&bmi->bmi_chunks);
    252 }
    253 
    254 static bool
    255 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    256 {
    257 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    258 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    259 	    && acc_pv->pv_prot == pv->pv_prot
    260 	    && acc_pv->pv_cache == pv->pv_cache) {
    261 #ifdef VERBOSE_INIT_ARMX
    262 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    263 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    264 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    265 #endif
    266 		acc_pv->pv_size += pv->pv_size;
    267 		return true;
    268 	}
    269 
    270 	return false;
    271 }
    272 
    273 static void
    274 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    275 {
    276 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    277 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    278 		pv_addr_t * const pv0 = (*pvp);
    279 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    280 		if (concat_pvaddr(pv0, pv)) {
    281 #ifdef VERBOSE_INIT_ARM
    282 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    283 			    __func__, "appending", pv,
    284 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    285 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    286 #endif
    287 			pv = SLIST_NEXT(pv0, pv_list);
    288 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    289 #ifdef VERBOSE_INIT_ARM
    290 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    291 				    __func__, "merging", pv,
    292 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    293 				    pv0->pv_pa,
    294 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    295 #endif
    296 				SLIST_REMOVE_AFTER(pv0, pv_list);
    297 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    298 			}
    299 			return;
    300 		}
    301 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    302 		pvp = &SLIST_NEXT(*pvp, pv_list);
    303 	}
    304 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    305 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    306 	KASSERT(new_pv != NULL);
    307 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    308 	*new_pv = *pv;
    309 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    310 	(*pvp) = new_pv;
    311 #ifdef VERBOSE_INIT_ARM
    312 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    313 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    314 	    new_pv->pv_size / PAGE_SIZE);
    315 	if (SLIST_NEXT(new_pv, pv_list))
    316 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    317 	else
    318 		printf("at tail\n");
    319 #endif
    320 }
    321 
    322 static void
    323 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    324 	int prot, int cache, bool zero_p)
    325 {
    326 	size_t nbytes = npages * PAGE_SIZE;
    327 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    328 	size_t free_idx = 0;
    329 	static bool l1pt_found;
    330 
    331 	KASSERT(npages > 0);
    332 
    333 	/*
    334 	 * If we haven't allocated the kernel L1 page table and we are aligned
    335 	 * at a L1 table boundary, alloc the memory for it.
    336 	 */
    337 	if (!l1pt_found
    338 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    339 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    340 		l1pt_found = true;
    341 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    342 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    343 		add_pages(bmi, &kernel_l1pt);
    344 	}
    345 
    346 	while (nbytes > free_pv->pv_size) {
    347 		free_pv++;
    348 		free_idx++;
    349 		if (free_idx == bmi->bmi_nfreeblocks) {
    350 			panic("%s: could not allocate %zu bytes",
    351 			    __func__, nbytes);
    352 		}
    353 	}
    354 
    355 	/*
    356 	 * As we allocate the memory, make sure that we don't walk over
    357 	 * our current first level translation table.
    358 	 */
    359 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    360 
    361 	pv->pv_pa = free_pv->pv_pa;
    362 	pv->pv_va = free_pv->pv_va;
    363 	pv->pv_size = nbytes;
    364 	pv->pv_prot = prot;
    365 	pv->pv_cache = cache;
    366 
    367 	/*
    368 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    369 	 * just use PTE_CACHE.
    370 	 */
    371 	if (cache == PTE_PAGETABLE
    372 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    373 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    374 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    375 		pv->pv_cache = PTE_CACHE;
    376 
    377 	free_pv->pv_pa += nbytes;
    378 	free_pv->pv_va += nbytes;
    379 	free_pv->pv_size -= nbytes;
    380 	if (free_pv->pv_size == 0) {
    381 		--bmi->bmi_nfreeblocks;
    382 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    383 			free_pv[0] = free_pv[1];
    384 		}
    385 	}
    386 
    387 	bmi->bmi_freepages -= npages;
    388 
    389 	if (zero_p)
    390 		memset((void *)pv->pv_va, 0, nbytes);
    391 }
    392 
    393 void
    394 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    395 	const struct pmap_devmap *devmap, bool mapallmem_p)
    396 {
    397 	struct bootmem_info * const bmi = &bootmem_info;
    398 #ifdef MULTIPROCESSOR
    399 	const size_t cpu_num = arm_cpu_max;
    400 #else
    401 	const size_t cpu_num = 1;
    402 #endif
    403 #ifdef ARM_HAS_VBAR
    404 	const bool map_vectors_p = false;
    405 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    406 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    407 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    408 #else
    409 	const bool map_vectors_p = true;
    410 #endif
    411 
    412 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    413 	KASSERT(mapallmem_p);
    414 #ifdef ARM_MMU_EXTENDED
    415 	/*
    416 	 * The direct map VA space ends at the start of the kernel VM space.
    417 	 */
    418 	pmap_directlimit = kernel_vm_base;
    419 #else
    420 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    421 #endif /* ARM_MMU_EXTENDED */
    422 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    423 
    424 	/*
    425 	 * Calculate the number of L2 pages needed for mapping the
    426 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    427 	 * and 1 for IO
    428 	 */
    429 	size_t kernel_size = bmi->bmi_kernelend;
    430 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    431 	kernel_size += L1_TABLE_SIZE_REAL;
    432 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    433 	if (map_vectors_p) {
    434 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    435 	}
    436 	if (iovbase) {
    437 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    438 	}
    439 	kernel_size +=
    440 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    441 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    442 	kernel_size += round_page(MSGBUFSIZE);
    443 	kernel_size += 0x10000;	/* slop */
    444 	if (!mapallmem_p) {
    445 		kernel_size += PAGE_SIZE
    446 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    447 	}
    448 	kernel_size = round_page(kernel_size);
    449 
    450 	/*
    451 	 * Now we know how many L2 pages it will take.
    452 	 */
    453 	const size_t KERNEL_L2PT_KERNEL_NUM =
    454 	    round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    455 
    456 #ifdef VERBOSE_INIT_ARM
    457 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    458 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    459 #endif
    460 
    461 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    462 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    463 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    464 	pv_addr_t msgbuf;
    465 	pv_addr_t text;
    466 	pv_addr_t data;
    467 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    468 #if ARM_MMU_XSCALE == 1
    469 	pv_addr_t minidataclean;
    470 #endif
    471 
    472 	/*
    473 	 * We need to allocate some fixed page tables to get the kernel going.
    474 	 *
    475 	 * We are going to allocate our bootstrap pages from the beginning of
    476 	 * the free space that we just calculated.  We allocate one page
    477 	 * directory and a number of page tables and store the physical
    478 	 * addresses in the bmi_l2pts array in bootmem_info.
    479 	 *
    480 	 * The kernel page directory must be on a 16K boundary.  The page
    481 	 * tables must be on 4K boundaries.  What we do is allocate the
    482 	 * page directory on the first 16K boundary that we encounter, and
    483 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    484 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    485 	 * least one 16K aligned region.
    486 	 */
    487 
    488 #ifdef VERBOSE_INIT_ARM
    489 	printf("%s: allocating page tables for", __func__);
    490 #endif
    491 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    492 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    493 	}
    494 
    495 	kernel_l1pt.pv_pa = 0;
    496 	kernel_l1pt.pv_va = 0;
    497 
    498 	/*
    499 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    500 	 * an L1 page table, we will allocate the pages for it first and then
    501 	 * allocate the L2 page.
    502 	 */
    503 
    504 	if (map_vectors_p) {
    505 		/*
    506 		 * First allocate L2 page for the vectors.
    507 		 */
    508 #ifdef VERBOSE_INIT_ARM
    509 		printf(" vector");
    510 #endif
    511 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    512 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    513 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    514 	}
    515 
    516 	/*
    517 	 * Now allocate L2 pages for the kernel
    518 	 */
    519 #ifdef VERBOSE_INIT_ARM
    520 	printf(" kernel");
    521 #endif
    522 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    523 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    524 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    525 		add_pages(bmi, &kernel_l2pt[idx]);
    526 	}
    527 
    528 	/*
    529 	 * Now allocate L2 pages for the initial kernel VA space.
    530 	 */
    531 #ifdef VERBOSE_INIT_ARM
    532 	printf(" vm");
    533 #endif
    534 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    535 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    536 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    537 		add_pages(bmi, &vmdata_l2pt[idx]);
    538 	}
    539 
    540 	/*
    541 	 * If someone wanted a L2 page for I/O, allocate it now.
    542 	 */
    543 	if (iovbase) {
    544 #ifdef VERBOSE_INIT_ARM
    545 		printf(" io");
    546 #endif
    547 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    548 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    549 		add_pages(bmi, &bmi->bmi_io_l2pt);
    550 	}
    551 
    552 #ifdef VERBOSE_INIT_ARM
    553 	printf("%s: allocating stacks\n", __func__);
    554 #endif
    555 
    556 	/* Allocate stacks for all modes and CPUs */
    557 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    558 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    559 	add_pages(bmi, &abtstack);
    560 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    561 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    562 	add_pages(bmi, &fiqstack);
    563 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    564 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    565 	add_pages(bmi, &irqstack);
    566 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    567 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    568 	add_pages(bmi, &undstack);
    569 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    570 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    571 	add_pages(bmi, &idlestack);
    572 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    573 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    574 	add_pages(bmi, &kernelstack);
    575 
    576 	/* Allocate the message buffer from the end of memory. */
    577 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    578 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    579 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    580 	add_pages(bmi, &msgbuf);
    581 	msgbufphys = msgbuf.pv_pa;
    582 	msgbufaddr = (void *)msgbuf.pv_va;
    583 
    584 	if (map_vectors_p) {
    585 		/*
    586 		 * Allocate a page for the system vector page.
    587 		 * This page will just contain the system vectors and can be
    588 		 * shared by all processes.
    589 		 */
    590 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
    591 		    PTE_CACHE, true);
    592 	}
    593 	systempage.pv_va = vectors;
    594 
    595 	/*
    596 	 * If the caller needed a few extra pages for some reason, allocate
    597 	 * them now.
    598 	 */
    599 #if ARM_MMU_XSCALE == 1
    600 #if (ARM_NMMUS > 1)
    601 	if (xscale_use_minidata)
    602 #endif
    603 		valloc_pages(bmi, &minidataclean, 1,
    604 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    605 #endif
    606 
    607 	/*
    608 	 * Ok we have allocated physical pages for the primary kernel
    609 	 * page tables and stacks.  Let's just confirm that.
    610 	 */
    611 	if (kernel_l1pt.pv_va == 0
    612 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    613 		panic("%s: Failed to allocate or align the kernel "
    614 		    "page directory", __func__);
    615 
    616 
    617 #ifdef VERBOSE_INIT_ARM
    618 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    619 #endif
    620 
    621 	/*
    622 	 * Now we start construction of the L1 page table
    623 	 * We start by mapping the L2 page tables into the L1.
    624 	 * This means that we can replace L1 mappings later on if necessary
    625 	 */
    626 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    627 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    628 
    629 	if (map_vectors_p) {
    630 		/* Map the L2 pages tables in the L1 page table */
    631 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    632 		    &bmi->bmi_vector_l2pt);
    633 #ifdef VERBOSE_INIT_ARM
    634 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    635 		    "for VA %#lx\n (vectors)",
    636 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    637 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    638 #endif
    639 	}
    640 
    641 	const vaddr_t kernel_base =
    642 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    643 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    644 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    645 		    &kernel_l2pt[idx]);
    646 #ifdef VERBOSE_INIT_ARM
    647 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    648 		    __func__, kernel_l2pt[idx].pv_va,
    649 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    650 #endif
    651 	}
    652 
    653 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    654 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    655 		    &vmdata_l2pt[idx]);
    656 #ifdef VERBOSE_INIT_ARM
    657 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    658 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    659 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    660 #endif
    661 	}
    662 	if (iovbase) {
    663 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    664 #ifdef VERBOSE_INIT_ARM
    665 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    666 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    667 		    iovbase & -L2_S_SEGSIZE);
    668 #endif
    669 	}
    670 
    671 	/* update the top of the kernel VM */
    672 	pmap_curmaxkvaddr =
    673 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    674 
    675 #ifdef VERBOSE_INIT_ARM
    676 	printf("Mapping kernel\n");
    677 #endif
    678 
    679 	extern char etext[], _end[];
    680 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    681 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    682 
    683 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    684 
    685 	/* start at offset of kernel in RAM */
    686 
    687 	text.pv_pa = bmi->bmi_kernelstart;
    688 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    689 	text.pv_size = textsize;
    690 	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
    691 	text.pv_cache = PTE_CACHE;
    692 
    693 #ifdef VERBOSE_INIT_ARM
    694 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    695 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    696 #endif
    697 
    698 	add_pages(bmi, &text);
    699 
    700 	data.pv_pa = text.pv_pa + textsize;
    701 	data.pv_va = text.pv_va + textsize;
    702 	data.pv_size = totalsize - textsize;
    703 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    704 	data.pv_cache = PTE_CACHE;
    705 
    706 #ifdef VERBOSE_INIT_ARM
    707 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    708 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    709 #endif
    710 
    711 	add_pages(bmi, &data);
    712 
    713 #ifdef VERBOSE_INIT_ARM
    714 	printf("Listing Chunks\n");
    715 
    716 	pv_addr_t *lpv;
    717 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    718 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    719 		    "(PA %#lx, prot %d, cache %d)\n",
    720 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    721 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    722 	}
    723 	printf("\nMapping Chunks\n");
    724 #endif
    725 
    726 	pv_addr_t cur_pv;
    727 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    728 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    729 		cur_pv = *pv;
    730 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    731 		pv = SLIST_NEXT(pv, pv_list);
    732 	} else {
    733 		cur_pv.pv_va = KERNEL_BASE;
    734 		cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
    735 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    736 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    737 		cur_pv.pv_cache = PTE_CACHE;
    738 	}
    739 	while (pv != NULL) {
    740 		if (mapallmem_p) {
    741 			if (concat_pvaddr(&cur_pv, pv)) {
    742 				pv = SLIST_NEXT(pv, pv_list);
    743 				continue;
    744 			}
    745 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    746 				/*
    747 				 * See if we can extend the current pv to emcompass the
    748 				 * hole, and if so do it and retry the concatenation.
    749 				 */
    750 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    751 				    && cur_pv.pv_cache == PTE_CACHE) {
    752 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    753 					continue;
    754 				}
    755 
    756 				/*
    757 				 * We couldn't so emit the current chunk and then
    758 				 */
    759 #ifdef VERBOSE_INIT_ARM
    760 				printf("%s: mapping chunk VA %#lx..%#lx "
    761 				    "(PA %#lx, prot %d, cache %d)\n",
    762 				    __func__,
    763 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    764 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    765 #endif
    766 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    767 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    768 
    769 				/*
    770 				 * set the current chunk to the hole and try again.
    771 				 */
    772 				cur_pv.pv_pa += cur_pv.pv_size;
    773 				cur_pv.pv_va += cur_pv.pv_size;
    774 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    775 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    776 				cur_pv.pv_cache = PTE_CACHE;
    777 				continue;
    778 			}
    779 		}
    780 
    781 		/*
    782 		 * The new pv didn't concatenate so emit the current one
    783 		 * and use the new pv as the current pv.
    784 		 */
    785 #ifdef VERBOSE_INIT_ARM
    786 		printf("%s: mapping chunk VA %#lx..%#lx "
    787 		    "(PA %#lx, prot %d, cache %d)\n",
    788 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    789 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    790 #endif
    791 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    792 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    793 		cur_pv = *pv;
    794 		pv = SLIST_NEXT(pv, pv_list);
    795 	}
    796 
    797 	/*
    798 	 * If we are mapping all of memory, let's map the rest of memory.
    799 	 */
    800 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    801 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    802 		    && cur_pv.pv_cache == PTE_CACHE) {
    803 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    804 		} else {
    805 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    806 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    807 			    kernel_vm_base);
    808 #ifdef VERBOSE_INIT_ARM
    809 			printf("%s: mapping chunk VA %#lx..%#lx "
    810 			    "(PA %#lx, prot %d, cache %d)\n",
    811 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    812 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    813 #endif
    814 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    815 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    816 			cur_pv.pv_pa += cur_pv.pv_size;
    817 			cur_pv.pv_va += cur_pv.pv_size;
    818 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    819 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    820 			cur_pv.pv_cache = PTE_CACHE;
    821 		}
    822 	}
    823 
    824 	// The amount we can direct is limited by the start of the
    825 	// virtual part of the kernel address space.  Don't overrun
    826 	// into it.
    827 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    828 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    829 	}
    830 
    831 	/*
    832 	 * Now we map the final chunk.
    833 	 */
    834 #ifdef VERBOSE_INIT_ARM
    835 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    836 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    837 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    838 #endif
    839 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    840 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    841 
    842 	/*
    843 	 * Now we map the stuff that isn't directly after the kernel
    844 	 */
    845 	if (map_vectors_p) {
    846 		/* Map the vector page. */
    847 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    848 		    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
    849 	}
    850 
    851 	/* Map the Mini-Data cache clean area. */
    852 #if ARM_MMU_XSCALE == 1
    853 #if (ARM_NMMUS > 1)
    854 	if (xscale_use_minidata)
    855 #endif
    856 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    857 		    minidataclean.pv_pa);
    858 #endif
    859 
    860 	/*
    861 	 * Map integrated peripherals at same address in first level page
    862 	 * table so that we can continue to use console.
    863 	 */
    864 	if (devmap)
    865 		pmap_devmap_bootstrap(l1pt_va, devmap);
    866 
    867 #ifdef VERBOSE_INIT_ARM
    868 	/* Tell the user about where all the bits and pieces live. */
    869 	printf("%22s       Physical              Virtual        Num\n", " ");
    870 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    871 
    872 	static const char mem_fmt[] =
    873 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    874 	static const char mem_fmt_nov[] =
    875 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    876 
    877 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    878 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    879 	    (int)physmem);
    880 	printf(mem_fmt, "text section",
    881 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    882 	       text.pv_va, text.pv_va + text.pv_size - 1,
    883 	       (int)(text.pv_size / PAGE_SIZE));
    884 	printf(mem_fmt, "data section",
    885 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    886 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    887 	       (int)((round_page((vaddr_t)_edata)
    888 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    889 	printf(mem_fmt, "bss section",
    890 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    891 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    892 	       (int)((round_page((vaddr_t)__bss_end__)
    893 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    894 	printf(mem_fmt, "L1 page directory",
    895 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    896 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    897 	    L1_TABLE_SIZE / PAGE_SIZE);
    898 	printf(mem_fmt, "ABT stack (CPU 0)",
    899 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    900 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    901 	    ABT_STACK_SIZE);
    902 	printf(mem_fmt, "FIQ stack (CPU 0)",
    903 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    904 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    905 	    FIQ_STACK_SIZE);
    906 	printf(mem_fmt, "IRQ stack (CPU 0)",
    907 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    908 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    909 	    IRQ_STACK_SIZE);
    910 	printf(mem_fmt, "UND stack (CPU 0)",
    911 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    912 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    913 	    UND_STACK_SIZE);
    914 	printf(mem_fmt, "IDLE stack (CPU 0)",
    915 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    916 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    917 	    UPAGES);
    918 	printf(mem_fmt, "SVC stack",
    919 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    920 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    921 	    UPAGES);
    922 	printf(mem_fmt, "Message Buffer",
    923 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    924 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    925 	    (int)msgbuf_pgs);
    926 	if (map_vectors_p) {
    927 		printf(mem_fmt, "Exception Vectors",
    928 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    929 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    930 		    1);
    931 	}
    932 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    933 		pv = &bmi->bmi_freeblocks[i];
    934 
    935 		printf(mem_fmt_nov, "Free Memory",
    936 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    937 		    pv->pv_size / PAGE_SIZE);
    938 	}
    939 #endif
    940 	/*
    941 	 * Now we have the real page tables in place so we can switch to them.
    942 	 * Once this is done we will be running with the REAL kernel page
    943 	 * tables.
    944 	 */
    945 
    946 #if defined(VERBOSE_INIT_ARM)
    947 	printf("TTBR0=%#x", armreg_ttbr_read());
    948 #ifdef _ARM_ARCH_6
    949 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    950 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    951 	    armreg_contextidr_read());
    952 #endif
    953 	printf("\n");
    954 #endif
    955 
    956 	/* Switch tables */
    957 #ifdef VERBOSE_INIT_ARM
    958 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    959 #endif
    960 
    961 #ifdef ARM_MMU_EXTENDED
    962 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    963 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    964 #else
    965 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    966 #endif
    967 	cpu_idcache_wbinv_all();
    968 #ifdef VERBOSE_INIT_ARM
    969 	printf(" ttb");
    970 #endif
    971 #ifdef ARM_MMU_EXTENDED
    972 	/*
    973 	 * TTBCR should have been initialized by the MD start code.
    974 	 */
    975 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    976 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    977 	/*
    978 	 * Disable lookups via TTBR0 until there is an activated pmap.
    979 	 */
    980 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    981 	cpu_setttb(l1pt_pa, KERNEL_PID);
    982 	arm_isb();
    983 #else
    984 	cpu_setttb(l1pt_pa, true);
    985 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    986 #endif
    987 	cpu_tlb_flushID();
    988 
    989 #ifdef VERBOSE_INIT_ARM
    990 #ifdef ARM_MMU_EXTENDED
    991 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    992 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    993 #else
    994 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
    995 #endif
    996 #endif
    997 
    998 #ifdef MULTIPROCESSOR
    999 	/*
   1000 	 * Kick the secondaries to load the TTB.  After which they'll go
   1001 	 * back to sleep to wait for the final kick so they will hatch.
   1002 	 */
   1003 #ifdef VERBOSE_INIT_ARM
   1004 	printf(" hatchlings");
   1005 #endif
   1006 	cpu_boot_secondary_processors();
   1007 #endif
   1008 
   1009 #ifdef VERBOSE_INIT_ARM
   1010 	printf(" OK\n");
   1011 #endif
   1012 }
   1013