Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.41
      1 /*	$NetBSD: arm32_kvminit.c,v 1.41 2017/12/10 21:38:26 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include "opt_fdt.h"
    125 #include "opt_multiprocessor.h"
    126 
    127 #include <sys/cdefs.h>
    128 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.41 2017/12/10 21:38:26 skrll Exp $");
    129 
    130 #include <sys/param.h>
    131 #include <sys/device.h>
    132 #include <sys/kernel.h>
    133 #include <sys/reboot.h>
    134 #include <sys/bus.h>
    135 
    136 #include <dev/cons.h>
    137 
    138 #include <uvm/uvm_extern.h>
    139 
    140 #include <arm/locore.h>
    141 #include <arm/db_machdep.h>
    142 #include <arm/undefined.h>
    143 #include <arm/bootconfig.h>
    144 #include <arm/arm32/machdep.h>
    145 
    146 #if defined(FDT)
    147 #include <arch/evbarm/fdt/platform.h>
    148 #endif
    149 
    150 #ifdef MULTIPROCESSOR
    151 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    152 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
    153 #endif
    154 #endif
    155 
    156 struct bootmem_info bootmem_info;
    157 
    158 extern void *msgbufaddr;
    159 paddr_t msgbufphys;
    160 paddr_t physical_start;
    161 paddr_t physical_end;
    162 
    163 extern char etext[];
    164 extern char __data_start[], _edata[];
    165 extern char __bss_start[], __bss_end__[];
    166 extern char _end[];
    167 
    168 /* Page tables for mapping kernel VM */
    169 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    170 
    171 /*
    172  * Macros to translate between physical and virtual for a subset of the
    173  * kernel address space.  *Not* for general use.
    174  */
    175 #if defined(KERNEL_BASE_VOFFSET)
    176 #define KERN_VTOPHYS(bmi, va) \
    177 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
    178 #define KERN_PHYSTOV(bmi, pa) \
    179 	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
    180 #else
    181 #define KERN_VTOPHYS(bmi, va) \
    182 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    183 #define KERN_PHYSTOV(bmi, pa) \
    184 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    185 #endif
    186 
    187 void
    188 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    189 {
    190 	struct bootmem_info * const bmi = &bootmem_info;
    191 	pv_addr_t *pv = bmi->bmi_freeblocks;
    192 
    193 #ifdef VERBOSE_INIT_ARM
    194 	printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    195 	    __func__, memstart, memsize, kernelstart);
    196 #endif
    197 
    198 	physical_start = bmi->bmi_start = memstart;
    199 	physical_end = bmi->bmi_end = memstart + memsize;
    200 #ifndef ARM_HAS_LPAE
    201 	if (physical_end == 0) {
    202 		physical_end = -PAGE_SIZE;
    203 		memsize -= PAGE_SIZE;
    204 		bmi->bmi_end -= PAGE_SIZE;
    205 #ifdef VERBOSE_INIT_ARM
    206 		printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    207 		    __func__);
    208 #endif
    209 	}
    210 #endif
    211 	physmem = memsize / PAGE_SIZE;
    212 
    213 	/*
    214 	 * Let's record where the kernel lives.
    215 	 */
    216 	bmi->bmi_kernelstart = kernelstart;
    217 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    218 
    219 #if defined(FDT)
    220 	fdt_add_reserved_memory_range(bmi->bmi_kernelstart,
    221 	    bmi->bmi_kernelend - bmi->bmi_kernelstart);
    222 #endif
    223 
    224 #ifdef VERBOSE_INIT_ARM
    225 	printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    226 #endif
    227 
    228 	/*
    229 	 * Now the rest of the free memory must be after the kernel.
    230 	 */
    231 	pv->pv_pa = bmi->bmi_kernelend;
    232 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    233 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    234 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    235 #ifdef VERBOSE_INIT_ARM
    236 	printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    237 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    238 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    239 #endif
    240 	pv++;
    241 
    242 #if !defined(FDT)
    243 	/*
    244 	 * Add a free block for any memory before the kernel.
    245 	 */
    246 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    247 		pv->pv_pa = bmi->bmi_start;
    248 		pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    249 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    250 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    251 #ifdef VERBOSE_INIT_ARM
    252 		printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    253 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    254 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    255 #endif
    256 		pv++;
    257 	}
    258 #endif
    259 
    260 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    261 
    262 	SLIST_INIT(&bmi->bmi_freechunks);
    263 	SLIST_INIT(&bmi->bmi_chunks);
    264 }
    265 
    266 static bool
    267 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    268 {
    269 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    270 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    271 	    && acc_pv->pv_prot == pv->pv_prot
    272 	    && acc_pv->pv_cache == pv->pv_cache) {
    273 #ifdef VERBOSE_INIT_ARMX
    274 		printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    275 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    276 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    277 #endif
    278 		acc_pv->pv_size += pv->pv_size;
    279 		return true;
    280 	}
    281 
    282 	return false;
    283 }
    284 
    285 static void
    286 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    287 {
    288 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    289 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    290 		pv_addr_t * const pv0 = (*pvp);
    291 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    292 		if (concat_pvaddr(pv0, pv)) {
    293 #ifdef VERBOSE_INIT_ARM
    294 			printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    295 			    __func__, "appending", pv,
    296 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    297 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    298 #endif
    299 			pv = SLIST_NEXT(pv0, pv_list);
    300 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    301 #ifdef VERBOSE_INIT_ARM
    302 				printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    303 				    __func__, "merging", pv,
    304 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    305 				    pv0->pv_pa,
    306 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    307 #endif
    308 				SLIST_REMOVE_AFTER(pv0, pv_list);
    309 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    310 			}
    311 			return;
    312 		}
    313 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    314 		pvp = &SLIST_NEXT(*pvp, pv_list);
    315 	}
    316 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    317 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    318 	KASSERT(new_pv != NULL);
    319 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    320 	*new_pv = *pv;
    321 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    322 	(*pvp) = new_pv;
    323 #ifdef VERBOSE_INIT_ARM
    324 	printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    325 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    326 	    new_pv->pv_size / PAGE_SIZE);
    327 	if (SLIST_NEXT(new_pv, pv_list))
    328 		printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    329 	else
    330 		printf("at tail\n");
    331 #endif
    332 }
    333 
    334 static void
    335 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    336 	int prot, int cache, bool zero_p)
    337 {
    338 	size_t nbytes = npages * PAGE_SIZE;
    339 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    340 	size_t free_idx = 0;
    341 	static bool l1pt_found;
    342 
    343 	KASSERT(npages > 0);
    344 
    345 	/*
    346 	 * If we haven't allocated the kernel L1 page table and we are aligned
    347 	 * at a L1 table boundary, alloc the memory for it.
    348 	 */
    349 	if (!l1pt_found
    350 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    351 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    352 		l1pt_found = true;
    353 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    354 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    355 		add_pages(bmi, &kernel_l1pt);
    356 	}
    357 
    358 	while (nbytes > free_pv->pv_size) {
    359 		free_pv++;
    360 		free_idx++;
    361 		if (free_idx == bmi->bmi_nfreeblocks) {
    362 			panic("%s: could not allocate %zu bytes",
    363 			    __func__, nbytes);
    364 		}
    365 	}
    366 
    367 	/*
    368 	 * As we allocate the memory, make sure that we don't walk over
    369 	 * our current first level translation table.
    370 	 */
    371 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    372 
    373 #if defined(FDT)
    374 	fdt_add_reserved_memory_range(free_pv->pv_pa, nbytes);
    375 #endif
    376 	pv->pv_pa = free_pv->pv_pa;
    377 	pv->pv_va = free_pv->pv_va;
    378 	pv->pv_size = nbytes;
    379 	pv->pv_prot = prot;
    380 	pv->pv_cache = cache;
    381 
    382 	/*
    383 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    384 	 * just use PTE_CACHE.
    385 	 */
    386 	if (cache == PTE_PAGETABLE
    387 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    388 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    389 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    390 		pv->pv_cache = PTE_CACHE;
    391 
    392 	free_pv->pv_pa += nbytes;
    393 	free_pv->pv_va += nbytes;
    394 	free_pv->pv_size -= nbytes;
    395 	if (free_pv->pv_size == 0) {
    396 		--bmi->bmi_nfreeblocks;
    397 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    398 			free_pv[0] = free_pv[1];
    399 		}
    400 	}
    401 
    402 	bmi->bmi_freepages -= npages;
    403 
    404 	if (zero_p)
    405 		memset((void *)pv->pv_va, 0, nbytes);
    406 }
    407 
    408 void
    409 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    410 	const struct pmap_devmap *devmap, bool mapallmem_p)
    411 {
    412 	struct bootmem_info * const bmi = &bootmem_info;
    413 #ifdef MULTIPROCESSOR
    414 	const size_t cpu_num = arm_cpu_max;
    415 #else
    416 	const size_t cpu_num = 1;
    417 #endif
    418 #ifdef ARM_HAS_VBAR
    419 	const bool map_vectors_p = false;
    420 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    421 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    422 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    423 #else
    424 	const bool map_vectors_p = true;
    425 #endif
    426 
    427 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    428 	KASSERT(mapallmem_p);
    429 #ifdef ARM_MMU_EXTENDED
    430 	/*
    431 	 * The direct map VA space ends at the start of the kernel VM space.
    432 	 */
    433 	pmap_directlimit = kernel_vm_base;
    434 #else
    435 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    436 #endif /* ARM_MMU_EXTENDED */
    437 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    438 
    439 	/*
    440 	 * Calculate the number of L2 pages needed for mapping the
    441 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    442 	 * and 1 for IO
    443 	 */
    444 	size_t kernel_size = bmi->bmi_kernelend;
    445 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    446 	kernel_size += L1_TABLE_SIZE_REAL;
    447 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    448 	if (map_vectors_p) {
    449 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    450 	}
    451 	if (iovbase) {
    452 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    453 	}
    454 	kernel_size +=
    455 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    456 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    457 	kernel_size += round_page(MSGBUFSIZE);
    458 	kernel_size += 0x10000;	/* slop */
    459 	if (!mapallmem_p) {
    460 		kernel_size += PAGE_SIZE
    461 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    462 	}
    463 	kernel_size = round_page(kernel_size);
    464 
    465 	/*
    466 	 * Now we know how many L2 pages it will take.
    467 	 */
    468 	const size_t KERNEL_L2PT_KERNEL_NUM =
    469 	    round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    470 
    471 #ifdef VERBOSE_INIT_ARM
    472 	printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    473 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    474 #endif
    475 
    476 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    477 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    478 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    479 	pv_addr_t msgbuf;
    480 	pv_addr_t text;
    481 	pv_addr_t data;
    482 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    483 #if ARM_MMU_XSCALE == 1
    484 	pv_addr_t minidataclean;
    485 #endif
    486 
    487 	/*
    488 	 * We need to allocate some fixed page tables to get the kernel going.
    489 	 *
    490 	 * We are going to allocate our bootstrap pages from the beginning of
    491 	 * the free space that we just calculated.  We allocate one page
    492 	 * directory and a number of page tables and store the physical
    493 	 * addresses in the bmi_l2pts array in bootmem_info.
    494 	 *
    495 	 * The kernel page directory must be on a 16K boundary.  The page
    496 	 * tables must be on 4K boundaries.  What we do is allocate the
    497 	 * page directory on the first 16K boundary that we encounter, and
    498 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    499 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    500 	 * least one 16K aligned region.
    501 	 */
    502 
    503 #ifdef VERBOSE_INIT_ARM
    504 	printf("%s: allocating page tables for", __func__);
    505 #endif
    506 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    507 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    508 	}
    509 
    510 	kernel_l1pt.pv_pa = 0;
    511 	kernel_l1pt.pv_va = 0;
    512 
    513 	/*
    514 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    515 	 * an L1 page table, we will allocate the pages for it first and then
    516 	 * allocate the L2 page.
    517 	 */
    518 
    519 	if (map_vectors_p) {
    520 		/*
    521 		 * First allocate L2 page for the vectors.
    522 		 */
    523 #ifdef VERBOSE_INIT_ARM
    524 		printf(" vector");
    525 #endif
    526 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    527 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    528 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    529 	}
    530 
    531 	/*
    532 	 * Now allocate L2 pages for the kernel
    533 	 */
    534 #ifdef VERBOSE_INIT_ARM
    535 	printf(" kernel");
    536 #endif
    537 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    538 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    539 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    540 		add_pages(bmi, &kernel_l2pt[idx]);
    541 	}
    542 
    543 	/*
    544 	 * Now allocate L2 pages for the initial kernel VA space.
    545 	 */
    546 #ifdef VERBOSE_INIT_ARM
    547 	printf(" vm");
    548 #endif
    549 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    550 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    551 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    552 		add_pages(bmi, &vmdata_l2pt[idx]);
    553 	}
    554 
    555 	/*
    556 	 * If someone wanted a L2 page for I/O, allocate it now.
    557 	 */
    558 	if (iovbase) {
    559 #ifdef VERBOSE_INIT_ARM
    560 		printf(" io");
    561 #endif
    562 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    563 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    564 		add_pages(bmi, &bmi->bmi_io_l2pt);
    565 	}
    566 
    567 #ifdef VERBOSE_INIT_ARM
    568 	printf("%s: allocating stacks\n", __func__);
    569 #endif
    570 
    571 	/* Allocate stacks for all modes and CPUs */
    572 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    573 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    574 	add_pages(bmi, &abtstack);
    575 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    576 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    577 	add_pages(bmi, &fiqstack);
    578 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    579 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    580 	add_pages(bmi, &irqstack);
    581 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    582 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    583 	add_pages(bmi, &undstack);
    584 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    585 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    586 	add_pages(bmi, &idlestack);
    587 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    588 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    589 	add_pages(bmi, &kernelstack);
    590 
    591 	/* Allocate the message buffer from the end of memory. */
    592 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    593 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    594 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    595 	add_pages(bmi, &msgbuf);
    596 	msgbufphys = msgbuf.pv_pa;
    597 	msgbufaddr = (void *)msgbuf.pv_va;
    598 
    599 	if (map_vectors_p) {
    600 		/*
    601 		 * Allocate a page for the system vector page.
    602 		 * This page will just contain the system vectors and can be
    603 		 * shared by all processes.
    604 		 */
    605 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
    606 		    PTE_CACHE, true);
    607 	}
    608 	systempage.pv_va = vectors;
    609 
    610 	/*
    611 	 * If the caller needed a few extra pages for some reason, allocate
    612 	 * them now.
    613 	 */
    614 #if ARM_MMU_XSCALE == 1
    615 #if (ARM_NMMUS > 1)
    616 	if (xscale_use_minidata)
    617 #endif
    618 		valloc_pages(bmi, &minidataclean, 1,
    619 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    620 #endif
    621 
    622 	/*
    623 	 * Ok we have allocated physical pages for the primary kernel
    624 	 * page tables and stacks.  Let's just confirm that.
    625 	 */
    626 	if (kernel_l1pt.pv_va == 0
    627 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    628 		panic("%s: Failed to allocate or align the kernel "
    629 		    "page directory", __func__);
    630 
    631 
    632 #ifdef VERBOSE_INIT_ARM
    633 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    634 #endif
    635 
    636 	/*
    637 	 * Now we start construction of the L1 page table
    638 	 * We start by mapping the L2 page tables into the L1.
    639 	 * This means that we can replace L1 mappings later on if necessary
    640 	 */
    641 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    642 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    643 
    644 	if (map_vectors_p) {
    645 		/* Map the L2 pages tables in the L1 page table */
    646 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    647 		    &bmi->bmi_vector_l2pt);
    648 #ifdef VERBOSE_INIT_ARM
    649 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
    650 		    "for VA %#lx\n (vectors)",
    651 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    652 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    653 #endif
    654 	}
    655 
    656 	const vaddr_t kernel_base =
    657 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    658 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    659 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    660 		    &kernel_l2pt[idx]);
    661 #ifdef VERBOSE_INIT_ARM
    662 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    663 		    __func__, kernel_l2pt[idx].pv_va,
    664 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    665 #endif
    666 	}
    667 
    668 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    669 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    670 		    &vmdata_l2pt[idx]);
    671 #ifdef VERBOSE_INIT_ARM
    672 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    673 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    674 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    675 #endif
    676 	}
    677 	if (iovbase) {
    678 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    679 #ifdef VERBOSE_INIT_ARM
    680 		printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    681 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    682 		    iovbase & -L2_S_SEGSIZE);
    683 #endif
    684 	}
    685 
    686 	/* update the top of the kernel VM */
    687 	pmap_curmaxkvaddr =
    688 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    689 
    690 #ifdef VERBOSE_INIT_ARM
    691 	printf("Mapping kernel\n");
    692 #endif
    693 
    694 	extern char etext[], _end[];
    695 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    696 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    697 
    698 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    699 
    700 	/* start at offset of kernel in RAM */
    701 
    702 	text.pv_pa = bmi->bmi_kernelstart;
    703 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    704 	text.pv_size = textsize;
    705 	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
    706 	text.pv_cache = PTE_CACHE;
    707 
    708 #ifdef VERBOSE_INIT_ARM
    709 	printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    710 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    711 #endif
    712 
    713 	add_pages(bmi, &text);
    714 
    715 	data.pv_pa = text.pv_pa + textsize;
    716 	data.pv_va = text.pv_va + textsize;
    717 	data.pv_size = totalsize - textsize;
    718 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    719 	data.pv_cache = PTE_CACHE;
    720 
    721 #ifdef VERBOSE_INIT_ARM
    722 	printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    723 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    724 #endif
    725 
    726 	add_pages(bmi, &data);
    727 
    728 #ifdef VERBOSE_INIT_ARM
    729 	printf("Listing Chunks\n");
    730 
    731 	pv_addr_t *lpv;
    732 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    733 		printf("%s: pv %p: chunk VA %#lx..%#lx "
    734 		    "(PA %#lx, prot %d, cache %d)\n",
    735 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    736 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    737 	}
    738 	printf("\nMapping Chunks\n");
    739 #endif
    740 
    741 	pv_addr_t cur_pv;
    742 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    743 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    744 		cur_pv = *pv;
    745 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    746 		pv = SLIST_NEXT(pv, pv_list);
    747 	} else {
    748 		cur_pv.pv_va = KERNEL_BASE;
    749 		cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
    750 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    751 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    752 		cur_pv.pv_cache = PTE_CACHE;
    753 	}
    754 	while (pv != NULL) {
    755 		if (mapallmem_p) {
    756 			if (concat_pvaddr(&cur_pv, pv)) {
    757 				pv = SLIST_NEXT(pv, pv_list);
    758 				continue;
    759 			}
    760 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    761 				/*
    762 				 * See if we can extend the current pv to emcompass the
    763 				 * hole, and if so do it and retry the concatenation.
    764 				 */
    765 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    766 				    && cur_pv.pv_cache == PTE_CACHE) {
    767 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    768 					continue;
    769 				}
    770 
    771 				/*
    772 				 * We couldn't so emit the current chunk and then
    773 				 */
    774 #ifdef VERBOSE_INIT_ARM
    775 				printf("%s: mapping chunk VA %#lx..%#lx "
    776 				    "(PA %#lx, prot %d, cache %d)\n",
    777 				    __func__,
    778 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    779 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    780 #endif
    781 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    782 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    783 
    784 				/*
    785 				 * set the current chunk to the hole and try again.
    786 				 */
    787 				cur_pv.pv_pa += cur_pv.pv_size;
    788 				cur_pv.pv_va += cur_pv.pv_size;
    789 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    790 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    791 				cur_pv.pv_cache = PTE_CACHE;
    792 				continue;
    793 			}
    794 		}
    795 
    796 		/*
    797 		 * The new pv didn't concatenate so emit the current one
    798 		 * and use the new pv as the current pv.
    799 		 */
    800 #ifdef VERBOSE_INIT_ARM
    801 		printf("%s: mapping chunk VA %#lx..%#lx "
    802 		    "(PA %#lx, prot %d, cache %d)\n",
    803 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    804 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    805 #endif
    806 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    807 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    808 		cur_pv = *pv;
    809 		pv = SLIST_NEXT(pv, pv_list);
    810 	}
    811 
    812 	/*
    813 	 * If we are mapping all of memory, let's map the rest of memory.
    814 	 */
    815 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    816 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    817 		    && cur_pv.pv_cache == PTE_CACHE) {
    818 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    819 		} else {
    820 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    821 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    822 			    kernel_vm_base);
    823 #ifdef VERBOSE_INIT_ARM
    824 			printf("%s: mapping chunk VA %#lx..%#lx "
    825 			    "(PA %#lx, prot %d, cache %d)\n",
    826 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    827 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    828 #endif
    829 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    830 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    831 			cur_pv.pv_pa += cur_pv.pv_size;
    832 			cur_pv.pv_va += cur_pv.pv_size;
    833 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    834 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    835 			cur_pv.pv_cache = PTE_CACHE;
    836 		}
    837 	}
    838 
    839 	// The amount we can direct is limited by the start of the
    840 	// virtual part of the kernel address space.  Don't overrun
    841 	// into it.
    842 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    843 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    844 	}
    845 
    846 	/*
    847 	 * Now we map the final chunk.
    848 	 */
    849 #ifdef VERBOSE_INIT_ARM
    850 	printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    851 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    852 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    853 #endif
    854 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    855 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    856 
    857 	/*
    858 	 * Now we map the stuff that isn't directly after the kernel
    859 	 */
    860 	if (map_vectors_p) {
    861 		/* Map the vector page. */
    862 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    863 		    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
    864 	}
    865 
    866 	/* Map the Mini-Data cache clean area. */
    867 #if ARM_MMU_XSCALE == 1
    868 #if (ARM_NMMUS > 1)
    869 	if (xscale_use_minidata)
    870 #endif
    871 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    872 		    minidataclean.pv_pa);
    873 #endif
    874 
    875 	/*
    876 	 * Map integrated peripherals at same address in first level page
    877 	 * table so that we can continue to use console.
    878 	 */
    879 	if (devmap)
    880 		pmap_devmap_bootstrap(l1pt_va, devmap);
    881 
    882 #ifdef VERBOSE_INIT_ARM
    883 	/* Tell the user about where all the bits and pieces live. */
    884 	printf("%22s       Physical              Virtual        Num\n", " ");
    885 	printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    886 
    887 	static const char mem_fmt[] =
    888 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    889 	static const char mem_fmt_nov[] =
    890 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    891 
    892 	printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    893 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    894 	    (int)physmem);
    895 	printf(mem_fmt, "text section",
    896 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    897 	       text.pv_va, text.pv_va + text.pv_size - 1,
    898 	       (int)(text.pv_size / PAGE_SIZE));
    899 	printf(mem_fmt, "data section",
    900 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    901 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    902 	       (int)((round_page((vaddr_t)_edata)
    903 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    904 	printf(mem_fmt, "bss section",
    905 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    906 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    907 	       (int)((round_page((vaddr_t)__bss_end__)
    908 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    909 	printf(mem_fmt, "L1 page directory",
    910 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    911 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    912 	    L1_TABLE_SIZE / PAGE_SIZE);
    913 	printf(mem_fmt, "ABT stack (CPU 0)",
    914 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    915 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    916 	    ABT_STACK_SIZE);
    917 	printf(mem_fmt, "FIQ stack (CPU 0)",
    918 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    919 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    920 	    FIQ_STACK_SIZE);
    921 	printf(mem_fmt, "IRQ stack (CPU 0)",
    922 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    923 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    924 	    IRQ_STACK_SIZE);
    925 	printf(mem_fmt, "UND stack (CPU 0)",
    926 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    927 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    928 	    UND_STACK_SIZE);
    929 	printf(mem_fmt, "IDLE stack (CPU 0)",
    930 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    931 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    932 	    UPAGES);
    933 	printf(mem_fmt, "SVC stack",
    934 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    935 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    936 	    UPAGES);
    937 	printf(mem_fmt, "Message Buffer",
    938 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    939 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    940 	    (int)msgbuf_pgs);
    941 	if (map_vectors_p) {
    942 		printf(mem_fmt, "Exception Vectors",
    943 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    944 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    945 		    1);
    946 	}
    947 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    948 		pv = &bmi->bmi_freeblocks[i];
    949 
    950 		printf(mem_fmt_nov, "Free Memory",
    951 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    952 		    pv->pv_size / PAGE_SIZE);
    953 	}
    954 #endif
    955 	/*
    956 	 * Now we have the real page tables in place so we can switch to them.
    957 	 * Once this is done we will be running with the REAL kernel page
    958 	 * tables.
    959 	 */
    960 
    961 #if defined(VERBOSE_INIT_ARM)
    962 	printf("TTBR0=%#x", armreg_ttbr_read());
    963 #ifdef _ARM_ARCH_6
    964 	printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    965 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    966 	    armreg_contextidr_read());
    967 #endif
    968 	printf("\n");
    969 #endif
    970 
    971 	/* Switch tables */
    972 #ifdef VERBOSE_INIT_ARM
    973 	printf("switching to new L1 page table @%#lx...", l1pt_pa);
    974 #endif
    975 
    976 #ifdef ARM_MMU_EXTENDED
    977 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    978 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    979 #else
    980 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    981 #endif
    982 	cpu_idcache_wbinv_all();
    983 #ifdef VERBOSE_INIT_ARM
    984 	printf(" ttb");
    985 #endif
    986 #ifdef ARM_MMU_EXTENDED
    987 	/*
    988 	 * TTBCR should have been initialized by the MD start code.
    989 	 */
    990 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    991 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    992 	/*
    993 	 * Disable lookups via TTBR0 until there is an activated pmap.
    994 	 */
    995 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    996 	cpu_setttb(l1pt_pa, KERNEL_PID);
    997 	arm_isb();
    998 #else
    999 	cpu_setttb(l1pt_pa, true);
   1000 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
   1001 #endif
   1002 	cpu_tlb_flushID();
   1003 
   1004 #ifdef VERBOSE_INIT_ARM
   1005 #ifdef ARM_MMU_EXTENDED
   1006 	printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
   1007 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
   1008 #else
   1009 	printf(" (TTBR0=%#x)", armreg_ttbr_read());
   1010 #endif
   1011 #endif
   1012 
   1013 #ifdef MULTIPROCESSOR
   1014 	/*
   1015 	 * Kick the secondaries to load the TTB.  After which they'll go
   1016 	 * back to sleep to wait for the final kick so they will hatch.
   1017 	 */
   1018 #ifdef VERBOSE_INIT_ARM
   1019 	printf(" hatchlings");
   1020 #endif
   1021 	cpu_boot_secondary_processors();
   1022 #endif
   1023 
   1024 #ifdef VERBOSE_INIT_ARM
   1025 	printf(" OK\n");
   1026 #endif
   1027 }
   1028