arm32_kvminit.c revision 1.41 1 /* $NetBSD: arm32_kvminit.c,v 1.41 2017/12/10 21:38:26 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include "opt_fdt.h"
125 #include "opt_multiprocessor.h"
126
127 #include <sys/cdefs.h>
128 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.41 2017/12/10 21:38:26 skrll Exp $");
129
130 #include <sys/param.h>
131 #include <sys/device.h>
132 #include <sys/kernel.h>
133 #include <sys/reboot.h>
134 #include <sys/bus.h>
135
136 #include <dev/cons.h>
137
138 #include <uvm/uvm_extern.h>
139
140 #include <arm/locore.h>
141 #include <arm/db_machdep.h>
142 #include <arm/undefined.h>
143 #include <arm/bootconfig.h>
144 #include <arm/arm32/machdep.h>
145
146 #if defined(FDT)
147 #include <arch/evbarm/fdt/platform.h>
148 #endif
149
150 #ifdef MULTIPROCESSOR
151 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
152 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
153 #endif
154 #endif
155
156 struct bootmem_info bootmem_info;
157
158 extern void *msgbufaddr;
159 paddr_t msgbufphys;
160 paddr_t physical_start;
161 paddr_t physical_end;
162
163 extern char etext[];
164 extern char __data_start[], _edata[];
165 extern char __bss_start[], __bss_end__[];
166 extern char _end[];
167
168 /* Page tables for mapping kernel VM */
169 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
170
171 /*
172 * Macros to translate between physical and virtual for a subset of the
173 * kernel address space. *Not* for general use.
174 */
175 #if defined(KERNEL_BASE_VOFFSET)
176 #define KERN_VTOPHYS(bmi, va) \
177 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
178 #define KERN_PHYSTOV(bmi, pa) \
179 ((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
180 #else
181 #define KERN_VTOPHYS(bmi, va) \
182 ((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
183 #define KERN_PHYSTOV(bmi, pa) \
184 ((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
185 #endif
186
187 void
188 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
189 {
190 struct bootmem_info * const bmi = &bootmem_info;
191 pv_addr_t *pv = bmi->bmi_freeblocks;
192
193 #ifdef VERBOSE_INIT_ARM
194 printf("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
195 __func__, memstart, memsize, kernelstart);
196 #endif
197
198 physical_start = bmi->bmi_start = memstart;
199 physical_end = bmi->bmi_end = memstart + memsize;
200 #ifndef ARM_HAS_LPAE
201 if (physical_end == 0) {
202 physical_end = -PAGE_SIZE;
203 memsize -= PAGE_SIZE;
204 bmi->bmi_end -= PAGE_SIZE;
205 #ifdef VERBOSE_INIT_ARM
206 printf("%s: memsize shrunk by a page to avoid ending at 4GB\n",
207 __func__);
208 #endif
209 }
210 #endif
211 physmem = memsize / PAGE_SIZE;
212
213 /*
214 * Let's record where the kernel lives.
215 */
216 bmi->bmi_kernelstart = kernelstart;
217 bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
218
219 #if defined(FDT)
220 fdt_add_reserved_memory_range(bmi->bmi_kernelstart,
221 bmi->bmi_kernelend - bmi->bmi_kernelstart);
222 #endif
223
224 #ifdef VERBOSE_INIT_ARM
225 printf("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
226 #endif
227
228 /*
229 * Now the rest of the free memory must be after the kernel.
230 */
231 pv->pv_pa = bmi->bmi_kernelend;
232 pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
233 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
234 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
235 #ifdef VERBOSE_INIT_ARM
236 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
237 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
238 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
239 #endif
240 pv++;
241
242 #if !defined(FDT)
243 /*
244 * Add a free block for any memory before the kernel.
245 */
246 if (bmi->bmi_start < bmi->bmi_kernelstart) {
247 pv->pv_pa = bmi->bmi_start;
248 pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
249 pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
250 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
251 #ifdef VERBOSE_INIT_ARM
252 printf("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
253 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
254 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
255 #endif
256 pv++;
257 }
258 #endif
259
260 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
261
262 SLIST_INIT(&bmi->bmi_freechunks);
263 SLIST_INIT(&bmi->bmi_chunks);
264 }
265
266 static bool
267 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
268 {
269 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
270 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
271 && acc_pv->pv_prot == pv->pv_prot
272 && acc_pv->pv_cache == pv->pv_cache) {
273 #ifdef VERBOSE_INIT_ARMX
274 printf("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
275 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
276 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
277 #endif
278 acc_pv->pv_size += pv->pv_size;
279 return true;
280 }
281
282 return false;
283 }
284
285 static void
286 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
287 {
288 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
289 while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
290 pv_addr_t * const pv0 = (*pvp);
291 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
292 if (concat_pvaddr(pv0, pv)) {
293 #ifdef VERBOSE_INIT_ARM
294 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
295 __func__, "appending", pv,
296 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
297 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
298 #endif
299 pv = SLIST_NEXT(pv0, pv_list);
300 if (pv != NULL && concat_pvaddr(pv0, pv)) {
301 #ifdef VERBOSE_INIT_ARM
302 printf("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
303 __func__, "merging", pv,
304 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
305 pv0->pv_pa,
306 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
307 #endif
308 SLIST_REMOVE_AFTER(pv0, pv_list);
309 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
310 }
311 return;
312 }
313 KASSERT(pv->pv_va != (*pvp)->pv_va);
314 pvp = &SLIST_NEXT(*pvp, pv_list);
315 }
316 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
317 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
318 KASSERT(new_pv != NULL);
319 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
320 *new_pv = *pv;
321 SLIST_NEXT(new_pv, pv_list) = *pvp;
322 (*pvp) = new_pv;
323 #ifdef VERBOSE_INIT_ARM
324 printf("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
325 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
326 new_pv->pv_size / PAGE_SIZE);
327 if (SLIST_NEXT(new_pv, pv_list))
328 printf("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
329 else
330 printf("at tail\n");
331 #endif
332 }
333
334 static void
335 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
336 int prot, int cache, bool zero_p)
337 {
338 size_t nbytes = npages * PAGE_SIZE;
339 pv_addr_t *free_pv = bmi->bmi_freeblocks;
340 size_t free_idx = 0;
341 static bool l1pt_found;
342
343 KASSERT(npages > 0);
344
345 /*
346 * If we haven't allocated the kernel L1 page table and we are aligned
347 * at a L1 table boundary, alloc the memory for it.
348 */
349 if (!l1pt_found
350 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
351 && free_pv->pv_size >= L1_TABLE_SIZE) {
352 l1pt_found = true;
353 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
354 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
355 add_pages(bmi, &kernel_l1pt);
356 }
357
358 while (nbytes > free_pv->pv_size) {
359 free_pv++;
360 free_idx++;
361 if (free_idx == bmi->bmi_nfreeblocks) {
362 panic("%s: could not allocate %zu bytes",
363 __func__, nbytes);
364 }
365 }
366
367 /*
368 * As we allocate the memory, make sure that we don't walk over
369 * our current first level translation table.
370 */
371 KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
372
373 #if defined(FDT)
374 fdt_add_reserved_memory_range(free_pv->pv_pa, nbytes);
375 #endif
376 pv->pv_pa = free_pv->pv_pa;
377 pv->pv_va = free_pv->pv_va;
378 pv->pv_size = nbytes;
379 pv->pv_prot = prot;
380 pv->pv_cache = cache;
381
382 /*
383 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
384 * just use PTE_CACHE.
385 */
386 if (cache == PTE_PAGETABLE
387 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
388 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
389 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
390 pv->pv_cache = PTE_CACHE;
391
392 free_pv->pv_pa += nbytes;
393 free_pv->pv_va += nbytes;
394 free_pv->pv_size -= nbytes;
395 if (free_pv->pv_size == 0) {
396 --bmi->bmi_nfreeblocks;
397 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
398 free_pv[0] = free_pv[1];
399 }
400 }
401
402 bmi->bmi_freepages -= npages;
403
404 if (zero_p)
405 memset((void *)pv->pv_va, 0, nbytes);
406 }
407
408 void
409 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
410 const struct pmap_devmap *devmap, bool mapallmem_p)
411 {
412 struct bootmem_info * const bmi = &bootmem_info;
413 #ifdef MULTIPROCESSOR
414 const size_t cpu_num = arm_cpu_max;
415 #else
416 const size_t cpu_num = 1;
417 #endif
418 #ifdef ARM_HAS_VBAR
419 const bool map_vectors_p = false;
420 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
421 const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
422 || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
423 #else
424 const bool map_vectors_p = true;
425 #endif
426
427 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
428 KASSERT(mapallmem_p);
429 #ifdef ARM_MMU_EXTENDED
430 /*
431 * The direct map VA space ends at the start of the kernel VM space.
432 */
433 pmap_directlimit = kernel_vm_base;
434 #else
435 KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
436 #endif /* ARM_MMU_EXTENDED */
437 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
438
439 /*
440 * Calculate the number of L2 pages needed for mapping the
441 * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
442 * and 1 for IO
443 */
444 size_t kernel_size = bmi->bmi_kernelend;
445 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
446 kernel_size += L1_TABLE_SIZE_REAL;
447 kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
448 if (map_vectors_p) {
449 kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
450 }
451 if (iovbase) {
452 kernel_size += PAGE_SIZE; /* L2PT for IO */
453 }
454 kernel_size +=
455 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
456 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
457 kernel_size += round_page(MSGBUFSIZE);
458 kernel_size += 0x10000; /* slop */
459 if (!mapallmem_p) {
460 kernel_size += PAGE_SIZE
461 * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
462 }
463 kernel_size = round_page(kernel_size);
464
465 /*
466 * Now we know how many L2 pages it will take.
467 */
468 const size_t KERNEL_L2PT_KERNEL_NUM =
469 round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
470
471 #ifdef VERBOSE_INIT_ARM
472 printf("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
473 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
474 #endif
475
476 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
477 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
478 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
479 pv_addr_t msgbuf;
480 pv_addr_t text;
481 pv_addr_t data;
482 pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
483 #if ARM_MMU_XSCALE == 1
484 pv_addr_t minidataclean;
485 #endif
486
487 /*
488 * We need to allocate some fixed page tables to get the kernel going.
489 *
490 * We are going to allocate our bootstrap pages from the beginning of
491 * the free space that we just calculated. We allocate one page
492 * directory and a number of page tables and store the physical
493 * addresses in the bmi_l2pts array in bootmem_info.
494 *
495 * The kernel page directory must be on a 16K boundary. The page
496 * tables must be on 4K boundaries. What we do is allocate the
497 * page directory on the first 16K boundary that we encounter, and
498 * the page tables on 4K boundaries otherwise. Since we allocate
499 * at least 3 L2 page tables, we are guaranteed to encounter at
500 * least one 16K aligned region.
501 */
502
503 #ifdef VERBOSE_INIT_ARM
504 printf("%s: allocating page tables for", __func__);
505 #endif
506 for (size_t i = 0; i < __arraycount(chunks); i++) {
507 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
508 }
509
510 kernel_l1pt.pv_pa = 0;
511 kernel_l1pt.pv_va = 0;
512
513 /*
514 * Allocate the L2 pages, but if we get to a page that is aligned for
515 * an L1 page table, we will allocate the pages for it first and then
516 * allocate the L2 page.
517 */
518
519 if (map_vectors_p) {
520 /*
521 * First allocate L2 page for the vectors.
522 */
523 #ifdef VERBOSE_INIT_ARM
524 printf(" vector");
525 #endif
526 valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
527 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
528 add_pages(bmi, &bmi->bmi_vector_l2pt);
529 }
530
531 /*
532 * Now allocate L2 pages for the kernel
533 */
534 #ifdef VERBOSE_INIT_ARM
535 printf(" kernel");
536 #endif
537 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
538 valloc_pages(bmi, &kernel_l2pt[idx], 1,
539 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
540 add_pages(bmi, &kernel_l2pt[idx]);
541 }
542
543 /*
544 * Now allocate L2 pages for the initial kernel VA space.
545 */
546 #ifdef VERBOSE_INIT_ARM
547 printf(" vm");
548 #endif
549 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
550 valloc_pages(bmi, &vmdata_l2pt[idx], 1,
551 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
552 add_pages(bmi, &vmdata_l2pt[idx]);
553 }
554
555 /*
556 * If someone wanted a L2 page for I/O, allocate it now.
557 */
558 if (iovbase) {
559 #ifdef VERBOSE_INIT_ARM
560 printf(" io");
561 #endif
562 valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
563 VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
564 add_pages(bmi, &bmi->bmi_io_l2pt);
565 }
566
567 #ifdef VERBOSE_INIT_ARM
568 printf("%s: allocating stacks\n", __func__);
569 #endif
570
571 /* Allocate stacks for all modes and CPUs */
572 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
573 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
574 add_pages(bmi, &abtstack);
575 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
576 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
577 add_pages(bmi, &fiqstack);
578 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
579 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
580 add_pages(bmi, &irqstack);
581 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
582 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
583 add_pages(bmi, &undstack);
584 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
585 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
586 add_pages(bmi, &idlestack);
587 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
588 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
589 add_pages(bmi, &kernelstack);
590
591 /* Allocate the message buffer from the end of memory. */
592 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
593 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
594 VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
595 add_pages(bmi, &msgbuf);
596 msgbufphys = msgbuf.pv_pa;
597 msgbufaddr = (void *)msgbuf.pv_va;
598
599 if (map_vectors_p) {
600 /*
601 * Allocate a page for the system vector page.
602 * This page will just contain the system vectors and can be
603 * shared by all processes.
604 */
605 valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
606 PTE_CACHE, true);
607 }
608 systempage.pv_va = vectors;
609
610 /*
611 * If the caller needed a few extra pages for some reason, allocate
612 * them now.
613 */
614 #if ARM_MMU_XSCALE == 1
615 #if (ARM_NMMUS > 1)
616 if (xscale_use_minidata)
617 #endif
618 valloc_pages(bmi, &minidataclean, 1,
619 VM_PROT_READ|VM_PROT_WRITE, 0, true);
620 #endif
621
622 /*
623 * Ok we have allocated physical pages for the primary kernel
624 * page tables and stacks. Let's just confirm that.
625 */
626 if (kernel_l1pt.pv_va == 0
627 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
628 panic("%s: Failed to allocate or align the kernel "
629 "page directory", __func__);
630
631
632 #ifdef VERBOSE_INIT_ARM
633 printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
634 #endif
635
636 /*
637 * Now we start construction of the L1 page table
638 * We start by mapping the L2 page tables into the L1.
639 * This means that we can replace L1 mappings later on if necessary
640 */
641 vaddr_t l1pt_va = kernel_l1pt.pv_va;
642 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
643
644 if (map_vectors_p) {
645 /* Map the L2 pages tables in the L1 page table */
646 pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
647 &bmi->bmi_vector_l2pt);
648 #ifdef VERBOSE_INIT_ARM
649 printf("%s: adding L2 pt (VA %#lx, PA %#lx) "
650 "for VA %#lx\n (vectors)",
651 __func__, bmi->bmi_vector_l2pt.pv_va,
652 bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
653 #endif
654 }
655
656 const vaddr_t kernel_base =
657 KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
658 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
659 pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
660 &kernel_l2pt[idx]);
661 #ifdef VERBOSE_INIT_ARM
662 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
663 __func__, kernel_l2pt[idx].pv_va,
664 kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
665 #endif
666 }
667
668 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
669 pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
670 &vmdata_l2pt[idx]);
671 #ifdef VERBOSE_INIT_ARM
672 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
673 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
674 kernel_vm_base + idx * L2_S_SEGSIZE);
675 #endif
676 }
677 if (iovbase) {
678 pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
679 #ifdef VERBOSE_INIT_ARM
680 printf("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
681 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
682 iovbase & -L2_S_SEGSIZE);
683 #endif
684 }
685
686 /* update the top of the kernel VM */
687 pmap_curmaxkvaddr =
688 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
689
690 #ifdef VERBOSE_INIT_ARM
691 printf("Mapping kernel\n");
692 #endif
693
694 extern char etext[], _end[];
695 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
696 size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
697
698 textsize = (textsize + PGOFSET) & ~PGOFSET;
699
700 /* start at offset of kernel in RAM */
701
702 text.pv_pa = bmi->bmi_kernelstart;
703 text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
704 text.pv_size = textsize;
705 text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
706 text.pv_cache = PTE_CACHE;
707
708 #ifdef VERBOSE_INIT_ARM
709 printf("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
710 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
711 #endif
712
713 add_pages(bmi, &text);
714
715 data.pv_pa = text.pv_pa + textsize;
716 data.pv_va = text.pv_va + textsize;
717 data.pv_size = totalsize - textsize;
718 data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
719 data.pv_cache = PTE_CACHE;
720
721 #ifdef VERBOSE_INIT_ARM
722 printf("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
723 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
724 #endif
725
726 add_pages(bmi, &data);
727
728 #ifdef VERBOSE_INIT_ARM
729 printf("Listing Chunks\n");
730
731 pv_addr_t *lpv;
732 SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
733 printf("%s: pv %p: chunk VA %#lx..%#lx "
734 "(PA %#lx, prot %d, cache %d)\n",
735 __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
736 lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
737 }
738 printf("\nMapping Chunks\n");
739 #endif
740
741 pv_addr_t cur_pv;
742 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
743 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
744 cur_pv = *pv;
745 KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
746 pv = SLIST_NEXT(pv, pv_list);
747 } else {
748 cur_pv.pv_va = KERNEL_BASE;
749 cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
750 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
751 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
752 cur_pv.pv_cache = PTE_CACHE;
753 }
754 while (pv != NULL) {
755 if (mapallmem_p) {
756 if (concat_pvaddr(&cur_pv, pv)) {
757 pv = SLIST_NEXT(pv, pv_list);
758 continue;
759 }
760 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
761 /*
762 * See if we can extend the current pv to emcompass the
763 * hole, and if so do it and retry the concatenation.
764 */
765 if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
766 && cur_pv.pv_cache == PTE_CACHE) {
767 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
768 continue;
769 }
770
771 /*
772 * We couldn't so emit the current chunk and then
773 */
774 #ifdef VERBOSE_INIT_ARM
775 printf("%s: mapping chunk VA %#lx..%#lx "
776 "(PA %#lx, prot %d, cache %d)\n",
777 __func__,
778 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
779 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
780 #endif
781 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
782 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
783
784 /*
785 * set the current chunk to the hole and try again.
786 */
787 cur_pv.pv_pa += cur_pv.pv_size;
788 cur_pv.pv_va += cur_pv.pv_size;
789 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
790 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
791 cur_pv.pv_cache = PTE_CACHE;
792 continue;
793 }
794 }
795
796 /*
797 * The new pv didn't concatenate so emit the current one
798 * and use the new pv as the current pv.
799 */
800 #ifdef VERBOSE_INIT_ARM
801 printf("%s: mapping chunk VA %#lx..%#lx "
802 "(PA %#lx, prot %d, cache %d)\n",
803 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
804 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
805 #endif
806 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
807 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
808 cur_pv = *pv;
809 pv = SLIST_NEXT(pv, pv_list);
810 }
811
812 /*
813 * If we are mapping all of memory, let's map the rest of memory.
814 */
815 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
816 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
817 && cur_pv.pv_cache == PTE_CACHE) {
818 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
819 } else {
820 KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
821 "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
822 kernel_vm_base);
823 #ifdef VERBOSE_INIT_ARM
824 printf("%s: mapping chunk VA %#lx..%#lx "
825 "(PA %#lx, prot %d, cache %d)\n",
826 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
827 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
828 #endif
829 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
830 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
831 cur_pv.pv_pa += cur_pv.pv_size;
832 cur_pv.pv_va += cur_pv.pv_size;
833 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
834 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
835 cur_pv.pv_cache = PTE_CACHE;
836 }
837 }
838
839 // The amount we can direct is limited by the start of the
840 // virtual part of the kernel address space. Don't overrun
841 // into it.
842 if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
843 cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
844 }
845
846 /*
847 * Now we map the final chunk.
848 */
849 #ifdef VERBOSE_INIT_ARM
850 printf("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
851 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
852 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
853 #endif
854 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
855 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
856
857 /*
858 * Now we map the stuff that isn't directly after the kernel
859 */
860 if (map_vectors_p) {
861 /* Map the vector page. */
862 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
863 VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
864 }
865
866 /* Map the Mini-Data cache clean area. */
867 #if ARM_MMU_XSCALE == 1
868 #if (ARM_NMMUS > 1)
869 if (xscale_use_minidata)
870 #endif
871 xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
872 minidataclean.pv_pa);
873 #endif
874
875 /*
876 * Map integrated peripherals at same address in first level page
877 * table so that we can continue to use console.
878 */
879 if (devmap)
880 pmap_devmap_bootstrap(l1pt_va, devmap);
881
882 #ifdef VERBOSE_INIT_ARM
883 /* Tell the user about where all the bits and pieces live. */
884 printf("%22s Physical Virtual Num\n", " ");
885 printf("%22s Starting Ending Starting Ending Pages\n", " ");
886
887 static const char mem_fmt[] =
888 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
889 static const char mem_fmt_nov[] =
890 "%20s: 0x%08lx 0x%08lx %zu\n";
891
892 printf(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
893 KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
894 (int)physmem);
895 printf(mem_fmt, "text section",
896 text.pv_pa, text.pv_pa + text.pv_size - 1,
897 text.pv_va, text.pv_va + text.pv_size - 1,
898 (int)(text.pv_size / PAGE_SIZE));
899 printf(mem_fmt, "data section",
900 KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
901 (vaddr_t)__data_start, (vaddr_t)_edata,
902 (int)((round_page((vaddr_t)_edata)
903 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
904 printf(mem_fmt, "bss section",
905 KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
906 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
907 (int)((round_page((vaddr_t)__bss_end__)
908 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
909 printf(mem_fmt, "L1 page directory",
910 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
911 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
912 L1_TABLE_SIZE / PAGE_SIZE);
913 printf(mem_fmt, "ABT stack (CPU 0)",
914 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
915 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
916 ABT_STACK_SIZE);
917 printf(mem_fmt, "FIQ stack (CPU 0)",
918 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
919 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
920 FIQ_STACK_SIZE);
921 printf(mem_fmt, "IRQ stack (CPU 0)",
922 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
923 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
924 IRQ_STACK_SIZE);
925 printf(mem_fmt, "UND stack (CPU 0)",
926 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
927 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
928 UND_STACK_SIZE);
929 printf(mem_fmt, "IDLE stack (CPU 0)",
930 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
931 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
932 UPAGES);
933 printf(mem_fmt, "SVC stack",
934 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
935 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
936 UPAGES);
937 printf(mem_fmt, "Message Buffer",
938 msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
939 msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
940 (int)msgbuf_pgs);
941 if (map_vectors_p) {
942 printf(mem_fmt, "Exception Vectors",
943 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
944 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
945 1);
946 }
947 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
948 pv = &bmi->bmi_freeblocks[i];
949
950 printf(mem_fmt_nov, "Free Memory",
951 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
952 pv->pv_size / PAGE_SIZE);
953 }
954 #endif
955 /*
956 * Now we have the real page tables in place so we can switch to them.
957 * Once this is done we will be running with the REAL kernel page
958 * tables.
959 */
960
961 #if defined(VERBOSE_INIT_ARM)
962 printf("TTBR0=%#x", armreg_ttbr_read());
963 #ifdef _ARM_ARCH_6
964 printf(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
965 armreg_ttbr1_read(), armreg_ttbcr_read(),
966 armreg_contextidr_read());
967 #endif
968 printf("\n");
969 #endif
970
971 /* Switch tables */
972 #ifdef VERBOSE_INIT_ARM
973 printf("switching to new L1 page table @%#lx...", l1pt_pa);
974 #endif
975
976 #ifdef ARM_MMU_EXTENDED
977 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
978 | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
979 #else
980 cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
981 #endif
982 cpu_idcache_wbinv_all();
983 #ifdef VERBOSE_INIT_ARM
984 printf(" ttb");
985 #endif
986 #ifdef ARM_MMU_EXTENDED
987 /*
988 * TTBCR should have been initialized by the MD start code.
989 */
990 KASSERT((armreg_contextidr_read() & 0xff) == 0);
991 KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
992 /*
993 * Disable lookups via TTBR0 until there is an activated pmap.
994 */
995 armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
996 cpu_setttb(l1pt_pa, KERNEL_PID);
997 arm_isb();
998 #else
999 cpu_setttb(l1pt_pa, true);
1000 cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
1001 #endif
1002 cpu_tlb_flushID();
1003
1004 #ifdef VERBOSE_INIT_ARM
1005 #ifdef ARM_MMU_EXTENDED
1006 printf(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
1007 armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
1008 #else
1009 printf(" (TTBR0=%#x)", armreg_ttbr_read());
1010 #endif
1011 #endif
1012
1013 #ifdef MULTIPROCESSOR
1014 /*
1015 * Kick the secondaries to load the TTB. After which they'll go
1016 * back to sleep to wait for the final kick so they will hatch.
1017 */
1018 #ifdef VERBOSE_INIT_ARM
1019 printf(" hatchlings");
1020 #endif
1021 cpu_boot_secondary_processors();
1022 #endif
1023
1024 #ifdef VERBOSE_INIT_ARM
1025 printf(" OK\n");
1026 #endif
1027 }
1028