Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.41.2.1
      1 /*	$NetBSD: arm32_kvminit.c,v 1.41.2.1 2018/09/06 06:55:25 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include "opt_arm_debug.h"
    125 #include "opt_fdt.h"
    126 #include "opt_multiprocessor.h"
    127 
    128 #include <sys/cdefs.h>
    129 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.41.2.1 2018/09/06 06:55:25 pgoyette Exp $");
    130 
    131 #include <sys/param.h>
    132 #include <sys/device.h>
    133 #include <sys/kernel.h>
    134 #include <sys/reboot.h>
    135 #include <sys/bus.h>
    136 
    137 #include <dev/cons.h>
    138 
    139 #include <uvm/uvm_extern.h>
    140 
    141 #include <arm/locore.h>
    142 #include <arm/db_machdep.h>
    143 #include <arm/undefined.h>
    144 #include <arm/bootconfig.h>
    145 #include <arm/arm32/machdep.h>
    146 
    147 #if defined(FDT)
    148 #include <arch/evbarm/fdt/platform.h>
    149 #endif
    150 
    151 #ifdef MULTIPROCESSOR
    152 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    153 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
    154 #endif
    155 #endif
    156 
    157 #ifdef VERBOSE_INIT_ARM
    158 #define VPRINTF(...)	printf(__VA_ARGS__)
    159 #else
    160 #define VPRINTF(...)	do { } while (/* CONSTCOND */ 0)
    161 #endif
    162 
    163 struct bootmem_info bootmem_info;
    164 
    165 extern void *msgbufaddr;
    166 paddr_t msgbufphys;
    167 paddr_t physical_start;
    168 paddr_t physical_end;
    169 
    170 extern char etext[];
    171 extern char __data_start[], _edata[];
    172 extern char __bss_start[], __bss_end__[];
    173 extern char _end[];
    174 
    175 /* Page tables for mapping kernel VM */
    176 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    177 
    178 u_long kern_vtopdiff __attribute__((__section__(".data")));
    179 
    180 void
    181 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    182 {
    183 	struct bootmem_info * const bmi = &bootmem_info;
    184 	pv_addr_t *pv = bmi->bmi_freeblocks;
    185 
    186 	/*
    187 	 * FDT/generic boot fills in kern_vtopdiff early
    188 	 */
    189 #if defined(KERNEL_BASE_VOFFSET)
    190 	kern_vtopdiff = KERNEL_BASE_VOFFSET;
    191 #else
    192 	KASSERT(memstart == kernelstart);
    193 	kern_vtopdiff = KERNEL_BASE + memstart;
    194 #endif
    195 
    196 	VPRINTF("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    197 	    __func__, memstart, memsize, kernelstart);
    198 
    199 	physical_start = bmi->bmi_start = memstart;
    200 	physical_end = bmi->bmi_end = memstart + memsize;
    201 #ifndef ARM_HAS_LPAE
    202 	if (physical_end == 0) {
    203 		physical_end = -PAGE_SIZE;
    204 		memsize -= PAGE_SIZE;
    205 		bmi->bmi_end -= PAGE_SIZE;
    206 		VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    207 		    __func__);
    208 	}
    209 #endif
    210 	physmem = memsize / PAGE_SIZE;
    211 
    212 	/*
    213 	 * Let's record where the kernel lives.
    214 	 */
    215 	bmi->bmi_kernelstart = kernelstart;
    216 	bmi->bmi_kernelend = KERN_VTOPHYS(round_page((vaddr_t)_end));
    217 
    218 #if defined(FDT)
    219 	fdt_add_reserved_memory_range(bmi->bmi_kernelstart,
    220 	    bmi->bmi_kernelend - bmi->bmi_kernelstart);
    221 #endif
    222 
    223 	VPRINTF("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    224 
    225 	/*
    226 	 * Now the rest of the free memory must be after the kernel.
    227 	 */
    228 	pv->pv_pa = bmi->bmi_kernelend;
    229 	pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    230 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    231 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    232 	VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    233 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    234 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    235 	pv++;
    236 
    237 #if !defined(FDT)
    238 	/*
    239 	 * Add a free block for any memory before the kernel.
    240 	 */
    241 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    242 		pv->pv_pa = bmi->bmi_start;
    243 		pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
    244 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    245 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    246 		VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    247 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    248 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    249 		pv++;
    250 	}
    251 #endif
    252 
    253 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    254 
    255 	SLIST_INIT(&bmi->bmi_freechunks);
    256 	SLIST_INIT(&bmi->bmi_chunks);
    257 }
    258 
    259 static bool
    260 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    261 {
    262 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    263 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    264 	    && acc_pv->pv_prot == pv->pv_prot
    265 	    && acc_pv->pv_cache == pv->pv_cache) {
    266 		VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    267 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    268 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    269 		acc_pv->pv_size += pv->pv_size;
    270 		return true;
    271 	}
    272 
    273 	return false;
    274 }
    275 
    276 static void
    277 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    278 {
    279 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    280 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    281 		pv_addr_t * const pv0 = (*pvp);
    282 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    283 		if (concat_pvaddr(pv0, pv)) {
    284 			VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    285 			    __func__, "appending", pv,
    286 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    287 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    288 			pv = SLIST_NEXT(pv0, pv_list);
    289 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    290 				VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    291 				    __func__, "merging", pv,
    292 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    293 				    pv0->pv_pa,
    294 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    295 				SLIST_REMOVE_AFTER(pv0, pv_list);
    296 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    297 			}
    298 			return;
    299 		}
    300 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    301 		pvp = &SLIST_NEXT(*pvp, pv_list);
    302 	}
    303 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    304 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    305 	KASSERT(new_pv != NULL);
    306 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    307 	*new_pv = *pv;
    308 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    309 	(*pvp) = new_pv;
    310 
    311 	VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    312 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    313 	    new_pv->pv_size / PAGE_SIZE);
    314 	if (SLIST_NEXT(new_pv, pv_list)) {
    315 		VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    316 	} else {
    317 		VPRINTF("at tail\n");
    318 	}
    319 }
    320 
    321 static void
    322 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    323 	int prot, int cache, bool zero_p)
    324 {
    325 	size_t nbytes = npages * PAGE_SIZE;
    326 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    327 	size_t free_idx = 0;
    328 	static bool l1pt_found;
    329 
    330 	KASSERT(npages > 0);
    331 
    332 	/*
    333 	 * If we haven't allocated the kernel L1 page table and we are aligned
    334 	 * at a L1 table boundary, alloc the memory for it.
    335 	 */
    336 	if (!l1pt_found
    337 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    338 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    339 		l1pt_found = true;
    340 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    341 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    342 		add_pages(bmi, &kernel_l1pt);
    343 	}
    344 
    345 	while (nbytes > free_pv->pv_size) {
    346 		free_pv++;
    347 		free_idx++;
    348 		if (free_idx == bmi->bmi_nfreeblocks) {
    349 			panic("%s: could not allocate %zu bytes",
    350 			    __func__, nbytes);
    351 		}
    352 	}
    353 
    354 	/*
    355 	 * As we allocate the memory, make sure that we don't walk over
    356 	 * our current first level translation table.
    357 	 */
    358 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    359 
    360 #if defined(FDT)
    361 	fdt_add_reserved_memory_range(free_pv->pv_pa, nbytes);
    362 #endif
    363 	pv->pv_pa = free_pv->pv_pa;
    364 	pv->pv_va = free_pv->pv_va;
    365 	pv->pv_size = nbytes;
    366 	pv->pv_prot = prot;
    367 	pv->pv_cache = cache;
    368 
    369 	/*
    370 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    371 	 * just use PTE_CACHE.
    372 	 */
    373 	if (cache == PTE_PAGETABLE
    374 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    375 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    376 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    377 		pv->pv_cache = PTE_CACHE;
    378 
    379 	free_pv->pv_pa += nbytes;
    380 	free_pv->pv_va += nbytes;
    381 	free_pv->pv_size -= nbytes;
    382 	if (free_pv->pv_size == 0) {
    383 		--bmi->bmi_nfreeblocks;
    384 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    385 			free_pv[0] = free_pv[1];
    386 		}
    387 	}
    388 
    389 	bmi->bmi_freepages -= npages;
    390 
    391 	if (zero_p)
    392 		memset((void *)pv->pv_va, 0, nbytes);
    393 }
    394 
    395 void
    396 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    397 	const struct pmap_devmap *devmap, bool mapallmem_p)
    398 {
    399 	struct bootmem_info * const bmi = &bootmem_info;
    400 #ifdef MULTIPROCESSOR
    401 	const size_t cpu_num = arm_cpu_max;
    402 #else
    403 	const size_t cpu_num = 1;
    404 #endif
    405 #ifdef ARM_HAS_VBAR
    406 	const bool map_vectors_p = false;
    407 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    408 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    409 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    410 #else
    411 	const bool map_vectors_p = true;
    412 #endif
    413 
    414 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    415 	KASSERT(mapallmem_p);
    416 #ifdef ARM_MMU_EXTENDED
    417 	/*
    418 	 * The direct map VA space ends at the start of the kernel VM space.
    419 	 */
    420 	pmap_directlimit = kernel_vm_base;
    421 #else
    422 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    423 #endif /* ARM_MMU_EXTENDED */
    424 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    425 
    426 	/*
    427 	 * Calculate the number of L2 pages needed for mapping the
    428 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    429 	 * and 1 for IO
    430 	 */
    431 	size_t kernel_size = bmi->bmi_kernelend;
    432 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    433 	kernel_size += L1_TABLE_SIZE_REAL;
    434 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    435 	if (map_vectors_p) {
    436 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    437 	}
    438 	if (iovbase) {
    439 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    440 	}
    441 	kernel_size +=
    442 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    443 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    444 	kernel_size += round_page(MSGBUFSIZE);
    445 	kernel_size += 0x10000;	/* slop */
    446 	if (!mapallmem_p) {
    447 		kernel_size += PAGE_SIZE
    448 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    449 	}
    450 	kernel_size = round_page(kernel_size);
    451 
    452 	/*
    453 	 * Now we know how many L2 pages it will take.
    454 	 */
    455 	const size_t KERNEL_L2PT_KERNEL_NUM =
    456 	    round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    457 
    458 	VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    459 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    460 
    461 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    462 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    463 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    464 	pv_addr_t msgbuf;
    465 	pv_addr_t text;
    466 	pv_addr_t data;
    467 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    468 #if ARM_MMU_XSCALE == 1
    469 	pv_addr_t minidataclean;
    470 #endif
    471 
    472 	/*
    473 	 * We need to allocate some fixed page tables to get the kernel going.
    474 	 *
    475 	 * We are going to allocate our bootstrap pages from the beginning of
    476 	 * the free space that we just calculated.  We allocate one page
    477 	 * directory and a number of page tables and store the physical
    478 	 * addresses in the bmi_l2pts array in bootmem_info.
    479 	 *
    480 	 * The kernel page directory must be on a 16K boundary.  The page
    481 	 * tables must be on 4K boundaries.  What we do is allocate the
    482 	 * page directory on the first 16K boundary that we encounter, and
    483 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    484 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    485 	 * least one 16K aligned region.
    486 	 */
    487 
    488 	VPRINTF("%s: allocating page tables for", __func__);
    489 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    490 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    491 	}
    492 
    493 	kernel_l1pt.pv_pa = 0;
    494 	kernel_l1pt.pv_va = 0;
    495 
    496 	/*
    497 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    498 	 * an L1 page table, we will allocate the pages for it first and then
    499 	 * allocate the L2 page.
    500 	 */
    501 
    502 	if (map_vectors_p) {
    503 		/*
    504 		 * First allocate L2 page for the vectors.
    505 		 */
    506 		VPRINTF(" vector");
    507 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    508 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    509 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    510 	}
    511 
    512 	/*
    513 	 * Now allocate L2 pages for the kernel
    514 	 */
    515 	VPRINTF(" kernel");
    516 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    517 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    518 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    519 		add_pages(bmi, &kernel_l2pt[idx]);
    520 	}
    521 
    522 	/*
    523 	 * Now allocate L2 pages for the initial kernel VA space.
    524 	 */
    525 	VPRINTF(" vm");
    526 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    527 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    528 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    529 		add_pages(bmi, &vmdata_l2pt[idx]);
    530 	}
    531 
    532 	/*
    533 	 * If someone wanted a L2 page for I/O, allocate it now.
    534 	 */
    535 	if (iovbase) {
    536 		VPRINTF(" io");
    537 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    538 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    539 		add_pages(bmi, &bmi->bmi_io_l2pt);
    540 	}
    541 
    542 	VPRINTF("%s: allocating stacks\n", __func__);
    543 
    544 	/* Allocate stacks for all modes and CPUs */
    545 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    546 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    547 	add_pages(bmi, &abtstack);
    548 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    549 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    550 	add_pages(bmi, &fiqstack);
    551 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    552 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    553 	add_pages(bmi, &irqstack);
    554 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    555 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    556 	add_pages(bmi, &undstack);
    557 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    558 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    559 	add_pages(bmi, &idlestack);
    560 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    561 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    562 	add_pages(bmi, &kernelstack);
    563 
    564 	/* Allocate the message buffer from the end of memory. */
    565 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    566 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    567 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    568 	add_pages(bmi, &msgbuf);
    569 	msgbufphys = msgbuf.pv_pa;
    570 	msgbufaddr = (void *)msgbuf.pv_va;
    571 
    572 	if (map_vectors_p) {
    573 		/*
    574 		 * Allocate a page for the system vector page.
    575 		 * This page will just contain the system vectors and can be
    576 		 * shared by all processes.
    577 		 */
    578 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
    579 		    PTE_CACHE, true);
    580 	}
    581 	systempage.pv_va = vectors;
    582 
    583 	/*
    584 	 * If the caller needed a few extra pages for some reason, allocate
    585 	 * them now.
    586 	 */
    587 #if ARM_MMU_XSCALE == 1
    588 #if (ARM_NMMUS > 1)
    589 	if (xscale_use_minidata)
    590 #endif
    591 		valloc_pages(bmi, &minidataclean, 1,
    592 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    593 #endif
    594 
    595 	/*
    596 	 * Ok we have allocated physical pages for the primary kernel
    597 	 * page tables and stacks.  Let's just confirm that.
    598 	 */
    599 	if (kernel_l1pt.pv_va == 0
    600 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    601 		panic("%s: Failed to allocate or align the kernel "
    602 		    "page directory", __func__);
    603 
    604 
    605 	VPRINTF("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    606 
    607 	/*
    608 	 * Now we start construction of the L1 page table
    609 	 * We start by mapping the L2 page tables into the L1.
    610 	 * This means that we can replace L1 mappings later on if necessary
    611 	 */
    612 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    613 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    614 
    615 	if (map_vectors_p) {
    616 		/* Map the L2 pages tables in the L1 page table */
    617 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    618 		    &bmi->bmi_vector_l2pt);
    619 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) "
    620 		    "for VA %#lx\n (vectors)",
    621 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    622 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    623 	}
    624 
    625 	const vaddr_t kernel_base =
    626 	    KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    627 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    628 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    629 		    &kernel_l2pt[idx]);
    630 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    631 		    __func__, kernel_l2pt[idx].pv_va,
    632 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    633 	}
    634 
    635 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    636 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    637 		    &vmdata_l2pt[idx]);
    638 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    639 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    640 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    641 	}
    642 	if (iovbase) {
    643 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    644 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    645 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    646 		    iovbase & -L2_S_SEGSIZE);
    647 	}
    648 
    649 	/* update the top of the kernel VM */
    650 	pmap_curmaxkvaddr =
    651 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    652 
    653 	VPRINTF("Mapping kernel\n");
    654 
    655 	extern char etext[];
    656 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    657 	size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
    658 
    659 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    660 
    661 	/* start at offset of kernel in RAM */
    662 
    663 	text.pv_pa = bmi->bmi_kernelstart;
    664 	text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
    665 	text.pv_size = textsize;
    666 	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
    667 	text.pv_cache = PTE_CACHE;
    668 
    669 	VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    670 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    671 
    672 	add_pages(bmi, &text);
    673 
    674 	data.pv_pa = text.pv_pa + textsize;
    675 	data.pv_va = text.pv_va + textsize;
    676 	data.pv_size = totalsize - textsize;
    677 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    678 	data.pv_cache = PTE_CACHE;
    679 
    680 	VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    681 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    682 
    683 	add_pages(bmi, &data);
    684 
    685 	VPRINTF("Listing Chunks\n");
    686 
    687 	pv_addr_t *lpv;
    688 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    689 		VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
    690 		    "(PA %#lx, prot %d, cache %d)\n",
    691 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    692 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    693 	}
    694 	VPRINTF("\nMapping Chunks\n");
    695 
    696 	pv_addr_t cur_pv;
    697 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    698 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    699 		cur_pv = *pv;
    700 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    701 		pv = SLIST_NEXT(pv, pv_list);
    702 	} else {
    703 		cur_pv.pv_va = KERNEL_BASE;
    704 		cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
    705 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    706 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    707 		cur_pv.pv_cache = PTE_CACHE;
    708 	}
    709 	while (pv != NULL) {
    710 		if (mapallmem_p) {
    711 			if (concat_pvaddr(&cur_pv, pv)) {
    712 				pv = SLIST_NEXT(pv, pv_list);
    713 				continue;
    714 			}
    715 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    716 				/*
    717 				 * See if we can extend the current pv to emcompass the
    718 				 * hole, and if so do it and retry the concatenation.
    719 				 */
    720 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    721 				    && cur_pv.pv_cache == PTE_CACHE) {
    722 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    723 					continue;
    724 				}
    725 
    726 				/*
    727 				 * We couldn't so emit the current chunk and then
    728 				 */
    729 				VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    730 				    "(PA %#lx, prot %d, cache %d)\n",
    731 				    __func__,
    732 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    733 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    734 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    735 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    736 
    737 				/*
    738 				 * set the current chunk to the hole and try again.
    739 				 */
    740 				cur_pv.pv_pa += cur_pv.pv_size;
    741 				cur_pv.pv_va += cur_pv.pv_size;
    742 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    743 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    744 				cur_pv.pv_cache = PTE_CACHE;
    745 				continue;
    746 			}
    747 		}
    748 
    749 		/*
    750 		 * The new pv didn't concatenate so emit the current one
    751 		 * and use the new pv as the current pv.
    752 		 */
    753 		VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    754 		    "(PA %#lx, prot %d, cache %d)\n",
    755 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    756 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    757 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    758 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    759 		cur_pv = *pv;
    760 		pv = SLIST_NEXT(pv, pv_list);
    761 	}
    762 
    763 	/*
    764 	 * If we are mapping all of memory, let's map the rest of memory.
    765 	 */
    766 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    767 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    768 		    && cur_pv.pv_cache == PTE_CACHE) {
    769 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    770 		} else {
    771 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    772 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    773 			    kernel_vm_base);
    774 			VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    775 			    "(PA %#lx, prot %d, cache %d)\n",
    776 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    777 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    778 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    779 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    780 			cur_pv.pv_pa += cur_pv.pv_size;
    781 			cur_pv.pv_va += cur_pv.pv_size;
    782 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    783 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    784 			cur_pv.pv_cache = PTE_CACHE;
    785 		}
    786 	}
    787 
    788 	// The amount we can direct is limited by the start of the
    789 	// virtual part of the kernel address space.  Don't overrun
    790 	// into it.
    791 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    792 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    793 	}
    794 
    795 	/*
    796 	 * Now we map the final chunk.
    797 	 */
    798 	VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    799 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    800 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    801 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    802 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    803 
    804 	/*
    805 	 * Now we map the stuff that isn't directly after the kernel
    806 	 */
    807 	if (map_vectors_p) {
    808 		/* Map the vector page. */
    809 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    810 		    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
    811 	}
    812 
    813 	/* Map the Mini-Data cache clean area. */
    814 #if ARM_MMU_XSCALE == 1
    815 #if (ARM_NMMUS > 1)
    816 	if (xscale_use_minidata)
    817 #endif
    818 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    819 		    minidataclean.pv_pa);
    820 #endif
    821 
    822 	/*
    823 	 * Map integrated peripherals at same address in first level page
    824 	 * table so that we can continue to use console.
    825 	 */
    826 	if (devmap)
    827 		pmap_devmap_bootstrap(l1pt_va, devmap);
    828 
    829 	/* Tell the user about where all the bits and pieces live. */
    830 	VPRINTF("%22s       Physical              Virtual        Num\n", " ");
    831 	VPRINTF("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    832 
    833 #ifdef VERBOSE_INIT_ARM
    834 	static const char mem_fmt[] =
    835 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    836 	static const char mem_fmt_nov[] =
    837 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    838 #endif
    839 
    840 	VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    841 	    KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
    842 	    (int)physmem);
    843 	VPRINTF(mem_fmt, "text section",
    844 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    845 	       text.pv_va, text.pv_va + text.pv_size - 1,
    846 	       (int)(text.pv_size / PAGE_SIZE));
    847 	VPRINTF(mem_fmt, "data section",
    848 	       KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
    849 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    850 	       (int)((round_page((vaddr_t)_edata)
    851 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    852 	VPRINTF(mem_fmt, "bss section",
    853 	       KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
    854 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    855 	       (int)((round_page((vaddr_t)__bss_end__)
    856 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    857 	VPRINTF(mem_fmt, "L1 page directory",
    858 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    859 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    860 	    L1_TABLE_SIZE / PAGE_SIZE);
    861 	VPRINTF(mem_fmt, "ABT stack (CPU 0)",
    862 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    863 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    864 	    ABT_STACK_SIZE);
    865 	VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
    866 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    867 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    868 	    FIQ_STACK_SIZE);
    869 	VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
    870 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    871 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    872 	    IRQ_STACK_SIZE);
    873 	VPRINTF(mem_fmt, "UND stack (CPU 0)",
    874 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    875 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    876 	    UND_STACK_SIZE);
    877 	VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
    878 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    879 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    880 	    UPAGES);
    881 	VPRINTF(mem_fmt, "SVC stack",
    882 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    883 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    884 	    UPAGES);
    885 	VPRINTF(mem_fmt, "Message Buffer",
    886 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    887 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    888 	    (int)msgbuf_pgs);
    889 	if (map_vectors_p) {
    890 		VPRINTF(mem_fmt, "Exception Vectors",
    891 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    892 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    893 		    1);
    894 	}
    895 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    896 		pv = &bmi->bmi_freeblocks[i];
    897 
    898 		VPRINTF(mem_fmt_nov, "Free Memory",
    899 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    900 		    pv->pv_size / PAGE_SIZE);
    901 	}
    902 	/*
    903 	 * Now we have the real page tables in place so we can switch to them.
    904 	 * Once this is done we will be running with the REAL kernel page
    905 	 * tables.
    906 	 */
    907 
    908 	VPRINTF("TTBR0=%#x", armreg_ttbr_read());
    909 #ifdef _ARM_ARCH_6
    910 	VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    911 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    912 	    armreg_contextidr_read());
    913 #endif
    914 	VPRINTF("\n");
    915 
    916 	/* Switch tables */
    917 	VPRINTF("switching to new L1 page table @%#lx...", l1pt_pa);
    918 
    919 #ifdef ARM_MMU_EXTENDED
    920 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    921 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    922 #else
    923 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    924 #endif
    925 	cpu_idcache_wbinv_all();
    926 	VPRINTF(" ttb");
    927 #ifdef ARM_MMU_EXTENDED
    928 	/*
    929 	 * TTBCR should have been initialized by the MD start code.
    930 	 */
    931 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    932 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    933 	/*
    934 	 * Disable lookups via TTBR0 until there is an activated pmap.
    935 	 */
    936 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    937 	cpu_setttb(l1pt_pa, KERNEL_PID);
    938 	arm_isb();
    939 #else
    940 	cpu_setttb(l1pt_pa, true);
    941 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    942 #endif
    943 	cpu_tlb_flushID();
    944 
    945 #ifdef ARM_MMU_EXTENDED
    946 	VPRINTF(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    947 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    948 #else
    949 	VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
    950 #endif
    951 
    952 #ifdef MULTIPROCESSOR
    953 	/*
    954 	 * Kick the secondaries to load the TTB.  After which they'll go
    955 	 * back to sleep to wait for the final kick so they will hatch.
    956 	 */
    957 	VPRINTF(" hatchlings");
    958 	cpu_boot_secondary_processors();
    959 #endif
    960 
    961 	VPRINTF(" OK\n");
    962 }
    963