Home | History | Annotate | Line # | Download | only in arm32
arm32_kvminit.c revision 1.42
      1 /*	$NetBSD: arm32_kvminit.c,v 1.42 2018/07/31 07:00:48 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
      5  * Written by Hiroyuki Bessho for Genetec Corporation.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of Genetec Corporation may not be used to endorse or
     16  *    promote products derived from this software without specific prior
     17  *    written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  *
     31  * Copyright (c) 2001 Wasabi Systems, Inc.
     32  * All rights reserved.
     33  *
     34  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgement:
     46  *	This product includes software developed for the NetBSD Project by
     47  *	Wasabi Systems, Inc.
     48  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     49  *    or promote products derived from this software without specific prior
     50  *    written permission.
     51  *
     52  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     54  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     55  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     56  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     57  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     58  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     59  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     60  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     61  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     62  * POSSIBILITY OF SUCH DAMAGE.
     63  *
     64  * Copyright (c) 1997,1998 Mark Brinicombe.
     65  * Copyright (c) 1997,1998 Causality Limited.
     66  * All rights reserved.
     67  *
     68  * Redistribution and use in source and binary forms, with or without
     69  * modification, are permitted provided that the following conditions
     70  * are met:
     71  * 1. Redistributions of source code must retain the above copyright
     72  *    notice, this list of conditions and the following disclaimer.
     73  * 2. Redistributions in binary form must reproduce the above copyright
     74  *    notice, this list of conditions and the following disclaimer in the
     75  *    documentation and/or other materials provided with the distribution.
     76  * 3. All advertising materials mentioning features or use of this software
     77  *    must display the following acknowledgement:
     78  *	This product includes software developed by Mark Brinicombe
     79  *	for the NetBSD Project.
     80  * 4. The name of the company nor the name of the author may be used to
     81  *    endorse or promote products derived from this software without specific
     82  *    prior written permission.
     83  *
     84  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     85  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     86  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     87  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     88  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     89  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     90  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     91  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     92  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     93  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     94  * SUCH DAMAGE.
     95  *
     96  * Copyright (c) 2007 Microsoft
     97  * All rights reserved.
     98  *
     99  * Redistribution and use in source and binary forms, with or without
    100  * modification, are permitted provided that the following conditions
    101  * are met:
    102  * 1. Redistributions of source code must retain the above copyright
    103  *    notice, this list of conditions and the following disclaimer.
    104  * 2. Redistributions in binary form must reproduce the above copyright
    105  *    notice, this list of conditions and the following disclaimer in the
    106  *    documentation and/or other materials provided with the distribution.
    107  * 3. All advertising materials mentioning features or use of this software
    108  *    must display the following acknowledgement:
    109  *	This product includes software developed by Microsoft
    110  *
    111  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
    112  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
    113  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
    114  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
    115  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
    116  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
    117  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    118  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    119  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    120  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    121  * SUCH DAMAGE.
    122  */
    123 
    124 #include "opt_arm_debug.h"
    125 #include "opt_fdt.h"
    126 #include "opt_multiprocessor.h"
    127 
    128 #include <sys/cdefs.h>
    129 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.42 2018/07/31 07:00:48 skrll Exp $");
    130 
    131 #include <sys/param.h>
    132 #include <sys/device.h>
    133 #include <sys/kernel.h>
    134 #include <sys/reboot.h>
    135 #include <sys/bus.h>
    136 
    137 #include <dev/cons.h>
    138 
    139 #include <uvm/uvm_extern.h>
    140 
    141 #include <arm/locore.h>
    142 #include <arm/db_machdep.h>
    143 #include <arm/undefined.h>
    144 #include <arm/bootconfig.h>
    145 #include <arm/arm32/machdep.h>
    146 
    147 #if defined(FDT)
    148 #include <arch/evbarm/fdt/platform.h>
    149 #endif
    150 
    151 #ifdef MULTIPROCESSOR
    152 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    153 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
    154 #endif
    155 #endif
    156 
    157 #ifdef VERBOSE_INIT_ARM
    158 #define VPRINTF(...)	printf(__VA_ARGS__)
    159 #else
    160 #define VPRINTF(...)	do { } while (/* CONSTCOND */ 0)
    161 #endif
    162 
    163 struct bootmem_info bootmem_info;
    164 
    165 extern void *msgbufaddr;
    166 paddr_t msgbufphys;
    167 paddr_t physical_start;
    168 paddr_t physical_end;
    169 
    170 extern char etext[];
    171 extern char __data_start[], _edata[];
    172 extern char __bss_start[], __bss_end__[];
    173 extern char _end[];
    174 
    175 /* Page tables for mapping kernel VM */
    176 #define KERNEL_L2PT_VMDATA_NUM	8	/* start with 32MB of KVM */
    177 
    178 /*
    179  * Macros to translate between physical and virtual for a subset of the
    180  * kernel address space.  *Not* for general use.
    181  */
    182 #if defined(KERNEL_BASE_VOFFSET)
    183 #define KERN_VTOPHYS(bmi, va) \
    184 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE_VOFFSET))
    185 #define KERN_PHYSTOV(bmi, pa) \
    186 	((vaddr_t)((paddr_t)(pa) + KERNEL_BASE_VOFFSET))
    187 #else
    188 #define KERN_VTOPHYS(bmi, va) \
    189 	((paddr_t)((vaddr_t)(va) - KERNEL_BASE + (bmi)->bmi_start))
    190 #define KERN_PHYSTOV(bmi, pa) \
    191 	((vaddr_t)((paddr_t)(pa) - (bmi)->bmi_start + KERNEL_BASE))
    192 #endif
    193 
    194 void
    195 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
    196 {
    197 	struct bootmem_info * const bmi = &bootmem_info;
    198 	pv_addr_t *pv = bmi->bmi_freeblocks;
    199 
    200 	VPRINTF("%s: memstart=%#lx, memsize=%#lx, kernelstart=%#lx\n",
    201 	    __func__, memstart, memsize, kernelstart);
    202 
    203 	physical_start = bmi->bmi_start = memstart;
    204 	physical_end = bmi->bmi_end = memstart + memsize;
    205 #ifndef ARM_HAS_LPAE
    206 	if (physical_end == 0) {
    207 		physical_end = -PAGE_SIZE;
    208 		memsize -= PAGE_SIZE;
    209 		bmi->bmi_end -= PAGE_SIZE;
    210 		VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
    211 		    __func__);
    212 	}
    213 #endif
    214 	physmem = memsize / PAGE_SIZE;
    215 
    216 	/*
    217 	 * Let's record where the kernel lives.
    218 	 */
    219 	bmi->bmi_kernelstart = kernelstart;
    220 	bmi->bmi_kernelend = KERN_VTOPHYS(bmi, round_page((vaddr_t)_end));
    221 
    222 #if defined(FDT)
    223 	fdt_add_reserved_memory_range(bmi->bmi_kernelstart,
    224 	    bmi->bmi_kernelend - bmi->bmi_kernelstart);
    225 #endif
    226 
    227 	VPRINTF("%s: kernelend=%#lx\n", __func__, bmi->bmi_kernelend);
    228 
    229 	/*
    230 	 * Now the rest of the free memory must be after the kernel.
    231 	 */
    232 	pv->pv_pa = bmi->bmi_kernelend;
    233 	pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    234 	pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
    235 	bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    236 	VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    237 	    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    238 	    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    239 	pv++;
    240 
    241 #if !defined(FDT)
    242 	/*
    243 	 * Add a free block for any memory before the kernel.
    244 	 */
    245 	if (bmi->bmi_start < bmi->bmi_kernelstart) {
    246 		pv->pv_pa = bmi->bmi_start;
    247 		pv->pv_va = KERN_PHYSTOV(bmi, pv->pv_pa);
    248 		pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
    249 		bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
    250 		VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
    251 		    __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
    252 		    pv->pv_pa + pv->pv_size - 1, pv->pv_va);
    253 		pv++;
    254 	}
    255 #endif
    256 
    257 	bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
    258 
    259 	SLIST_INIT(&bmi->bmi_freechunks);
    260 	SLIST_INIT(&bmi->bmi_chunks);
    261 }
    262 
    263 static bool
    264 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
    265 {
    266 	if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
    267 	    && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
    268 	    && acc_pv->pv_prot == pv->pv_prot
    269 	    && acc_pv->pv_cache == pv->pv_cache) {
    270 		VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    271 		    __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size + 1,
    272 		    acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size + 1);
    273 		acc_pv->pv_size += pv->pv_size;
    274 		return true;
    275 	}
    276 
    277 	return false;
    278 }
    279 
    280 static void
    281 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
    282 {
    283 	pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
    284 	while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
    285 		pv_addr_t * const pv0 = (*pvp);
    286 		KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
    287 		if (concat_pvaddr(pv0, pv)) {
    288 			VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    289 			    __func__, "appending", pv,
    290 			    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    291 			    pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    292 			pv = SLIST_NEXT(pv0, pv_list);
    293 			if (pv != NULL && concat_pvaddr(pv0, pv)) {
    294 				VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
    295 				    __func__, "merging", pv,
    296 				    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    297 				    pv0->pv_pa,
    298 				    pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
    299 				SLIST_REMOVE_AFTER(pv0, pv_list);
    300 				SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
    301 			}
    302 			return;
    303 		}
    304 		KASSERT(pv->pv_va != (*pvp)->pv_va);
    305 		pvp = &SLIST_NEXT(*pvp, pv_list);
    306 	}
    307 	KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
    308 	pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
    309 	KASSERT(new_pv != NULL);
    310 	SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
    311 	*new_pv = *pv;
    312 	SLIST_NEXT(new_pv, pv_list) = *pvp;
    313 	(*pvp) = new_pv;
    314 
    315 	VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
    316 	    __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
    317 	    new_pv->pv_size / PAGE_SIZE);
    318 	if (SLIST_NEXT(new_pv, pv_list)) {
    319 		VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
    320 	} else {
    321 		VPRINTF("at tail\n");
    322 	}
    323 }
    324 
    325 static void
    326 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
    327 	int prot, int cache, bool zero_p)
    328 {
    329 	size_t nbytes = npages * PAGE_SIZE;
    330 	pv_addr_t *free_pv = bmi->bmi_freeblocks;
    331 	size_t free_idx = 0;
    332 	static bool l1pt_found;
    333 
    334 	KASSERT(npages > 0);
    335 
    336 	/*
    337 	 * If we haven't allocated the kernel L1 page table and we are aligned
    338 	 * at a L1 table boundary, alloc the memory for it.
    339 	 */
    340 	if (!l1pt_found
    341 	    && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
    342 	    && free_pv->pv_size >= L1_TABLE_SIZE) {
    343 		l1pt_found = true;
    344 		valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
    345 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    346 		add_pages(bmi, &kernel_l1pt);
    347 	}
    348 
    349 	while (nbytes > free_pv->pv_size) {
    350 		free_pv++;
    351 		free_idx++;
    352 		if (free_idx == bmi->bmi_nfreeblocks) {
    353 			panic("%s: could not allocate %zu bytes",
    354 			    __func__, nbytes);
    355 		}
    356 	}
    357 
    358 	/*
    359 	 * As we allocate the memory, make sure that we don't walk over
    360 	 * our current first level translation table.
    361 	 */
    362 	KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
    363 
    364 #if defined(FDT)
    365 	fdt_add_reserved_memory_range(free_pv->pv_pa, nbytes);
    366 #endif
    367 	pv->pv_pa = free_pv->pv_pa;
    368 	pv->pv_va = free_pv->pv_va;
    369 	pv->pv_size = nbytes;
    370 	pv->pv_prot = prot;
    371 	pv->pv_cache = cache;
    372 
    373 	/*
    374 	 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
    375 	 * just use PTE_CACHE.
    376 	 */
    377 	if (cache == PTE_PAGETABLE
    378 	    && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
    379 	    && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
    380 	    && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
    381 		pv->pv_cache = PTE_CACHE;
    382 
    383 	free_pv->pv_pa += nbytes;
    384 	free_pv->pv_va += nbytes;
    385 	free_pv->pv_size -= nbytes;
    386 	if (free_pv->pv_size == 0) {
    387 		--bmi->bmi_nfreeblocks;
    388 		for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
    389 			free_pv[0] = free_pv[1];
    390 		}
    391 	}
    392 
    393 	bmi->bmi_freepages -= npages;
    394 
    395 	if (zero_p)
    396 		memset((void *)pv->pv_va, 0, nbytes);
    397 }
    398 
    399 void
    400 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
    401 	const struct pmap_devmap *devmap, bool mapallmem_p)
    402 {
    403 	struct bootmem_info * const bmi = &bootmem_info;
    404 #ifdef MULTIPROCESSOR
    405 	const size_t cpu_num = arm_cpu_max;
    406 #else
    407 	const size_t cpu_num = 1;
    408 #endif
    409 #ifdef ARM_HAS_VBAR
    410 	const bool map_vectors_p = false;
    411 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
    412 	const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
    413 	    || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
    414 #else
    415 	const bool map_vectors_p = true;
    416 #endif
    417 
    418 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
    419 	KASSERT(mapallmem_p);
    420 #ifdef ARM_MMU_EXTENDED
    421 	/*
    422 	 * The direct map VA space ends at the start of the kernel VM space.
    423 	 */
    424 	pmap_directlimit = kernel_vm_base;
    425 #else
    426 	KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
    427 #endif /* ARM_MMU_EXTENDED */
    428 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
    429 
    430 	/*
    431 	 * Calculate the number of L2 pages needed for mapping the
    432 	 * kernel + data + stuff.  Assume 2 L2 pages for kernel, 1 for vectors,
    433 	 * and 1 for IO
    434 	 */
    435 	size_t kernel_size = bmi->bmi_kernelend;
    436 	kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    437 	kernel_size += L1_TABLE_SIZE_REAL;
    438 	kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
    439 	if (map_vectors_p) {
    440 		kernel_size += PAGE_SIZE;	/* L2PT for VECTORS */
    441 	}
    442 	if (iovbase) {
    443 		kernel_size += PAGE_SIZE;	/* L2PT for IO */
    444 	}
    445 	kernel_size +=
    446 	    cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
    447 	    + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
    448 	kernel_size += round_page(MSGBUFSIZE);
    449 	kernel_size += 0x10000;	/* slop */
    450 	if (!mapallmem_p) {
    451 		kernel_size += PAGE_SIZE
    452 		    * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
    453 	}
    454 	kernel_size = round_page(kernel_size);
    455 
    456 	/*
    457 	 * Now we know how many L2 pages it will take.
    458 	 */
    459 	const size_t KERNEL_L2PT_KERNEL_NUM =
    460 	    round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
    461 
    462 	VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
    463 	    __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
    464 
    465 	KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
    466 	pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
    467 	pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
    468 	pv_addr_t msgbuf;
    469 	pv_addr_t text;
    470 	pv_addr_t data;
    471 	pv_addr_t chunks[KERNEL_L2PT_KERNEL_NUM+KERNEL_L2PT_VMDATA_NUM+11];
    472 #if ARM_MMU_XSCALE == 1
    473 	pv_addr_t minidataclean;
    474 #endif
    475 
    476 	/*
    477 	 * We need to allocate some fixed page tables to get the kernel going.
    478 	 *
    479 	 * We are going to allocate our bootstrap pages from the beginning of
    480 	 * the free space that we just calculated.  We allocate one page
    481 	 * directory and a number of page tables and store the physical
    482 	 * addresses in the bmi_l2pts array in bootmem_info.
    483 	 *
    484 	 * The kernel page directory must be on a 16K boundary.  The page
    485 	 * tables must be on 4K boundaries.  What we do is allocate the
    486 	 * page directory on the first 16K boundary that we encounter, and
    487 	 * the page tables on 4K boundaries otherwise.  Since we allocate
    488 	 * at least 3 L2 page tables, we are guaranteed to encounter at
    489 	 * least one 16K aligned region.
    490 	 */
    491 
    492 	VPRINTF("%s: allocating page tables for", __func__);
    493 	for (size_t i = 0; i < __arraycount(chunks); i++) {
    494 		SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
    495 	}
    496 
    497 	kernel_l1pt.pv_pa = 0;
    498 	kernel_l1pt.pv_va = 0;
    499 
    500 	/*
    501 	 * Allocate the L2 pages, but if we get to a page that is aligned for
    502 	 * an L1 page table, we will allocate the pages for it first and then
    503 	 * allocate the L2 page.
    504 	 */
    505 
    506 	if (map_vectors_p) {
    507 		/*
    508 		 * First allocate L2 page for the vectors.
    509 		 */
    510 		VPRINTF(" vector");
    511 		valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
    512 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    513 		add_pages(bmi, &bmi->bmi_vector_l2pt);
    514 	}
    515 
    516 	/*
    517 	 * Now allocate L2 pages for the kernel
    518 	 */
    519 	VPRINTF(" kernel");
    520 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
    521 		valloc_pages(bmi, &kernel_l2pt[idx], 1,
    522 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    523 		add_pages(bmi, &kernel_l2pt[idx]);
    524 	}
    525 
    526 	/*
    527 	 * Now allocate L2 pages for the initial kernel VA space.
    528 	 */
    529 	VPRINTF(" vm");
    530 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
    531 		valloc_pages(bmi, &vmdata_l2pt[idx], 1,
    532 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    533 		add_pages(bmi, &vmdata_l2pt[idx]);
    534 	}
    535 
    536 	/*
    537 	 * If someone wanted a L2 page for I/O, allocate it now.
    538 	 */
    539 	if (iovbase) {
    540 		VPRINTF(" io");
    541 		valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
    542 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE, true);
    543 		add_pages(bmi, &bmi->bmi_io_l2pt);
    544 	}
    545 
    546 	VPRINTF("%s: allocating stacks\n", __func__);
    547 
    548 	/* Allocate stacks for all modes and CPUs */
    549 	valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
    550 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    551 	add_pages(bmi, &abtstack);
    552 	valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
    553 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    554 	add_pages(bmi, &fiqstack);
    555 	valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
    556 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    557 	add_pages(bmi, &irqstack);
    558 	valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
    559 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    560 	add_pages(bmi, &undstack);
    561 	valloc_pages(bmi, &idlestack, UPAGES * cpu_num,		/* SVC32 */
    562 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    563 	add_pages(bmi, &idlestack);
    564 	valloc_pages(bmi, &kernelstack, UPAGES,			/* SVC32 */
    565 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, true);
    566 	add_pages(bmi, &kernelstack);
    567 
    568 	/* Allocate the message buffer from the end of memory. */
    569 	const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
    570 	valloc_pages(bmi, &msgbuf, msgbuf_pgs,
    571 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE, false);
    572 	add_pages(bmi, &msgbuf);
    573 	msgbufphys = msgbuf.pv_pa;
    574 	msgbufaddr = (void *)msgbuf.pv_va;
    575 
    576 	if (map_vectors_p) {
    577 		/*
    578 		 * Allocate a page for the system vector page.
    579 		 * This page will just contain the system vectors and can be
    580 		 * shared by all processes.
    581 		 */
    582 		valloc_pages(bmi, &systempage, 1, VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
    583 		    PTE_CACHE, true);
    584 	}
    585 	systempage.pv_va = vectors;
    586 
    587 	/*
    588 	 * If the caller needed a few extra pages for some reason, allocate
    589 	 * them now.
    590 	 */
    591 #if ARM_MMU_XSCALE == 1
    592 #if (ARM_NMMUS > 1)
    593 	if (xscale_use_minidata)
    594 #endif
    595 		valloc_pages(bmi, &minidataclean, 1,
    596 		    VM_PROT_READ|VM_PROT_WRITE, 0, true);
    597 #endif
    598 
    599 	/*
    600 	 * Ok we have allocated physical pages for the primary kernel
    601 	 * page tables and stacks.  Let's just confirm that.
    602 	 */
    603 	if (kernel_l1pt.pv_va == 0
    604 	    && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
    605 		panic("%s: Failed to allocate or align the kernel "
    606 		    "page directory", __func__);
    607 
    608 
    609 	VPRINTF("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
    610 
    611 	/*
    612 	 * Now we start construction of the L1 page table
    613 	 * We start by mapping the L2 page tables into the L1.
    614 	 * This means that we can replace L1 mappings later on if necessary
    615 	 */
    616 	vaddr_t l1pt_va = kernel_l1pt.pv_va;
    617 	paddr_t l1pt_pa = kernel_l1pt.pv_pa;
    618 
    619 	if (map_vectors_p) {
    620 		/* Map the L2 pages tables in the L1 page table */
    621 		pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
    622 		    &bmi->bmi_vector_l2pt);
    623 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) "
    624 		    "for VA %#lx\n (vectors)",
    625 		    __func__, bmi->bmi_vector_l2pt.pv_va,
    626 		    bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
    627 	}
    628 
    629 	const vaddr_t kernel_base =
    630 	    KERN_PHYSTOV(bmi, bmi->bmi_kernelstart & -L2_S_SEGSIZE);
    631 	for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
    632 		pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
    633 		    &kernel_l2pt[idx]);
    634 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
    635 		    __func__, kernel_l2pt[idx].pv_va,
    636 		    kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
    637 	}
    638 
    639 	for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
    640 		pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
    641 		    &vmdata_l2pt[idx]);
    642 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
    643 		    __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
    644 		    kernel_vm_base + idx * L2_S_SEGSIZE);
    645 	}
    646 	if (iovbase) {
    647 		pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
    648 		VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
    649 		    __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
    650 		    iovbase & -L2_S_SEGSIZE);
    651 	}
    652 
    653 	/* update the top of the kernel VM */
    654 	pmap_curmaxkvaddr =
    655 	    kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
    656 
    657 	VPRINTF("Mapping kernel\n");
    658 
    659 	extern char etext[], _end[];
    660 	size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
    661 	size_t textsize = KERN_VTOPHYS(bmi, (uintptr_t)etext) - bmi->bmi_kernelstart;
    662 
    663 	textsize = (textsize + PGOFSET) & ~PGOFSET;
    664 
    665 	/* start at offset of kernel in RAM */
    666 
    667 	text.pv_pa = bmi->bmi_kernelstart;
    668 	text.pv_va = KERN_PHYSTOV(bmi, bmi->bmi_kernelstart);
    669 	text.pv_size = textsize;
    670 	text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
    671 	text.pv_cache = PTE_CACHE;
    672 
    673 	VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
    674 	    __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
    675 
    676 	add_pages(bmi, &text);
    677 
    678 	data.pv_pa = text.pv_pa + textsize;
    679 	data.pv_va = text.pv_va + textsize;
    680 	data.pv_size = totalsize - textsize;
    681 	data.pv_prot = VM_PROT_READ|VM_PROT_WRITE;
    682 	data.pv_cache = PTE_CACHE;
    683 
    684 	VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
    685 	    __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
    686 
    687 	add_pages(bmi, &data);
    688 
    689 	VPRINTF("Listing Chunks\n");
    690 
    691 	pv_addr_t *lpv;
    692 	SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
    693 		VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
    694 		    "(PA %#lx, prot %d, cache %d)\n",
    695 		    __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
    696 		    lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
    697 	}
    698 	VPRINTF("\nMapping Chunks\n");
    699 
    700 	pv_addr_t cur_pv;
    701 	pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
    702 	if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
    703 		cur_pv = *pv;
    704 		KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
    705 		pv = SLIST_NEXT(pv, pv_list);
    706 	} else {
    707 		cur_pv.pv_va = KERNEL_BASE;
    708 		cur_pv.pv_pa = KERN_VTOPHYS(bmi, cur_pv.pv_va);
    709 		cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
    710 		cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    711 		cur_pv.pv_cache = PTE_CACHE;
    712 	}
    713 	while (pv != NULL) {
    714 		if (mapallmem_p) {
    715 			if (concat_pvaddr(&cur_pv, pv)) {
    716 				pv = SLIST_NEXT(pv, pv_list);
    717 				continue;
    718 			}
    719 			if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
    720 				/*
    721 				 * See if we can extend the current pv to emcompass the
    722 				 * hole, and if so do it and retry the concatenation.
    723 				 */
    724 				if (cur_pv.pv_prot == (VM_PROT_READ|VM_PROT_WRITE)
    725 				    && cur_pv.pv_cache == PTE_CACHE) {
    726 					cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    727 					continue;
    728 				}
    729 
    730 				/*
    731 				 * We couldn't so emit the current chunk and then
    732 				 */
    733 				VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    734 				    "(PA %#lx, prot %d, cache %d)\n",
    735 				    __func__,
    736 				    cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    737 				    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    738 				pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    739 				    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    740 
    741 				/*
    742 				 * set the current chunk to the hole and try again.
    743 				 */
    744 				cur_pv.pv_pa += cur_pv.pv_size;
    745 				cur_pv.pv_va += cur_pv.pv_size;
    746 				cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
    747 				cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    748 				cur_pv.pv_cache = PTE_CACHE;
    749 				continue;
    750 			}
    751 		}
    752 
    753 		/*
    754 		 * The new pv didn't concatenate so emit the current one
    755 		 * and use the new pv as the current pv.
    756 		 */
    757 		VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    758 		    "(PA %#lx, prot %d, cache %d)\n",
    759 		    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    760 		    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    761 		pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    762 		    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    763 		cur_pv = *pv;
    764 		pv = SLIST_NEXT(pv, pv_list);
    765 	}
    766 
    767 	/*
    768 	 * If we are mapping all of memory, let's map the rest of memory.
    769 	 */
    770 	if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
    771 		if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
    772 		    && cur_pv.pv_cache == PTE_CACHE) {
    773 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    774 		} else {
    775 			KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
    776 			    "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
    777 			    kernel_vm_base);
    778 			VPRINTF("%s: mapping chunk VA %#lx..%#lx "
    779 			    "(PA %#lx, prot %d, cache %d)\n",
    780 			    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    781 			    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    782 			pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    783 			    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    784 			cur_pv.pv_pa += cur_pv.pv_size;
    785 			cur_pv.pv_va += cur_pv.pv_size;
    786 			cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
    787 			cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
    788 			cur_pv.pv_cache = PTE_CACHE;
    789 		}
    790 	}
    791 
    792 	// The amount we can direct is limited by the start of the
    793 	// virtual part of the kernel address space.  Don't overrun
    794 	// into it.
    795 	if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
    796 		cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
    797 	}
    798 
    799 	/*
    800 	 * Now we map the final chunk.
    801 	 */
    802 	VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
    803 	    __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
    804 	    cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
    805 	pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
    806 	    cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
    807 
    808 	/*
    809 	 * Now we map the stuff that isn't directly after the kernel
    810 	 */
    811 	if (map_vectors_p) {
    812 		/* Map the vector page. */
    813 		pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
    814 		    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
    815 	}
    816 
    817 	/* Map the Mini-Data cache clean area. */
    818 #if ARM_MMU_XSCALE == 1
    819 #if (ARM_NMMUS > 1)
    820 	if (xscale_use_minidata)
    821 #endif
    822 		xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
    823 		    minidataclean.pv_pa);
    824 #endif
    825 
    826 	/*
    827 	 * Map integrated peripherals at same address in first level page
    828 	 * table so that we can continue to use console.
    829 	 */
    830 	if (devmap)
    831 		pmap_devmap_bootstrap(l1pt_va, devmap);
    832 
    833 	/* Tell the user about where all the bits and pieces live. */
    834 	VPRINTF("%22s       Physical              Virtual        Num\n", " ");
    835 	VPRINTF("%22s Starting    Ending    Starting    Ending   Pages\n", " ");
    836 
    837 	static const char mem_fmt[] =
    838 	    "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
    839 	static const char mem_fmt_nov[] =
    840 	    "%20s: 0x%08lx 0x%08lx                       %zu\n";
    841 
    842 	VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
    843 	    KERN_PHYSTOV(bmi, bmi->bmi_start), KERN_PHYSTOV(bmi, bmi->bmi_end - 1),
    844 	    (int)physmem);
    845 	VPRINTF(mem_fmt, "text section",
    846 	       text.pv_pa, text.pv_pa + text.pv_size - 1,
    847 	       text.pv_va, text.pv_va + text.pv_size - 1,
    848 	       (int)(text.pv_size / PAGE_SIZE));
    849 	VPRINTF(mem_fmt, "data section",
    850 	       KERN_VTOPHYS(bmi, __data_start), KERN_VTOPHYS(bmi, _edata),
    851 	       (vaddr_t)__data_start, (vaddr_t)_edata,
    852 	       (int)((round_page((vaddr_t)_edata)
    853 		      - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
    854 	VPRINTF(mem_fmt, "bss section",
    855 	       KERN_VTOPHYS(bmi, __bss_start), KERN_VTOPHYS(bmi, __bss_end__),
    856 	       (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
    857 	       (int)((round_page((vaddr_t)__bss_end__)
    858 		      - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
    859 	VPRINTF(mem_fmt, "L1 page directory",
    860 	    kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
    861 	    kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
    862 	    L1_TABLE_SIZE / PAGE_SIZE);
    863 	VPRINTF(mem_fmt, "ABT stack (CPU 0)",
    864 	    abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    865 	    abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
    866 	    ABT_STACK_SIZE);
    867 	VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
    868 	    fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    869 	    fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
    870 	    FIQ_STACK_SIZE);
    871 	VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
    872 	    irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    873 	    irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
    874 	    IRQ_STACK_SIZE);
    875 	VPRINTF(mem_fmt, "UND stack (CPU 0)",
    876 	    undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    877 	    undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
    878 	    UND_STACK_SIZE);
    879 	VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
    880 	    idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    881 	    idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    882 	    UPAGES);
    883 	VPRINTF(mem_fmt, "SVC stack",
    884 	    kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
    885 	    kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
    886 	    UPAGES);
    887 	VPRINTF(mem_fmt, "Message Buffer",
    888 	    msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
    889 	    msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
    890 	    (int)msgbuf_pgs);
    891 	if (map_vectors_p) {
    892 		VPRINTF(mem_fmt, "Exception Vectors",
    893 		    systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
    894 		    systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
    895 		    1);
    896 	}
    897 	for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
    898 		pv = &bmi->bmi_freeblocks[i];
    899 
    900 		VPRINTF(mem_fmt_nov, "Free Memory",
    901 		    pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
    902 		    pv->pv_size / PAGE_SIZE);
    903 	}
    904 	/*
    905 	 * Now we have the real page tables in place so we can switch to them.
    906 	 * Once this is done we will be running with the REAL kernel page
    907 	 * tables.
    908 	 */
    909 
    910 	VPRINTF("TTBR0=%#x", armreg_ttbr_read());
    911 #ifdef _ARM_ARCH_6
    912 	VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
    913 	    armreg_ttbr1_read(), armreg_ttbcr_read(),
    914 	    armreg_contextidr_read());
    915 #endif
    916 	VPRINTF("\n");
    917 
    918 	/* Switch tables */
    919 	VPRINTF("switching to new L1 page table @%#lx...", l1pt_pa);
    920 
    921 #ifdef ARM_MMU_EXTENDED
    922 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2))
    923 	    | (DOMAIN_CLIENT << (PMAP_DOMAIN_USER*2)));
    924 #else
    925 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
    926 #endif
    927 	cpu_idcache_wbinv_all();
    928 	VPRINTF(" ttb");
    929 #ifdef ARM_MMU_EXTENDED
    930 	/*
    931 	 * TTBCR should have been initialized by the MD start code.
    932 	 */
    933 	KASSERT((armreg_contextidr_read() & 0xff) == 0);
    934 	KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
    935 	/*
    936 	 * Disable lookups via TTBR0 until there is an activated pmap.
    937 	 */
    938 	armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
    939 	cpu_setttb(l1pt_pa, KERNEL_PID);
    940 	arm_isb();
    941 #else
    942 	cpu_setttb(l1pt_pa, true);
    943 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
    944 #endif
    945 	cpu_tlb_flushID();
    946 
    947 #ifdef ARM_MMU_EXTENDED
    948 	VPRINTF(" (TTBCR=%#x TTBR0=%#x TTBR1=%#x)",
    949 	    armreg_ttbcr_read(), armreg_ttbr_read(), armreg_ttbr1_read());
    950 #else
    951 	VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
    952 #endif
    953 
    954 #ifdef MULTIPROCESSOR
    955 	/*
    956 	 * Kick the secondaries to load the TTB.  After which they'll go
    957 	 * back to sleep to wait for the final kick so they will hatch.
    958 	 */
    959 	VPRINTF(" hatchlings");
    960 	cpu_boot_secondary_processors();
    961 #endif
    962 
    963 	VPRINTF(" OK\n");
    964 }
    965