arm32_kvminit.c revision 1.61 1 /* $NetBSD: arm32_kvminit.c,v 1.61 2020/07/03 06:22:48 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include "opt_arm_debug.h"
125 #include "opt_arm_start.h"
126 #include "opt_fdt.h"
127 #include "opt_multiprocessor.h"
128
129 #include <sys/cdefs.h>
130 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.61 2020/07/03 06:22:48 skrll Exp $");
131
132 #include <sys/param.h>
133
134 #include <sys/bus.h>
135 #include <sys/device.h>
136 #include <sys/kernel.h>
137 #include <sys/reboot.h>
138
139 #include <dev/cons.h>
140
141 #include <uvm/uvm_extern.h>
142
143 #include <arm/arm32/machdep.h>
144 #include <arm/bootconfig.h>
145 #include <arm/db_machdep.h>
146 #include <arm/locore.h>
147 #include <arm/undefined.h>
148
149 #if defined(FDT)
150 #include <arch/evbarm/fdt/platform.h>
151 #include <arm/fdt/arm_fdtvar.h>
152 #endif
153
154 #ifdef MULTIPROCESSOR
155 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
156 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
157 #endif
158 #endif
159
160 #ifdef VERBOSE_INIT_ARM
161 #define VPRINTF(...) printf(__VA_ARGS__)
162 #else
163 #define VPRINTF(...) __nothing
164 #endif
165
166 struct bootmem_info bootmem_info;
167
168 extern void *msgbufaddr;
169 paddr_t msgbufphys;
170 paddr_t physical_start;
171 paddr_t physical_end;
172
173 extern char etext[];
174 extern char __data_start[], _edata[];
175 extern char __bss_start[], __bss_end__[];
176 extern char _end[];
177
178 /* Page tables for mapping kernel VM */
179 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
180
181 u_long kern_vtopdiff __attribute__((__section__(".data")));
182
183 void
184 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
185 {
186 struct bootmem_info * const bmi = &bootmem_info;
187 pv_addr_t *pv = bmi->bmi_freeblocks;
188
189 /*
190 * FDT/generic start fills in kern_vtopdiff early
191 */
192 #if defined(__HAVE_GENERIC_START)
193 extern char KERNEL_BASE_virt[];
194 extern char const __stop__init_memory[];
195
196 VPRINTF("%s: kern_vtopdiff=%#lx\n", __func__, kern_vtopdiff);
197
198 vaddr_t kstartva = trunc_page((vaddr_t)KERNEL_BASE_virt);
199 vaddr_t kendva = round_page((vaddr_t)__stop__init_memory);
200
201 kernelstart = KERN_VTOPHYS(kstartva);
202
203 VPRINTF("%s: kstartva=%#lx, kernelstart=%#lx\n", __func__, kstartva, kernelstart);
204 #else
205 vaddr_t kendva = round_page((vaddr_t)_end);
206
207 #if defined(KERNEL_BASE_VOFFSET)
208 kern_vtopdiff = KERNEL_BASE_VOFFSET;
209 #else
210 KASSERT(memstart == kernelstart);
211 kern_vtopdiff = KERNEL_BASE + memstart;
212 #endif
213 #endif
214 paddr_t kernelend = KERN_VTOPHYS(kendva);
215
216 VPRINTF("%s: memstart=%#lx, memsize=%#lx\n", __func__,
217 memstart, memsize);
218 VPRINTF("%s: kernelstart=%#lx, kernelend=%#lx\n", __func__,
219 kernelstart, kernelend);
220
221 physical_start = bmi->bmi_start = memstart;
222 physical_end = bmi->bmi_end = memstart + memsize;
223 #ifndef ARM_HAS_LPAE
224 if (physical_end == 0) {
225 physical_end = -PAGE_SIZE;
226 memsize -= PAGE_SIZE;
227 bmi->bmi_end -= PAGE_SIZE;
228 VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
229 __func__);
230 }
231 #endif
232 physmem = memsize / PAGE_SIZE;
233
234 /*
235 * Let's record where the kernel lives.
236 */
237
238 bmi->bmi_kernelstart = kernelstart;
239 bmi->bmi_kernelend = kernelend;
240
241 #if defined(FDT)
242 fdt_add_reserved_memory_range(bmi->bmi_kernelstart,
243 bmi->bmi_kernelend - bmi->bmi_kernelstart);
244 #endif
245
246 VPRINTF("%s: kernel phys start %#lx end %#lx\n", __func__, kernelstart,
247 kernelend);
248
249 #if 0
250 // XXX Makes RPI abort
251 KASSERT((kernelstart & (L2_S_SEGSIZE - 1)) == 0);
252 #endif
253 /*
254 * Now the rest of the free memory must be after the kernel.
255 */
256 pv->pv_pa = bmi->bmi_kernelend;
257 pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
258 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
259 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
260 VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
261 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
262 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
263 pv++;
264
265 /*
266 * Add a free block for any memory before the kernel.
267 */
268 if (bmi->bmi_start < bmi->bmi_kernelstart) {
269 pv->pv_pa = bmi->bmi_start;
270 pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
271 pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
272 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
273 VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
274 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
275 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
276 pv++;
277 }
278
279 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
280
281 SLIST_INIT(&bmi->bmi_freechunks);
282 SLIST_INIT(&bmi->bmi_chunks);
283 }
284
285 static bool
286 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
287 {
288 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
289 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
290 && acc_pv->pv_prot == pv->pv_prot
291 && acc_pv->pv_cache == pv->pv_cache) {
292 #if 0
293 VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
294 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size,
295 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size);
296 #endif
297 acc_pv->pv_size += pv->pv_size;
298 return true;
299 }
300
301 return false;
302 }
303
304 static void
305 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
306 {
307 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
308 while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
309 pv_addr_t * const pv0 = (*pvp);
310 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
311 if (concat_pvaddr(pv0, pv)) {
312 VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
313 __func__, "appending", pv,
314 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
315 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
316 pv = SLIST_NEXT(pv0, pv_list);
317 if (pv != NULL && concat_pvaddr(pv0, pv)) {
318 VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
319 __func__, "merging", pv,
320 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
321 pv0->pv_pa,
322 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
323 SLIST_REMOVE_AFTER(pv0, pv_list);
324 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
325 }
326 return;
327 }
328 KASSERT(pv->pv_va != (*pvp)->pv_va);
329 pvp = &SLIST_NEXT(*pvp, pv_list);
330 }
331 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
332 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
333 KASSERT(new_pv != NULL);
334 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
335 *new_pv = *pv;
336 SLIST_NEXT(new_pv, pv_list) = *pvp;
337 (*pvp) = new_pv;
338
339 VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
340 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
341 new_pv->pv_size / PAGE_SIZE);
342 if (SLIST_NEXT(new_pv, pv_list)) {
343 VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
344 } else {
345 VPRINTF("at tail\n");
346 }
347 }
348
349 static void
350 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
351 int prot, int cache, bool zero_p)
352 {
353 size_t nbytes = npages * PAGE_SIZE;
354 pv_addr_t *free_pv = bmi->bmi_freeblocks;
355 size_t free_idx = 0;
356 static bool l1pt_found;
357
358 KASSERT(npages > 0);
359
360 /*
361 * If we haven't allocated the kernel L1 page table and we are aligned
362 * at a L1 table boundary, alloc the memory for it.
363 */
364 if (!l1pt_found
365 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
366 && free_pv->pv_size >= L1_TABLE_SIZE) {
367 l1pt_found = true;
368 VPRINTF(" l1pt");
369
370 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
371 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
372 add_pages(bmi, &kernel_l1pt);
373 }
374
375 while (nbytes > free_pv->pv_size) {
376 free_pv++;
377 free_idx++;
378 if (free_idx == bmi->bmi_nfreeblocks) {
379 panic("%s: could not allocate %zu bytes",
380 __func__, nbytes);
381 }
382 }
383
384 /*
385 * As we allocate the memory, make sure that we don't walk over
386 * our current first level translation table.
387 */
388 KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
389
390 #if defined(FDT)
391 fdt_add_reserved_memory_range(free_pv->pv_pa, nbytes);
392 #endif
393 pv->pv_pa = free_pv->pv_pa;
394 pv->pv_va = free_pv->pv_va;
395 pv->pv_size = nbytes;
396 pv->pv_prot = prot;
397 pv->pv_cache = cache;
398
399 /*
400 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
401 * just use PTE_CACHE.
402 */
403 if (cache == PTE_PAGETABLE
404 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
405 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
406 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
407 pv->pv_cache = PTE_CACHE;
408
409 free_pv->pv_pa += nbytes;
410 free_pv->pv_va += nbytes;
411 free_pv->pv_size -= nbytes;
412 if (free_pv->pv_size == 0) {
413 --bmi->bmi_nfreeblocks;
414 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
415 free_pv[0] = free_pv[1];
416 }
417 }
418
419 bmi->bmi_freepages -= npages;
420
421 if (zero_p)
422 memset((void *)pv->pv_va, 0, nbytes);
423 }
424
425 void
426 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
427 const struct pmap_devmap *devmap, bool mapallmem_p)
428 {
429 struct bootmem_info * const bmi = &bootmem_info;
430 #ifdef MULTIPROCESSOR
431 const size_t cpu_num = arm_cpu_max;
432 #else
433 const size_t cpu_num = 1;
434 #endif
435
436 #ifdef ARM_HAS_VBAR
437 const bool map_vectors_p = false;
438 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
439 const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
440 || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
441 #else
442 const bool map_vectors_p = true;
443 #endif
444
445 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
446 KASSERT(mapallmem_p);
447 #ifdef ARM_MMU_EXTENDED
448 /*
449 * The direct map VA space ends at the start of the kernel VM space.
450 */
451 pmap_directlimit = kernel_vm_base;
452 #else
453 KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
454 #endif /* ARM_MMU_EXTENDED */
455 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
456
457 /*
458 * Calculate the number of L2 pages needed for mapping the
459 * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
460 * and 1 for IO
461 */
462 size_t kernel_size = bmi->bmi_kernelend;
463 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
464 kernel_size += L1_TABLE_SIZE;
465 kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
466 if (map_vectors_p) {
467 kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
468 }
469 if (iovbase) {
470 kernel_size += PAGE_SIZE; /* L2PT for IO */
471 }
472 kernel_size +=
473 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
474 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
475 kernel_size += round_page(MSGBUFSIZE);
476 kernel_size += 0x10000; /* slop */
477 if (!mapallmem_p) {
478 kernel_size += PAGE_SIZE
479 * ((kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE);
480 }
481 kernel_size = round_page(kernel_size);
482
483 /*
484 * Now we know how many L2 pages it will take.
485 */
486 const size_t KERNEL_L2PT_KERNEL_NUM =
487 round_page(kernel_size + L2_S_SEGSIZE - 1) / L2_S_SEGSIZE;
488
489 VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
490 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
491
492 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
493 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
494 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
495 pv_addr_t msgbuf;
496 pv_addr_t text;
497 pv_addr_t data;
498 pv_addr_t chunks[__arraycount(bmi->bmi_l2pts) + 11];
499 #if ARM_MMU_XSCALE == 1
500 pv_addr_t minidataclean;
501 #endif
502
503 /*
504 * We need to allocate some fixed page tables to get the kernel going.
505 *
506 * We are going to allocate our bootstrap pages from the beginning of
507 * the free space that we just calculated. We allocate one page
508 * directory and a number of page tables and store the physical
509 * addresses in the bmi_l2pts array in bootmem_info.
510 *
511 * The kernel page directory must be on a 16K boundary. The page
512 * tables must be on 4K boundaries. What we do is allocate the
513 * page directory on the first 16K boundary that we encounter, and
514 * the page tables on 4K boundaries otherwise. Since we allocate
515 * at least 3 L2 page tables, we are guaranteed to encounter at
516 * least one 16K aligned region.
517 */
518
519 VPRINTF("%s: allocating page tables for", __func__);
520 for (size_t i = 0; i < __arraycount(chunks); i++) {
521 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
522 }
523
524 kernel_l1pt.pv_pa = 0;
525 kernel_l1pt.pv_va = 0;
526
527 /*
528 * Allocate the L2 pages, but if we get to a page that is aligned for
529 * an L1 page table, we will allocate the pages for it first and then
530 * allocate the L2 page.
531 */
532
533 if (map_vectors_p) {
534 /*
535 * First allocate L2 page for the vectors.
536 */
537 VPRINTF(" vector");
538 valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
539 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
540 add_pages(bmi, &bmi->bmi_vector_l2pt);
541 }
542
543 /*
544 * Now allocate L2 pages for the kernel
545 */
546 VPRINTF(" kernel");
547 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
548 valloc_pages(bmi, &kernel_l2pt[idx], 1,
549 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
550 add_pages(bmi, &kernel_l2pt[idx]);
551 }
552
553 /*
554 * Now allocate L2 pages for the initial kernel VA space.
555 */
556 VPRINTF(" vm");
557 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
558 valloc_pages(bmi, &vmdata_l2pt[idx], 1,
559 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
560 add_pages(bmi, &vmdata_l2pt[idx]);
561 }
562
563 /*
564 * If someone wanted a L2 page for I/O, allocate it now.
565 */
566 if (iovbase) {
567 VPRINTF(" io");
568 valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
569 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
570 add_pages(bmi, &bmi->bmi_io_l2pt);
571 }
572
573 VPRINTF("%s: allocating stacks\n", __func__);
574
575 /* Allocate stacks for all modes and CPUs */
576 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
577 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
578 add_pages(bmi, &abtstack);
579 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
580 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
581 add_pages(bmi, &fiqstack);
582 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
583 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
584 add_pages(bmi, &irqstack);
585 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
586 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
587 add_pages(bmi, &undstack);
588 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
589 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
590 add_pages(bmi, &idlestack);
591 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
592 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
593 add_pages(bmi, &kernelstack);
594
595 /* Allocate the message buffer from the end of memory. */
596 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
597 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
598 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, false);
599 add_pages(bmi, &msgbuf);
600 msgbufphys = msgbuf.pv_pa;
601 msgbufaddr = (void *)msgbuf.pv_va;
602
603 if (map_vectors_p) {
604 /*
605 * Allocate a page for the system vector page.
606 * This page will just contain the system vectors and can be
607 * shared by all processes.
608 */
609 VPRINTF(" vector");
610
611 valloc_pages(bmi, &systempage, 1,
612 VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE,
613 PTE_CACHE, true);
614 }
615 systempage.pv_va = vectors;
616
617 /*
618 * If the caller needed a few extra pages for some reason, allocate
619 * them now.
620 */
621 #if ARM_MMU_XSCALE == 1
622 #if (ARM_NMMUS > 1)
623 if (xscale_use_minidata)
624 #endif
625 valloc_pages(bmi, &minidataclean, 1,
626 VM_PROT_READ | VM_PROT_WRITE, 0, true);
627 #endif
628
629 /*
630 * Ok we have allocated physical pages for the primary kernel
631 * page tables and stacks. Let's just confirm that.
632 */
633 if (kernel_l1pt.pv_va == 0
634 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
635 panic("%s: Failed to allocate or align the kernel "
636 "page directory", __func__);
637
638 VPRINTF("Creating L1 page table at 0x%08lx/0x%08lx\n",
639 kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
640
641 /*
642 * Now we start construction of the L1 page table
643 * We start by mapping the L2 page tables into the L1.
644 * This means that we can replace L1 mappings later on if necessary
645 */
646 vaddr_t l1pt_va = kernel_l1pt.pv_va;
647 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
648
649 if (map_vectors_p) {
650 /* Map the L2 pages tables in the L1 page table */
651 pmap_link_l2pt(l1pt_va, systempage.pv_va & -L2_S_SEGSIZE,
652 &bmi->bmi_vector_l2pt);
653 VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) "
654 "for VA %#lx\n (vectors)",
655 __func__, bmi->bmi_vector_l2pt.pv_va,
656 bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va);
657 }
658
659 /*
660 * This enforces an alignment requirement of L2_S_SEGSIZE for kernel
661 * start PA
662 */
663 const vaddr_t kernel_base =
664 KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
665
666 VPRINTF("%s: kernel_base %lx KERNEL_L2PT_KERNEL_NUM %zu\n", __func__,
667 kernel_base, KERNEL_L2PT_KERNEL_NUM);
668
669 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
670 pmap_link_l2pt(l1pt_va, kernel_base + idx * L2_S_SEGSIZE,
671 &kernel_l2pt[idx]);
672 VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (kernel)\n",
673 __func__, kernel_l2pt[idx].pv_va,
674 kernel_l2pt[idx].pv_pa, kernel_base + idx * L2_S_SEGSIZE);
675 }
676
677 VPRINTF("%s: kernel_vm_base %lx KERNEL_L2PT_VMDATA_NUM %d\n", __func__,
678 kernel_vm_base, KERNEL_L2PT_VMDATA_NUM);
679
680 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
681 pmap_link_l2pt(l1pt_va, kernel_vm_base + idx * L2_S_SEGSIZE,
682 &vmdata_l2pt[idx]);
683 VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (vm)\n",
684 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
685 kernel_vm_base + idx * L2_S_SEGSIZE);
686 }
687 if (iovbase) {
688 pmap_link_l2pt(l1pt_va, iovbase & -L2_S_SEGSIZE, &bmi->bmi_io_l2pt);
689 VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx (io)\n",
690 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
691 iovbase & -L2_S_SEGSIZE);
692 }
693
694 /* update the top of the kernel VM */
695 pmap_curmaxkvaddr =
696 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
697
698 // This could be done earlier and then the kernel data and pages
699 // allocated above would get merged (concatentated)
700
701 VPRINTF("Mapping kernel\n");
702
703 extern char etext[];
704 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
705 size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
706
707 textsize = (textsize + PGOFSET) & ~PGOFSET;
708
709 /* start at offset of kernel in RAM */
710
711 text.pv_pa = bmi->bmi_kernelstart;
712 text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
713 text.pv_size = textsize;
714 text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
715 text.pv_cache = PTE_CACHE;
716
717 VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
718 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
719
720 add_pages(bmi, &text);
721
722 data.pv_pa = text.pv_pa + textsize;
723 data.pv_va = text.pv_va + textsize;
724 data.pv_size = totalsize - textsize;
725 data.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
726 data.pv_cache = PTE_CACHE;
727
728 VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
729 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
730
731 add_pages(bmi, &data);
732
733 VPRINTF("Listing Chunks\n");
734
735 pv_addr_t *lpv;
736 SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
737 VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
738 "(PA %#lx, prot %d, cache %d)\n",
739 __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
740 lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
741 }
742 VPRINTF("\nMapping Chunks\n");
743
744 pv_addr_t cur_pv;
745 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
746 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
747 cur_pv = *pv;
748 KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
749 pv = SLIST_NEXT(pv, pv_list);
750 } else {
751 cur_pv.pv_va = KERNEL_BASE;
752 cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
753 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
754 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
755 cur_pv.pv_cache = PTE_CACHE;
756 }
757 while (pv != NULL) {
758 if (mapallmem_p) {
759 if (concat_pvaddr(&cur_pv, pv)) {
760 pv = SLIST_NEXT(pv, pv_list);
761 continue;
762 }
763 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
764 /*
765 * See if we can extend the current pv to emcompass the
766 * hole, and if so do it and retry the concatenation.
767 */
768 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
769 && cur_pv.pv_cache == PTE_CACHE) {
770 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
771 continue;
772 }
773
774 /*
775 * We couldn't so emit the current chunk and then
776 */
777 VPRINTF("%s: mapping chunk VA %#lx..%#lx "
778 "(PA %#lx, prot %d, cache %d)\n",
779 __func__,
780 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
781 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
782 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
783 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
784
785 /*
786 * set the current chunk to the hole and try again.
787 */
788 cur_pv.pv_pa += cur_pv.pv_size;
789 cur_pv.pv_va += cur_pv.pv_size;
790 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
791 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
792 cur_pv.pv_cache = PTE_CACHE;
793 continue;
794 }
795 }
796
797 /*
798 * The new pv didn't concatenate so emit the current one
799 * and use the new pv as the current pv.
800 */
801 VPRINTF("%s: mapping chunk VA %#lx..%#lx "
802 "(PA %#lx, prot %d, cache %d)\n",
803 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
804 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
805 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
806 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
807 cur_pv = *pv;
808 pv = SLIST_NEXT(pv, pv_list);
809 }
810
811 /*
812 * If we are mapping all of memory, let's map the rest of memory.
813 */
814 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
815 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
816 && cur_pv.pv_cache == PTE_CACHE) {
817 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
818 } else {
819 KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
820 "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
821 kernel_vm_base);
822 VPRINTF("%s: mapping chunk VA %#lx..%#lx "
823 "(PA %#lx, prot %d, cache %d)\n",
824 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
825 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
826 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
827 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
828 cur_pv.pv_pa += cur_pv.pv_size;
829 cur_pv.pv_va += cur_pv.pv_size;
830 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
831 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
832 cur_pv.pv_cache = PTE_CACHE;
833 }
834 }
835
836 /*
837 * The amount we can direct map is limited by the start of the
838 * virtual part of the kernel address space. Don't overrun
839 * into it.
840 */
841 if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
842 cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
843 }
844
845 /*
846 * Now we map the final chunk.
847 */
848 VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
849 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
850 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
851 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
852 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
853
854 /*
855 * Now we map the stuff that isn't directly after the kernel
856 */
857 if (map_vectors_p) {
858 /* Map the vector page. */
859 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
860 VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE, PTE_CACHE);
861 }
862
863 /* Map the Mini-Data cache clean area. */
864 #if ARM_MMU_XSCALE == 1
865 #if (ARM_NMMUS > 1)
866 if (xscale_use_minidata)
867 #endif
868 xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
869 minidataclean.pv_pa);
870 #endif
871
872 /*
873 * Map integrated peripherals at same address in first level page
874 * table so that we can continue to use console.
875 */
876 if (devmap)
877 pmap_devmap_bootstrap(l1pt_va, devmap);
878
879 /* Tell the user about where all the bits and pieces live. */
880 VPRINTF("%22s Physical Virtual Num\n", " ");
881 VPRINTF("%22s Starting Ending Starting Ending Pages\n", " ");
882
883 #ifdef VERBOSE_INIT_ARM
884 static const char mem_fmt[] =
885 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
886 static const char mem_fmt_nov[] =
887 "%20s: 0x%08lx 0x%08lx %zu\n";
888 #endif
889
890 #if 0
891 // XXX Doesn't make sense if kernel not at bottom of RAM
892 VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
893 KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
894 (int)physmem);
895 #endif
896 VPRINTF(mem_fmt, "text section",
897 text.pv_pa, text.pv_pa + text.pv_size - 1,
898 text.pv_va, text.pv_va + text.pv_size - 1,
899 (int)(text.pv_size / PAGE_SIZE));
900 VPRINTF(mem_fmt, "data section",
901 KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
902 (vaddr_t)__data_start, (vaddr_t)_edata,
903 (int)((round_page((vaddr_t)_edata)
904 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
905 VPRINTF(mem_fmt, "bss section",
906 KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
907 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
908 (int)((round_page((vaddr_t)__bss_end__)
909 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
910 VPRINTF(mem_fmt, "L1 page directory",
911 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
912 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
913 L1_TABLE_SIZE / PAGE_SIZE);
914 VPRINTF(mem_fmt, "ABT stack (CPU 0)",
915 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
916 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
917 ABT_STACK_SIZE);
918 VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
919 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
920 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
921 FIQ_STACK_SIZE);
922 VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
923 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
924 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
925 IRQ_STACK_SIZE);
926 VPRINTF(mem_fmt, "UND stack (CPU 0)",
927 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
928 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
929 UND_STACK_SIZE);
930 VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
931 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
932 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
933 UPAGES);
934 VPRINTF(mem_fmt, "SVC stack",
935 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
936 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
937 UPAGES);
938 VPRINTF(mem_fmt, "Message Buffer",
939 msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
940 msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
941 (int)msgbuf_pgs);
942 if (map_vectors_p) {
943 VPRINTF(mem_fmt, "Exception Vectors",
944 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
945 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
946 1);
947 }
948 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
949 pv = &bmi->bmi_freeblocks[i];
950
951 VPRINTF(mem_fmt_nov, "Free Memory",
952 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
953 pv->pv_size / PAGE_SIZE);
954 }
955 /*
956 * Now we have the real page tables in place so we can switch to them.
957 * Once this is done we will be running with the REAL kernel page
958 * tables.
959 */
960
961 VPRINTF("TTBR0=%#x", armreg_ttbr_read());
962 #ifdef _ARM_ARCH_6
963 VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
964 armreg_ttbr1_read(), armreg_ttbcr_read(),
965 armreg_contextidr_read());
966 #endif
967 VPRINTF("\n");
968
969 /* Switch tables */
970 VPRINTF("switching to new L1 page table @%#lx...\n", l1pt_pa);
971
972 cpu_ttb = l1pt_pa;
973
974 cpu_domains(DOMAIN_DEFAULT);
975
976 cpu_idcache_wbinv_all();
977
978 #ifdef __HAVE_GENERIC_START
979
980 /*
981 * Turn on caches and set SCTLR/ACTLR
982 */
983 cpu_setup(boot_args);
984 #endif
985
986 VPRINTF(" ttb");
987
988 #ifdef ARM_MMU_EXTENDED
989 /*
990 * TTBCR should have been initialized by the MD start code.
991 */
992 KASSERT((armreg_contextidr_read() & 0xff) == 0);
993 KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
994 /*
995 * Disable lookups via TTBR0 until there is an activated pmap.
996 */
997 armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
998 cpu_setttb(l1pt_pa, KERNEL_PID);
999 arm_isb();
1000 #else
1001 cpu_setttb(l1pt_pa, true);
1002 #endif
1003
1004 cpu_tlb_flushID();
1005
1006 #ifdef ARM_MMU_EXTENDED
1007 VPRINTF("\nsctlr=%#x actlr=%#x\n",
1008 armreg_sctlr_read(), armreg_auxctl_read());
1009 #else
1010 VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
1011 #endif
1012
1013 #ifdef MULTIPROCESSOR
1014 #ifndef __HAVE_GENERIC_START
1015 /*
1016 * Kick the secondaries to load the TTB. After which they'll go
1017 * back to sleep to wait for the final kick so they will hatch.
1018 */
1019 VPRINTF(" hatchlings");
1020 cpu_boot_secondary_processors();
1021 #endif
1022 #endif
1023
1024 VPRINTF(" OK\n");
1025 }
1026