arm32_kvminit.c revision 1.67 1 /* $NetBSD: arm32_kvminit.c,v 1.67 2020/12/12 09:27:31 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of Genetec Corporation may not be used to endorse or
16 * promote products derived from this software without specific prior
17 * written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Copyright (c) 2001 Wasabi Systems, Inc.
32 * All rights reserved.
33 *
34 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed for the NetBSD Project by
47 * Wasabi Systems, Inc.
48 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
49 * or promote products derived from this software without specific prior
50 * written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
54 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
55 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
56 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
57 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
58 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
59 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
60 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
61 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
62 * POSSIBILITY OF SUCH DAMAGE.
63 *
64 * Copyright (c) 1997,1998 Mark Brinicombe.
65 * Copyright (c) 1997,1998 Causality Limited.
66 * All rights reserved.
67 *
68 * Redistribution and use in source and binary forms, with or without
69 * modification, are permitted provided that the following conditions
70 * are met:
71 * 1. Redistributions of source code must retain the above copyright
72 * notice, this list of conditions and the following disclaimer.
73 * 2. Redistributions in binary form must reproduce the above copyright
74 * notice, this list of conditions and the following disclaimer in the
75 * documentation and/or other materials provided with the distribution.
76 * 3. All advertising materials mentioning features or use of this software
77 * must display the following acknowledgement:
78 * This product includes software developed by Mark Brinicombe
79 * for the NetBSD Project.
80 * 4. The name of the company nor the name of the author may be used to
81 * endorse or promote products derived from this software without specific
82 * prior written permission.
83 *
84 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
85 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
86 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
87 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
88 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
89 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
90 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
91 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
92 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
93 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
94 * SUCH DAMAGE.
95 *
96 * Copyright (c) 2007 Microsoft
97 * All rights reserved.
98 *
99 * Redistribution and use in source and binary forms, with or without
100 * modification, are permitted provided that the following conditions
101 * are met:
102 * 1. Redistributions of source code must retain the above copyright
103 * notice, this list of conditions and the following disclaimer.
104 * 2. Redistributions in binary form must reproduce the above copyright
105 * notice, this list of conditions and the following disclaimer in the
106 * documentation and/or other materials provided with the distribution.
107 * 3. All advertising materials mentioning features or use of this software
108 * must display the following acknowledgement:
109 * This product includes software developed by Microsoft
110 *
111 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
112 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
113 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
114 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
115 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
116 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
117 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
119 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
120 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
121 * SUCH DAMAGE.
122 */
123
124 #include "opt_arm_debug.h"
125 #include "opt_arm_start.h"
126 #include "opt_fdt.h"
127 #include "opt_multiprocessor.h"
128
129 #include <sys/cdefs.h>
130 __KERNEL_RCSID(0, "$NetBSD: arm32_kvminit.c,v 1.67 2020/12/12 09:27:31 skrll Exp $");
131
132 #include <sys/param.h>
133
134 #include <sys/asan.h>
135 #include <sys/bus.h>
136 #include <sys/device.h>
137 #include <sys/kernel.h>
138 #include <sys/reboot.h>
139
140 #include <dev/cons.h>
141
142 #include <uvm/uvm_extern.h>
143
144 #include <arm/arm32/machdep.h>
145 #include <arm/bootconfig.h>
146 #include <arm/db_machdep.h>
147 #include <arm/locore.h>
148 #include <arm/undefined.h>
149
150 #if defined(FDT)
151 #include <arch/evbarm/fdt/platform.h>
152 #include <arm/fdt/arm_fdtvar.h>
153 #include <dev/fdt/fdt_memory.h>
154 #endif
155
156 #ifdef MULTIPROCESSOR
157 #ifndef __HAVE_CPU_UAREA_ALLOC_IDLELWP
158 #error __HAVE_CPU_UAREA_ALLOC_IDLELWP required to not waste pages for idlestack
159 #endif
160 #endif
161
162 #ifdef VERBOSE_INIT_ARM
163 #define VPRINTF(...) printf(__VA_ARGS__)
164 #else
165 #define VPRINTF(...) __nothing
166 #endif
167
168 struct bootmem_info bootmem_info;
169
170 extern void *msgbufaddr;
171 paddr_t msgbufphys;
172 paddr_t physical_start;
173 paddr_t physical_end;
174
175 extern char etext[];
176 extern char __data_start[], _edata[];
177 extern char __bss_start[], __bss_end__[];
178 extern char _end[];
179
180 /* Page tables for mapping kernel VM */
181 #define KERNEL_L2PT_VMDATA_NUM 8 /* start with 32MB of KVM */
182
183 #ifdef KASAN
184 vaddr_t kasan_kernelstart;
185 vaddr_t kasan_kernelsize;
186
187 #define KERNEL_L2PT_KASAN_NUM howmany(VM_KERNEL_KASAN_SIZE, L2_S_SEGSIZE)
188 bool kasan_l2pts_created __attribute__((__section__(".data"))) = false;
189 pv_addr_t kasan_l2pt[KERNEL_L2PT_KASAN_NUM];
190 #else
191 #define KERNEL_L2PT_KASAN_NUM 0
192 #endif
193
194 u_long kern_vtopdiff __attribute__((__section__(".data")));
195
196 void
197 arm32_bootmem_init(paddr_t memstart, psize_t memsize, vsize_t kernelstart)
198 {
199 struct bootmem_info * const bmi = &bootmem_info;
200 pv_addr_t *pv = bmi->bmi_freeblocks;
201
202 /*
203 * FDT/generic start fills in kern_vtopdiff early
204 */
205 #if defined(__HAVE_GENERIC_START)
206 extern char KERNEL_BASE_virt[];
207 extern char const __stop__init_memory[];
208
209 VPRINTF("%s: kern_vtopdiff=%#lx\n", __func__, kern_vtopdiff);
210
211 vaddr_t kstartva = trunc_page((vaddr_t)KERNEL_BASE_virt);
212 vaddr_t kendva = round_page((vaddr_t)__stop__init_memory);
213
214 kernelstart = KERN_VTOPHYS(kstartva);
215
216 VPRINTF("%s: kstartva=%#lx, kernelstart=%#lx\n", __func__, kstartva, kernelstart);
217 #else
218 vaddr_t kendva = round_page((vaddr_t)_end);
219
220 #if defined(KERNEL_BASE_VOFFSET)
221 kern_vtopdiff = KERNEL_BASE_VOFFSET;
222 #else
223 KASSERT(memstart == kernelstart);
224 kern_vtopdiff = KERNEL_BASE + memstart;
225 #endif
226 #endif
227 paddr_t kernelend = KERN_VTOPHYS(kendva);
228
229 VPRINTF("%s: memstart=%#lx, memsize=%#lx\n", __func__,
230 memstart, memsize);
231 VPRINTF("%s: kernelstart=%#lx, kernelend=%#lx\n", __func__,
232 kernelstart, kernelend);
233
234 physical_start = bmi->bmi_start = memstart;
235 physical_end = bmi->bmi_end = memstart + memsize;
236 #ifndef ARM_HAS_LPAE
237 if (physical_end == 0) {
238 physical_end = -PAGE_SIZE;
239 memsize -= PAGE_SIZE;
240 bmi->bmi_end -= PAGE_SIZE;
241 VPRINTF("%s: memsize shrunk by a page to avoid ending at 4GB\n",
242 __func__);
243 }
244 #endif
245 physmem = memsize / PAGE_SIZE;
246
247 /*
248 * Let's record where the kernel lives.
249 */
250
251 bmi->bmi_kernelstart = kernelstart;
252 bmi->bmi_kernelend = kernelend;
253
254 #if defined(FDT)
255 fdt_memory_remove_range(bmi->bmi_kernelstart,
256 bmi->bmi_kernelend - bmi->bmi_kernelstart);
257 #endif
258
259 VPRINTF("%s: kernel phys start %#lx end %#lx\n", __func__, kernelstart,
260 kernelend);
261
262 #if 0
263 // XXX Makes RPI abort
264 KASSERT((kernelstart & (L2_S_SEGSIZE - 1)) == 0);
265 #endif
266 /*
267 * Now the rest of the free memory must be after the kernel.
268 */
269 pv->pv_pa = bmi->bmi_kernelend;
270 pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
271 pv->pv_size = bmi->bmi_end - bmi->bmi_kernelend;
272 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
273 VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
274 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
275 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
276 pv++;
277
278 /*
279 * Add a free block for any memory before the kernel.
280 */
281 if (bmi->bmi_start < bmi->bmi_kernelstart) {
282 pv->pv_pa = bmi->bmi_start;
283 pv->pv_va = KERN_PHYSTOV(pv->pv_pa);
284 pv->pv_size = bmi->bmi_kernelstart - pv->pv_pa;
285 bmi->bmi_freepages += pv->pv_size / PAGE_SIZE;
286 VPRINTF("%s: adding %lu free pages: [%#lx..%#lx] (VA %#lx)\n",
287 __func__, pv->pv_size / PAGE_SIZE, pv->pv_pa,
288 pv->pv_pa + pv->pv_size - 1, pv->pv_va);
289 pv++;
290 }
291
292 bmi->bmi_nfreeblocks = pv - bmi->bmi_freeblocks;
293
294 SLIST_INIT(&bmi->bmi_freechunks);
295 SLIST_INIT(&bmi->bmi_chunks);
296 }
297
298 static bool
299 concat_pvaddr(pv_addr_t *acc_pv, pv_addr_t *pv)
300 {
301 if (acc_pv->pv_pa + acc_pv->pv_size == pv->pv_pa
302 && acc_pv->pv_va + acc_pv->pv_size == pv->pv_va
303 && acc_pv->pv_prot == pv->pv_prot
304 && acc_pv->pv_cache == pv->pv_cache) {
305 #if 0
306 VPRINTF("%s: appending pv %p (%#lx..%#lx) to %#lx..%#lx\n",
307 __func__, pv, pv->pv_pa, pv->pv_pa + pv->pv_size,
308 acc_pv->pv_pa, acc_pv->pv_pa + acc_pv->pv_size);
309 #endif
310 acc_pv->pv_size += pv->pv_size;
311 return true;
312 }
313
314 return false;
315 }
316
317 static void
318 add_pages(struct bootmem_info *bmi, pv_addr_t *pv)
319 {
320 pv_addr_t **pvp = &SLIST_FIRST(&bmi->bmi_chunks);
321 while ((*pvp) != NULL && (*pvp)->pv_va <= pv->pv_va) {
322 pv_addr_t * const pv0 = (*pvp);
323 KASSERT(SLIST_NEXT(pv0, pv_list) == NULL || pv0->pv_pa < SLIST_NEXT(pv0, pv_list)->pv_pa);
324 if (concat_pvaddr(pv0, pv)) {
325 VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
326 __func__, "appending", pv,
327 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
328 pv0->pv_pa, pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
329 pv = SLIST_NEXT(pv0, pv_list);
330 if (pv != NULL && concat_pvaddr(pv0, pv)) {
331 VPRINTF("%s: %s pv %p (%#lx..%#lx) to %#lx..%#lx\n",
332 __func__, "merging", pv,
333 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
334 pv0->pv_pa,
335 pv0->pv_pa + pv0->pv_size - pv->pv_size - 1);
336 SLIST_REMOVE_AFTER(pv0, pv_list);
337 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, pv, pv_list);
338 }
339 return;
340 }
341 KASSERT(pv->pv_va != (*pvp)->pv_va);
342 pvp = &SLIST_NEXT(*pvp, pv_list);
343 }
344 KASSERT((*pvp) == NULL || pv->pv_va < (*pvp)->pv_va);
345 pv_addr_t * const new_pv = SLIST_FIRST(&bmi->bmi_freechunks);
346 KASSERT(new_pv != NULL);
347 SLIST_REMOVE_HEAD(&bmi->bmi_freechunks, pv_list);
348 *new_pv = *pv;
349 SLIST_NEXT(new_pv, pv_list) = *pvp;
350 (*pvp) = new_pv;
351
352 VPRINTF("%s: adding pv %p (pa %#lx, va %#lx, %lu pages) ",
353 __func__, new_pv, new_pv->pv_pa, new_pv->pv_va,
354 new_pv->pv_size / PAGE_SIZE);
355 if (SLIST_NEXT(new_pv, pv_list)) {
356 VPRINTF("before pa %#lx\n", SLIST_NEXT(new_pv, pv_list)->pv_pa);
357 } else {
358 VPRINTF("at tail\n");
359 }
360 }
361
362 static void
363 valloc_pages(struct bootmem_info *bmi, pv_addr_t *pv, size_t npages,
364 int prot, int cache, bool zero_p)
365 {
366 size_t nbytes = npages * PAGE_SIZE;
367 pv_addr_t *free_pv = bmi->bmi_freeblocks;
368 size_t free_idx = 0;
369 static bool l1pt_found;
370
371 KASSERT(npages > 0);
372
373 /*
374 * If we haven't allocated the kernel L1 page table and we are aligned
375 * at a L1 table boundary, alloc the memory for it.
376 */
377 if (!l1pt_found
378 && (free_pv->pv_pa & (L1_TABLE_SIZE - 1)) == 0
379 && free_pv->pv_size >= L1_TABLE_SIZE) {
380 l1pt_found = true;
381 VPRINTF(" l1pt");
382
383 valloc_pages(bmi, &kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE,
384 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
385 add_pages(bmi, &kernel_l1pt);
386 }
387
388 while (nbytes > free_pv->pv_size) {
389 free_pv++;
390 free_idx++;
391 if (free_idx == bmi->bmi_nfreeblocks) {
392 panic("%s: could not allocate %zu bytes",
393 __func__, nbytes);
394 }
395 }
396
397 /*
398 * As we allocate the memory, make sure that we don't walk over
399 * our current first level translation table.
400 */
401 KASSERT((armreg_ttbr_read() & ~(L1_TABLE_SIZE - 1)) != free_pv->pv_pa);
402
403 #if defined(FDT)
404 fdt_memory_remove_range(free_pv->pv_pa, nbytes);
405 #endif
406 pv->pv_pa = free_pv->pv_pa;
407 pv->pv_va = free_pv->pv_va;
408 pv->pv_size = nbytes;
409 pv->pv_prot = prot;
410 pv->pv_cache = cache;
411
412 /*
413 * If PTE_PAGETABLE uses the same cache modes as PTE_CACHE
414 * just use PTE_CACHE.
415 */
416 if (cache == PTE_PAGETABLE
417 && pte_l1_s_cache_mode == pte_l1_s_cache_mode_pt
418 && pte_l2_l_cache_mode == pte_l2_l_cache_mode_pt
419 && pte_l2_s_cache_mode == pte_l2_s_cache_mode_pt)
420 pv->pv_cache = PTE_CACHE;
421
422 free_pv->pv_pa += nbytes;
423 free_pv->pv_va += nbytes;
424 free_pv->pv_size -= nbytes;
425 if (free_pv->pv_size == 0) {
426 --bmi->bmi_nfreeblocks;
427 for (; free_idx < bmi->bmi_nfreeblocks; free_idx++) {
428 free_pv[0] = free_pv[1];
429 }
430 }
431
432 bmi->bmi_freepages -= npages;
433
434 if (zero_p)
435 memset((void *)pv->pv_va, 0, nbytes);
436 }
437
438 void
439 arm32_kernel_vm_init(vaddr_t kernel_vm_base, vaddr_t vectors, vaddr_t iovbase,
440 const struct pmap_devmap *devmap, bool mapallmem_p)
441 {
442 struct bootmem_info * const bmi = &bootmem_info;
443 #ifdef MULTIPROCESSOR
444 const size_t cpu_num = arm_cpu_max;
445 #else
446 const size_t cpu_num = 1;
447 #endif
448
449 #ifdef ARM_HAS_VBAR
450 const bool map_vectors_p = false;
451 #elif defined(CPU_ARMV7) || defined(CPU_ARM11)
452 const bool map_vectors_p = vectors == ARM_VECTORS_HIGH
453 || (armreg_pfr1_read() & ARM_PFR1_SEC_MASK) == 0;
454 #else
455 const bool map_vectors_p = true;
456 #endif
457
458 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
459 KASSERT(mapallmem_p);
460 #ifdef ARM_MMU_EXTENDED
461 /*
462 * The direct map VA space ends at the start of the kernel VM space.
463 */
464 pmap_directlimit = kernel_vm_base;
465 #else
466 KASSERT(kernel_vm_base - KERNEL_BASE >= physical_end - physical_start);
467 #endif /* ARM_MMU_EXTENDED */
468 #endif /* __HAVE_MM_MD_DIRECT_MAPPED_PHYS */
469
470 /*
471 * Calculate the number of L2 pages needed for mapping the
472 * kernel + data + stuff. Assume 2 L2 pages for kernel, 1 for vectors,
473 * and 1 for IO
474 */
475 size_t kernel_size = bmi->bmi_kernelend;
476 kernel_size -= (bmi->bmi_kernelstart & -L2_S_SEGSIZE);
477 kernel_size += L1_TABLE_SIZE;
478 kernel_size += PAGE_SIZE * KERNEL_L2PT_VMDATA_NUM;
479 kernel_size += PAGE_SIZE * KERNEL_L2PT_KASAN_NUM;
480 if (map_vectors_p) {
481 kernel_size += PAGE_SIZE; /* L2PT for VECTORS */
482 }
483 if (iovbase) {
484 kernel_size += PAGE_SIZE; /* L2PT for IO */
485 }
486 kernel_size +=
487 cpu_num * (ABT_STACK_SIZE + FIQ_STACK_SIZE + IRQ_STACK_SIZE
488 + UND_STACK_SIZE + UPAGES) * PAGE_SIZE;
489 kernel_size += round_page(MSGBUFSIZE);
490 kernel_size += 0x10000; /* slop */
491 if (!mapallmem_p) {
492 kernel_size += PAGE_SIZE
493 * howmany(kernel_size, L2_S_SEGSIZE);
494 }
495 kernel_size = round_page(kernel_size);
496
497 /*
498 * Now we know how many L2 pages it will take.
499 */
500 const size_t KERNEL_L2PT_KERNEL_NUM =
501 howmany(kernel_size, L2_S_SEGSIZE);
502
503 VPRINTF("%s: %zu L2 pages are needed to map %#zx kernel bytes\n",
504 __func__, KERNEL_L2PT_KERNEL_NUM, kernel_size);
505
506 KASSERT(KERNEL_L2PT_KERNEL_NUM + KERNEL_L2PT_VMDATA_NUM < __arraycount(bmi->bmi_l2pts));
507 pv_addr_t * const kernel_l2pt = bmi->bmi_l2pts;
508 pv_addr_t * const vmdata_l2pt = kernel_l2pt + KERNEL_L2PT_KERNEL_NUM;
509 pv_addr_t msgbuf;
510 pv_addr_t text;
511 pv_addr_t data;
512 pv_addr_t chunks[__arraycount(bmi->bmi_l2pts) + 11];
513 #if ARM_MMU_XSCALE == 1
514 pv_addr_t minidataclean;
515 #endif
516
517 /*
518 * We need to allocate some fixed page tables to get the kernel going.
519 *
520 * We are going to allocate our bootstrap pages from the beginning of
521 * the free space that we just calculated. We allocate one page
522 * directory and a number of page tables and store the physical
523 * addresses in the bmi_l2pts array in bootmem_info.
524 *
525 * The kernel page directory must be on a 16K boundary. The page
526 * tables must be on 4K boundaries. What we do is allocate the
527 * page directory on the first 16K boundary that we encounter, and
528 * the page tables on 4K boundaries otherwise. Since we allocate
529 * at least 3 L2 page tables, we are guaranteed to encounter at
530 * least one 16K aligned region.
531 */
532
533 VPRINTF("%s: allocating page tables for", __func__);
534 for (size_t i = 0; i < __arraycount(chunks); i++) {
535 SLIST_INSERT_HEAD(&bmi->bmi_freechunks, &chunks[i], pv_list);
536 }
537
538 kernel_l1pt.pv_pa = 0;
539 kernel_l1pt.pv_va = 0;
540
541 /*
542 * Allocate the L2 pages, but if we get to a page that is aligned for
543 * an L1 page table, we will allocate the pages for it first and then
544 * allocate the L2 page.
545 */
546
547 if (map_vectors_p) {
548 /*
549 * First allocate L2 page for the vectors.
550 */
551 VPRINTF(" vector");
552 valloc_pages(bmi, &bmi->bmi_vector_l2pt, 1,
553 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
554 add_pages(bmi, &bmi->bmi_vector_l2pt);
555 }
556
557 /*
558 * Now allocate L2 pages for the kernel
559 */
560 VPRINTF(" kernel");
561 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; ++idx) {
562 valloc_pages(bmi, &kernel_l2pt[idx], 1,
563 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
564 add_pages(bmi, &kernel_l2pt[idx]);
565 }
566
567 /*
568 * Now allocate L2 pages for the initial kernel VA space.
569 */
570 VPRINTF(" vm");
571 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; ++idx) {
572 valloc_pages(bmi, &vmdata_l2pt[idx], 1,
573 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
574 add_pages(bmi, &vmdata_l2pt[idx]);
575 }
576
577 #ifdef KASAN
578 /*
579 * Now allocate L2 pages for the KASAN shadow map l2pt VA space.
580 */
581 VPRINTF(" kasan");
582 for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; ++idx) {
583 valloc_pages(bmi, &kasan_l2pt[idx], 1,
584 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
585 add_pages(bmi, &kasan_l2pt[idx]);
586 }
587
588 #endif
589 /*
590 * If someone wanted a L2 page for I/O, allocate it now.
591 */
592 if (iovbase) {
593 VPRINTF(" io");
594 valloc_pages(bmi, &bmi->bmi_io_l2pt, 1,
595 VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE, true);
596 add_pages(bmi, &bmi->bmi_io_l2pt);
597 }
598
599 VPRINTF("%s: allocating stacks\n", __func__);
600
601 /* Allocate stacks for all modes and CPUs */
602 valloc_pages(bmi, &abtstack, ABT_STACK_SIZE * cpu_num,
603 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
604 add_pages(bmi, &abtstack);
605 valloc_pages(bmi, &fiqstack, FIQ_STACK_SIZE * cpu_num,
606 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
607 add_pages(bmi, &fiqstack);
608 valloc_pages(bmi, &irqstack, IRQ_STACK_SIZE * cpu_num,
609 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
610 add_pages(bmi, &irqstack);
611 valloc_pages(bmi, &undstack, UND_STACK_SIZE * cpu_num,
612 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
613 add_pages(bmi, &undstack);
614 valloc_pages(bmi, &idlestack, UPAGES * cpu_num, /* SVC32 */
615 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
616 add_pages(bmi, &idlestack);
617 valloc_pages(bmi, &kernelstack, UPAGES, /* SVC32 */
618 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, true);
619 add_pages(bmi, &kernelstack);
620
621 /* Allocate the message buffer from the end of memory. */
622 const size_t msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
623 valloc_pages(bmi, &msgbuf, msgbuf_pgs,
624 VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE, false);
625 add_pages(bmi, &msgbuf);
626 msgbufphys = msgbuf.pv_pa;
627 msgbufaddr = (void *)msgbuf.pv_va;
628
629 #ifdef KASAN
630 kasan_kernelstart = KERNEL_BASE;
631 kasan_kernelsize = (msgbuf.pv_va + round_page(MSGBUFSIZE)) - KERNEL_BASE;
632 #endif
633
634 if (map_vectors_p) {
635 /*
636 * Allocate a page for the system vector page.
637 * This page will just contain the system vectors and can be
638 * shared by all processes.
639 */
640 VPRINTF(" vector");
641
642 valloc_pages(bmi, &systempage, 1,
643 VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE,
644 PTE_CACHE, true);
645 }
646 systempage.pv_va = vectors;
647
648 /*
649 * If the caller needed a few extra pages for some reason, allocate
650 * them now.
651 */
652 #if ARM_MMU_XSCALE == 1
653 #if (ARM_NMMUS > 1)
654 if (xscale_use_minidata)
655 #endif
656 valloc_pages(bmi, &minidataclean, 1,
657 VM_PROT_READ | VM_PROT_WRITE, 0, true);
658 #endif
659
660 /*
661 * Ok we have allocated physical pages for the primary kernel
662 * page tables and stacks. Let's just confirm that.
663 */
664 if (kernel_l1pt.pv_va == 0
665 && (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0))
666 panic("%s: Failed to allocate or align the kernel "
667 "page directory", __func__);
668
669 VPRINTF("Creating L1 page table at 0x%08lx/0x%08lx\n",
670 kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
671
672 /*
673 * Now we start construction of the L1 page table
674 * We start by mapping the L2 page tables into the L1.
675 * This means that we can replace L1 mappings later on if necessary
676 */
677 vaddr_t l1pt_va = kernel_l1pt.pv_va;
678 paddr_t l1pt_pa = kernel_l1pt.pv_pa;
679
680 if (map_vectors_p) {
681 /* Map the L2 pages tables in the L1 page table */
682 const vaddr_t va = systempage.pv_va & -L2_S_SEGSIZE;
683
684 pmap_link_l2pt(l1pt_va, va, &bmi->bmi_vector_l2pt);
685
686 VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
687 __func__, bmi->bmi_vector_l2pt.pv_va,
688 bmi->bmi_vector_l2pt.pv_pa, systempage.pv_va, "(vectors)");
689 }
690
691 /*
692 * This enforces an alignment requirement of L2_S_SEGSIZE for kernel
693 * start PA
694 */
695 const vaddr_t kernel_base =
696 KERN_PHYSTOV(bmi->bmi_kernelstart & -L2_S_SEGSIZE);
697
698 VPRINTF("%s: kernel_base %lx KERNEL_L2PT_KERNEL_NUM %zu\n", __func__,
699 kernel_base, KERNEL_L2PT_KERNEL_NUM);
700
701 for (size_t idx = 0; idx < KERNEL_L2PT_KERNEL_NUM; idx++) {
702 const vaddr_t va = kernel_base + idx * L2_S_SEGSIZE;
703
704 pmap_link_l2pt(l1pt_va, va, &kernel_l2pt[idx]);
705
706 VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
707 __func__, kernel_l2pt[idx].pv_va, kernel_l2pt[idx].pv_pa,
708 va, "(kernel)");
709 }
710
711 VPRINTF("%s: kernel_vm_base %lx KERNEL_L2PT_VMDATA_NUM %d\n", __func__,
712 kernel_vm_base, KERNEL_L2PT_VMDATA_NUM);
713
714 for (size_t idx = 0; idx < KERNEL_L2PT_VMDATA_NUM; idx++) {
715 const vaddr_t va = kernel_vm_base + idx * L2_S_SEGSIZE;
716
717 pmap_link_l2pt(l1pt_va, va, &vmdata_l2pt[idx]);
718
719 VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
720 __func__, vmdata_l2pt[idx].pv_va, vmdata_l2pt[idx].pv_pa,
721 va, "(vm)");
722 }
723 if (iovbase) {
724 const vaddr_t va = iovbase & -L2_S_SEGSIZE;
725
726 pmap_link_l2pt(l1pt_va, va, &bmi->bmi_io_l2pt);
727
728 VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
729 __func__, bmi->bmi_io_l2pt.pv_va, bmi->bmi_io_l2pt.pv_pa,
730 va, "(io)");
731 }
732
733 #ifdef KASAN
734 VPRINTF("%s: kasan_shadow_base %x KERNEL_L2PT_KASAN_NUM %d\n", __func__,
735 VM_KERNEL_KASAN_BASE, KERNEL_L2PT_KASAN_NUM);
736
737 for (size_t idx = 0; idx < KERNEL_L2PT_KASAN_NUM; idx++) {
738 const vaddr_t va = VM_KERNEL_KASAN_BASE + idx * L2_S_SEGSIZE;
739
740 pmap_link_l2pt(l1pt_va, va, &kasan_l2pt[idx]);
741
742 VPRINTF("%s: adding L2 pt (VA %#lx, PA %#lx) for VA %#lx %s\n",
743 __func__, kasan_l2pt[idx].pv_va, kasan_l2pt[idx].pv_pa,
744 va, "(kasan)");
745 }
746 kasan_l2pts_created = true;
747 #endif
748
749 /* update the top of the kernel VM */
750 pmap_curmaxkvaddr =
751 kernel_vm_base + (KERNEL_L2PT_VMDATA_NUM * L2_S_SEGSIZE);
752
753 // This could be done earlier and then the kernel data and pages
754 // allocated above would get merged (concatentated)
755
756 VPRINTF("Mapping kernel\n");
757
758 extern char etext[];
759 size_t totalsize = bmi->bmi_kernelend - bmi->bmi_kernelstart;
760 size_t textsize = KERN_VTOPHYS((uintptr_t)etext) - bmi->bmi_kernelstart;
761
762 textsize = (textsize + PGOFSET) & ~PGOFSET;
763
764 /* start at offset of kernel in RAM */
765
766 text.pv_pa = bmi->bmi_kernelstart;
767 text.pv_va = KERN_PHYSTOV(bmi->bmi_kernelstart);
768 text.pv_size = textsize;
769 text.pv_prot = VM_PROT_READ | VM_PROT_EXECUTE;
770 text.pv_cache = PTE_CACHE;
771
772 VPRINTF("%s: adding chunk for kernel text %#lx..%#lx (VA %#lx)\n",
773 __func__, text.pv_pa, text.pv_pa + text.pv_size - 1, text.pv_va);
774
775 add_pages(bmi, &text);
776
777 data.pv_pa = text.pv_pa + textsize;
778 data.pv_va = text.pv_va + textsize;
779 data.pv_size = totalsize - textsize;
780 data.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
781 data.pv_cache = PTE_CACHE;
782
783 VPRINTF("%s: adding chunk for kernel data/bss %#lx..%#lx (VA %#lx)\n",
784 __func__, data.pv_pa, data.pv_pa + data.pv_size - 1, data.pv_va);
785
786 add_pages(bmi, &data);
787
788 VPRINTF("Listing Chunks\n");
789
790 pv_addr_t *lpv;
791 SLIST_FOREACH(lpv, &bmi->bmi_chunks, pv_list) {
792 VPRINTF("%s: pv %p: chunk VA %#lx..%#lx "
793 "(PA %#lx, prot %d, cache %d)\n",
794 __func__, lpv, lpv->pv_va, lpv->pv_va + lpv->pv_size - 1,
795 lpv->pv_pa, lpv->pv_prot, lpv->pv_cache);
796 }
797 VPRINTF("\nMapping Chunks\n");
798
799 pv_addr_t cur_pv;
800 pv_addr_t *pv = SLIST_FIRST(&bmi->bmi_chunks);
801 if (!mapallmem_p || pv->pv_pa == bmi->bmi_start) {
802 cur_pv = *pv;
803 KASSERTMSG(cur_pv.pv_va >= KERNEL_BASE, "%#lx", cur_pv.pv_va);
804 pv = SLIST_NEXT(pv, pv_list);
805 } else {
806 cur_pv.pv_va = KERNEL_BASE;
807 cur_pv.pv_pa = KERN_VTOPHYS(cur_pv.pv_va);
808 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_pa;
809 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
810 cur_pv.pv_cache = PTE_CACHE;
811 }
812 while (pv != NULL) {
813 if (mapallmem_p) {
814 if (concat_pvaddr(&cur_pv, pv)) {
815 pv = SLIST_NEXT(pv, pv_list);
816 continue;
817 }
818 if (cur_pv.pv_pa + cur_pv.pv_size < pv->pv_pa) {
819 /*
820 * See if we can extend the current pv to emcompass the
821 * hole, and if so do it and retry the concatenation.
822 */
823 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
824 && cur_pv.pv_cache == PTE_CACHE) {
825 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
826 continue;
827 }
828
829 /*
830 * We couldn't so emit the current chunk and then
831 */
832 VPRINTF("%s: mapping chunk VA %#lx..%#lx "
833 "(PA %#lx, prot %d, cache %d)\n",
834 __func__,
835 cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
836 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
837 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
838 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
839
840 /*
841 * set the current chunk to the hole and try again.
842 */
843 cur_pv.pv_pa += cur_pv.pv_size;
844 cur_pv.pv_va += cur_pv.pv_size;
845 cur_pv.pv_size = pv->pv_pa - cur_pv.pv_va;
846 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
847 cur_pv.pv_cache = PTE_CACHE;
848 continue;
849 }
850 }
851
852 /*
853 * The new pv didn't concatenate so emit the current one
854 * and use the new pv as the current pv.
855 */
856 VPRINTF("%s: mapping chunk VA %#lx..%#lx "
857 "(PA %#lx, prot %d, cache %d)\n",
858 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
859 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
860 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
861 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
862 cur_pv = *pv;
863 pv = SLIST_NEXT(pv, pv_list);
864 }
865
866 /*
867 * If we are mapping all of memory, let's map the rest of memory.
868 */
869 if (mapallmem_p && cur_pv.pv_pa + cur_pv.pv_size < bmi->bmi_end) {
870 if (cur_pv.pv_prot == (VM_PROT_READ | VM_PROT_WRITE)
871 && cur_pv.pv_cache == PTE_CACHE) {
872 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
873 } else {
874 KASSERTMSG(cur_pv.pv_va + cur_pv.pv_size <= kernel_vm_base,
875 "%#lx >= %#lx", cur_pv.pv_va + cur_pv.pv_size,
876 kernel_vm_base);
877 VPRINTF("%s: mapping chunk VA %#lx..%#lx "
878 "(PA %#lx, prot %d, cache %d)\n",
879 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
880 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
881 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
882 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
883 cur_pv.pv_pa += cur_pv.pv_size;
884 cur_pv.pv_va += cur_pv.pv_size;
885 cur_pv.pv_size = bmi->bmi_end - cur_pv.pv_pa;
886 cur_pv.pv_prot = VM_PROT_READ | VM_PROT_WRITE;
887 cur_pv.pv_cache = PTE_CACHE;
888 }
889 }
890
891 /*
892 * The amount we can direct map is limited by the start of the
893 * virtual part of the kernel address space. Don't overrun
894 * into it.
895 */
896 if (mapallmem_p && cur_pv.pv_va + cur_pv.pv_size > kernel_vm_base) {
897 cur_pv.pv_size = kernel_vm_base - cur_pv.pv_va;
898 }
899
900 /*
901 * Now we map the final chunk.
902 */
903 VPRINTF("%s: mapping last chunk VA %#lx..%#lx (PA %#lx, prot %d, cache %d)\n",
904 __func__, cur_pv.pv_va, cur_pv.pv_va + cur_pv.pv_size - 1,
905 cur_pv.pv_pa, cur_pv.pv_prot, cur_pv.pv_cache);
906 pmap_map_chunk(l1pt_va, cur_pv.pv_va, cur_pv.pv_pa,
907 cur_pv.pv_size, cur_pv.pv_prot, cur_pv.pv_cache);
908
909 /*
910 * Now we map the stuff that isn't directly after the kernel
911 */
912 if (map_vectors_p) {
913 /* Map the vector page. */
914 pmap_map_entry(l1pt_va, systempage.pv_va, systempage.pv_pa,
915 VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE, PTE_CACHE);
916 }
917
918 /* Map the Mini-Data cache clean area. */
919 #if ARM_MMU_XSCALE == 1
920 #if (ARM_NMMUS > 1)
921 if (xscale_use_minidata)
922 #endif
923 xscale_setup_minidata(l1pt_va, minidataclean.pv_va,
924 minidataclean.pv_pa);
925 #endif
926
927 /*
928 * Map integrated peripherals at same address in first level page
929 * table so that we can continue to use console.
930 */
931 if (devmap)
932 pmap_devmap_bootstrap(l1pt_va, devmap);
933
934 /* Tell the user about where all the bits and pieces live. */
935 VPRINTF("%22s Physical Virtual Num\n", " ");
936 VPRINTF("%22s Starting Ending Starting Ending Pages\n", " ");
937
938 #ifdef VERBOSE_INIT_ARM
939 static const char mem_fmt[] =
940 "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %u\n";
941 static const char mem_fmt_nov[] =
942 "%20s: 0x%08lx 0x%08lx %zu\n";
943 #endif
944
945 #if 0
946 // XXX Doesn't make sense if kernel not at bottom of RAM
947 VPRINTF(mem_fmt, "SDRAM", bmi->bmi_start, bmi->bmi_end - 1,
948 KERN_PHYSTOV(bmi->bmi_start), KERN_PHYSTOV(bmi->bmi_end - 1),
949 (int)physmem);
950 #endif
951 VPRINTF(mem_fmt, "text section",
952 text.pv_pa, text.pv_pa + text.pv_size - 1,
953 text.pv_va, text.pv_va + text.pv_size - 1,
954 (int)(text.pv_size / PAGE_SIZE));
955 VPRINTF(mem_fmt, "data section",
956 KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
957 (vaddr_t)__data_start, (vaddr_t)_edata,
958 (int)((round_page((vaddr_t)_edata)
959 - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
960 VPRINTF(mem_fmt, "bss section",
961 KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
962 (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
963 (int)((round_page((vaddr_t)__bss_end__)
964 - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
965 VPRINTF(mem_fmt, "L1 page directory",
966 kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
967 kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
968 L1_TABLE_SIZE / PAGE_SIZE);
969 VPRINTF(mem_fmt, "ABT stack (CPU 0)",
970 abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
971 abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
972 ABT_STACK_SIZE);
973 VPRINTF(mem_fmt, "FIQ stack (CPU 0)",
974 fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
975 fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
976 FIQ_STACK_SIZE);
977 VPRINTF(mem_fmt, "IRQ stack (CPU 0)",
978 irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
979 irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
980 IRQ_STACK_SIZE);
981 VPRINTF(mem_fmt, "UND stack (CPU 0)",
982 undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
983 undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
984 UND_STACK_SIZE);
985 VPRINTF(mem_fmt, "IDLE stack (CPU 0)",
986 idlestack.pv_pa, idlestack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
987 idlestack.pv_va, idlestack.pv_va + (UPAGES * PAGE_SIZE) - 1,
988 UPAGES);
989 VPRINTF(mem_fmt, "SVC stack",
990 kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
991 kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
992 UPAGES);
993 VPRINTF(mem_fmt, "Message Buffer",
994 msgbuf.pv_pa, msgbuf.pv_pa + (msgbuf_pgs * PAGE_SIZE) - 1,
995 msgbuf.pv_va, msgbuf.pv_va + (msgbuf_pgs * PAGE_SIZE) - 1,
996 (int)msgbuf_pgs);
997 if (map_vectors_p) {
998 VPRINTF(mem_fmt, "Exception Vectors",
999 systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
1000 systempage.pv_va, systempage.pv_va + PAGE_SIZE - 1,
1001 1);
1002 }
1003 for (size_t i = 0; i < bmi->bmi_nfreeblocks; i++) {
1004 pv = &bmi->bmi_freeblocks[i];
1005
1006 VPRINTF(mem_fmt_nov, "Free Memory",
1007 pv->pv_pa, pv->pv_pa + pv->pv_size - 1,
1008 pv->pv_size / PAGE_SIZE);
1009 }
1010 /*
1011 * Now we have the real page tables in place so we can switch to them.
1012 * Once this is done we will be running with the REAL kernel page
1013 * tables.
1014 */
1015
1016 VPRINTF("TTBR0=%#x", armreg_ttbr_read());
1017 #ifdef _ARM_ARCH_6
1018 VPRINTF(" TTBR1=%#x TTBCR=%#x CONTEXTIDR=%#x",
1019 armreg_ttbr1_read(), armreg_ttbcr_read(),
1020 armreg_contextidr_read());
1021 #endif
1022 VPRINTF("\n");
1023
1024 /* Switch tables */
1025 VPRINTF("switching to new L1 page table @%#lx...\n", l1pt_pa);
1026
1027 cpu_ttb = l1pt_pa;
1028
1029 cpu_domains(DOMAIN_DEFAULT);
1030
1031 cpu_idcache_wbinv_all();
1032
1033 #ifdef __HAVE_GENERIC_START
1034
1035 /*
1036 * Turn on caches and set SCTLR/ACTLR
1037 */
1038 cpu_setup(boot_args);
1039 #endif
1040
1041 VPRINTF(" ttb");
1042
1043 #ifdef ARM_MMU_EXTENDED
1044 /*
1045 * TTBCR should have been initialized by the MD start code.
1046 */
1047 KASSERT((armreg_contextidr_read() & 0xff) == 0);
1048 KASSERT(armreg_ttbcr_read() == __SHIFTIN(1, TTBCR_S_N));
1049 /*
1050 * Disable lookups via TTBR0 until there is an activated pmap.
1051 */
1052 armreg_ttbcr_write(armreg_ttbcr_read() | TTBCR_S_PD0);
1053 cpu_setttb(l1pt_pa, KERNEL_PID);
1054 isb();
1055 #else
1056 cpu_setttb(l1pt_pa, true);
1057 #endif
1058
1059 cpu_tlb_flushID();
1060
1061 #ifdef KASAN
1062 extern uint8_t start_stacks_bottom[];
1063 kasan_early_init((void *)start_stacks_bottom);
1064 #endif
1065
1066 #ifdef ARM_MMU_EXTENDED
1067 VPRINTF("\nsctlr=%#x actlr=%#x\n",
1068 armreg_sctlr_read(), armreg_auxctl_read());
1069 #else
1070 VPRINTF(" (TTBR0=%#x)", armreg_ttbr_read());
1071 #endif
1072
1073 #ifdef MULTIPROCESSOR
1074 #ifndef __HAVE_GENERIC_START
1075 /*
1076 * Kick the secondaries to load the TTB. After which they'll go
1077 * back to sleep to wait for the final kick so they will hatch.
1078 */
1079 VPRINTF(" hatchlings");
1080 cpu_boot_secondary_processors();
1081 #endif
1082 #endif
1083
1084 VPRINTF(" OK\n");
1085 }
1086